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Computational SRAM: Towards Efficient Near-Memory 

Computing through Tightly Coupled HW/SW Design

Computational SRAM Description

Fig. 2. Overview of the proposed C-SRAM-based system.

Fig. 3. HybroGen compiler generate heterogeneous code for the control part (CPU) and the 

workload (C-SRAM).
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SW Compiler & Programming Model

Fig. 4. OpenCV benchmarks contained in HybroGen compiler. 
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Application Domains & Results

Perspectives

Fig. 1. C-SRAM Instruction Set Architecture. 

Close HW/SW co-design enables the implementation of a

C-SRAM-based NMC architecture that can be used either as a

vector co-processor or as a low-latency memory. The only role

of the host processor is to send specific instructions to the

C-SRAM, which executes them through a local 6-stage pipeline.

Context & objective
The growing number of sensor-based embedded systems harvesting large amounts of data, coupled with a strong demand for

processing them with AI algorithms, is pushing energy-efficient computing architectures to be as energy-efficient as possible.

By separating processing units from storage units, traditional Von-Neumann architectures face severe latency and energy issues,

limiting the performance of data-intensive applications. Therefore, as processors became faster and memories denser, a

processor/memory performance gap has emerged (a.k.a. memory wall). To overcome this limitation, Near-Memory Computing

(NMC) is seen as a promising alternative since it carries out computations as close as possible to the data memory. In this poster,

we present an NMC architecture based on the Computational SRAM (C-SRAM). It allows an optimized coupling between an

SRAM and a Vector Processing Unit (VPU) executing a custom Instruction Set Architecture (ISA) (grouping a subset of energy-

optimized matrix/vector operations and requiring a specific programming model). Thus, the C-SRAM can be used either as a

programmable vector co-processor driven by the host scalar processor or as a low-latency SRAM (e.g. scratchpad or tightly

coupled memory) the rest of the time.

• Implement macro instructions in C-SRAM to further

reduce CPU workload and increase energy efficiency

while limiting C-SRAM access congestion.

• Implement a specific DMA to minimize consumption

related to data transfers from/to the C-SRAM.

• Co-integrate C-SRAM as a computational buffer of

Serial NVM for smart data logging applications.

Open source SW compiler Open source C-SRAM emulator
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Category Mnemonic Description

Memory

copy Copy a line into another

bcast Broadcast 8/16/32-bit value to the whole Line

hswap Horizontal 32/64-bit word swap

Logical
slli, srli Shift Left or Right Logical Immediate

(n)and, (n)or, (n)xor Logical AND, OR & XOR (and negation)

Arithmetic

add, sub Arithmetic 8/16/32-bit addition & subtraction

mullo, mulhi Arithmetic 8-bit integer Multiply

maclo Arithmetic 8-bit integer Multiply-Accumulate

Data security applications (e.g. PQC)

Sensor data applications (AI-oriented)
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Fig. 5 FrodoKEM-640 normalized execution times in C-SRAM 

as data memory (left) and as vector co-processor (right).
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Algorithm Bytes per word OPS per Byte

ImageDiff 8 1.0

ImagePixelSum 16 0.5

Sobel Filter 16 3.0


