
200

7

Computational SRAM: Towards Efficient Near-Memory 

Computing through Tightly Coupled HW/SW Design

Computational SRAM Description

Fig. 2. Overview of the proposed C-SRAM-based system.

Fig. 3. HybroGen compiler generate heterogeneous code for the control part (CPU) and the 

workload (C-SRAM).

Conclusion

jean-philippe.noel@cea.fr

SW Compiler & Programming Model

Fig. 4. OpenCV benchmarks contained in HybroGen compiler. 

J.-P. Noel, T. Bricout, H.-P. Charles, L. De La Fuente, B. Giraud, M. Kooli, B. Lacour, M. Pezzin, M. Ramirez Corrales, E. Valea

Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France

Application Domains & Results

Perspectives

Fig. 1. C-SRAM Instruction Set Architecture. 

Close HW/SW co-design enables the implementation of a

C-SRAM-based NMC architecture that can be used either as a

vector co-processor or as a low-latency memory. The only role

of the host processor is to send specific instructions to the

C-SRAM, which executes them through a local 6-stage pipeline.

Context & objective
The growing number of sensor-based embedded systems harvesting large amounts of data, coupled with a strong demand for

processing them with AI algorithms, is pushing energy-efficient computing architectures to be as energy-efficient as possible.

By separating processing units from storage units, traditional Von-Neumann architectures face severe latency and energy issues,

limiting the performance of data-intensive applications. Therefore, as processors became faster and memories denser, a

processor/memory performance gap has emerged (a.k.a. memory wall). To overcome this limitation, Near-Memory Computing

(NMC) is seen as a promising alternative since it carries out computations as close as possible to the data memory. In this poster,

we present an NMC architecture based on the Computational SRAM (C-SRAM). It allows an optimized coupling between an

SRAM and a Vector Processing Unit (VPU) executing a custom Instruction Set Architecture (ISA) (grouping a subset of energy-

optimized matrix/vector operations and requiring a specific programming model). Thus, the C-SRAM can be used either as a

programmable vector co-processor driven by the host scalar processor or as a low-latency SRAM (e.g. scratchpad or tightly

coupled memory) the rest of the time.

• Implement macro instructions in C-SRAM to further

reduce CPU workload and increase energy efficiency

while limiting C-SRAM access congestion.

• Implement a specific DMA to minimize consumption

related to data transfers from/to the C-SRAM.

• Co-integrate C-SRAM as a computational buffer of

Serial NVM for smart data logging applications.

Open source SW compiler Open source C-SRAM emulator

1 M. Kooli et al., “Towards a Truly Integrated Vector Processing Unit for Memory-bound Applications Based on a Cost-competitive Computational SRAM Design Solution”, ACM JETC, Vol. 18, Issue 2, No. 40, 2022, pp. 1-26.

2 J.-P. Noel et al., “A 35.6 TOPS/W/mm2 3-stage pipelined computational SRAM with adjustable form factor for highly data-centric applications”, IEEE SSCL, Vol. 3, 2020, pp. 286–289.

3 J.-P. Noel et al., “Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing”, DATE Conference, 2020, pp. 1187–1192.

4 M. Kooli et al., “Smart instruction codes for in-memory computing architectures compatible with standard SRAM interfaces”, DATE Conference., 2018, pp. 1634–1639.

Category Mnemonic Description

Memory

copy Copy a line into another

bcast Broadcast 8/16/32-bit value to the whole Line

hswap Horizontal 32/64-bit word swap

Logical
slli, srli Shift Left or Right Logical Immediate

(n)and, (n)or, (n)xor Logical AND, OR & XOR (and negation)

Arithmetic

add, sub Arithmetic 8/16/32-bit addition & subtraction

mullo, mulhi Arithmetic 8-bit integer Multiply

maclo Arithmetic 8-bit integer Multiply-Accumulate

Data security applications (e.g. PQC)

Sensor data applications (AI-oriented)

This project has received funding from the ECSEL
Joint Undertaking (JU) under grant agreement No
101007321. The JU receives support from the
European Union’s Horizon 2020 research and
innovation program in France, Belgium, Czech
Republic, Germany, Italy, Sweden, Switzerland,
Turkey.

Fig. 5 FrodoKEM-640 normalized execution times in C-SRAM 

as data memory (left) and as vector co-processor (right).

48%

13%

52%

87%

0

0.2

0.4

0.6

0.8

1

1.2

C-SRAM as data memory C-SRAM as co-processor

N
o
rm

a
liz

e
d
 e

xe
c
u
ti
o

n
 t

im
e

Matrix product Other operations

x0.88

x0.24

Host 

processor

System bus

C-SRAM

VPU

A
L

U

Pipeline 
controller

SRAM

Memory 

array

Read/write 
logic

Algorithm Bytes per word OPS per Byte

ImageDiff 8 1.0

ImagePixelSum 16 0.5

Sobel Filter 16 3.0


