

Bayesian In-Memory Computing

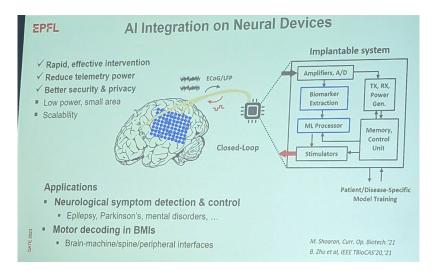
Damien Querlioz

Centre de Nanosciences et de Nanotechnologies Université Paris-Saclay, CNRS, Palaiseau, France damien.querlioz@universite-paris-saclay.fr

Joint work with the groups of Marc Bocquet and Jean-Michel Portal (Aix-Marseille Univ.) and Elisa Vianello (CEA-LETI)

Edge AI Has an Incredible Potential for Safety-Critical Applications

Medical: Predicting epileptic seizures, closed-loop Parkinson DBS...

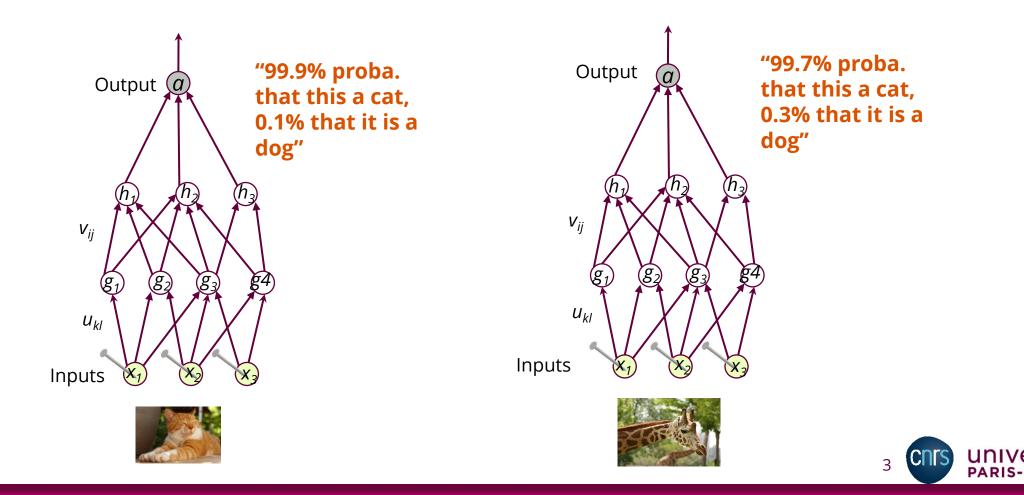


Shoaran Mahsa (EPFL) talk DATE 2023, Special Day on Human-Al Interaction

Industrial: Monitoring early drifts/faults to avoid accidents

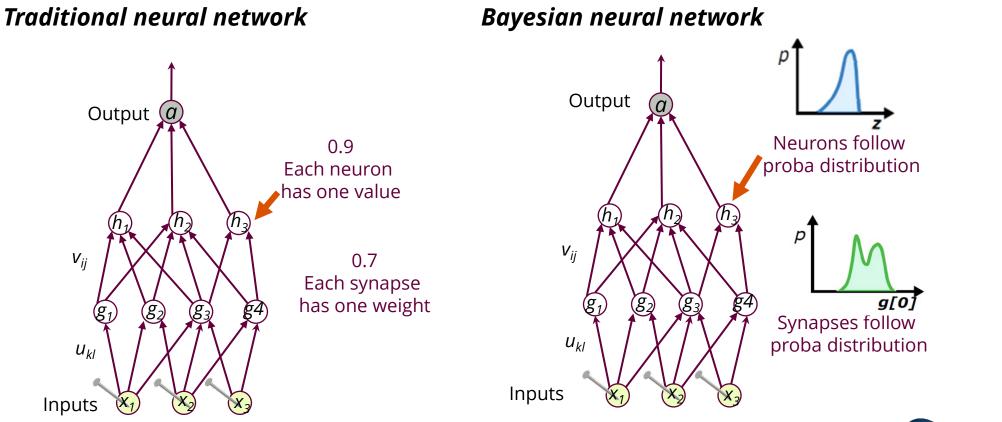
Modern Al Is Amazing But It Has a Confidence Problem

• If a network has been trained to distinguish CATS and DOGS



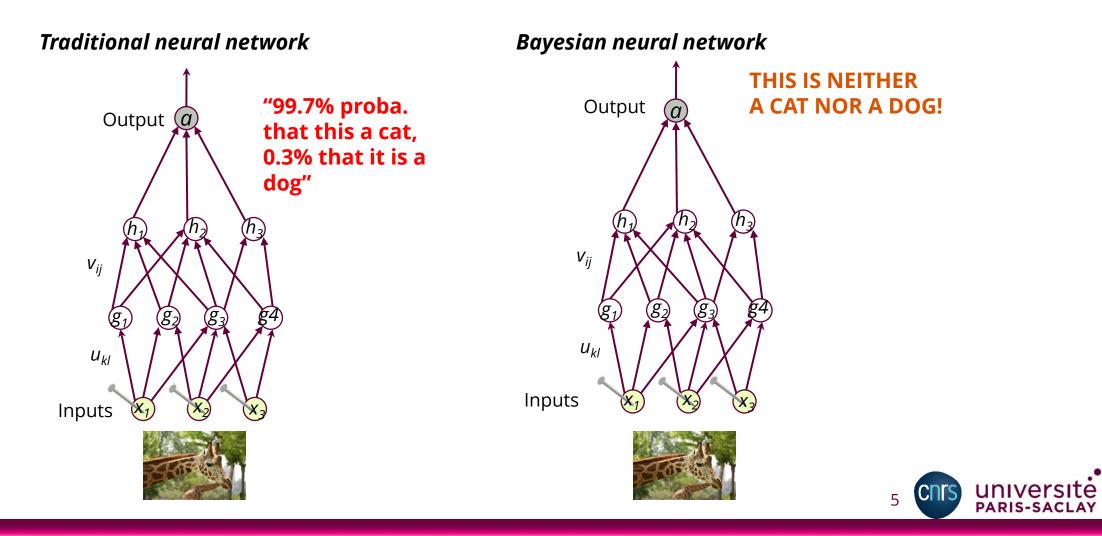
A Lead: Bayesian Models

• In Bayesian models, everything is considered a random variable that follows specific probability distributions



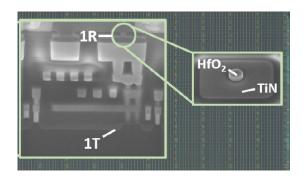
A Lead: Bayesian Models

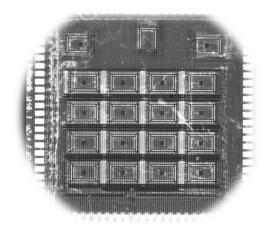
• If a network has been trained to distinguish CATS and DOGS

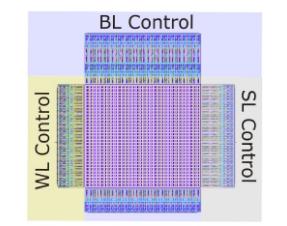


Bayesian Models Are All About Probabilities

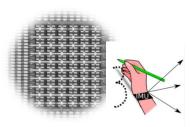
- Probabilities are hard to do on computers
- Nanoelectronics offers many opportunities



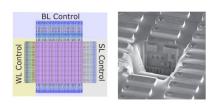




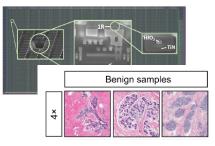
Bayesian In-Memory Computing



• The Memristor-Based Bayesian Machine

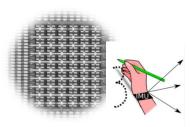


• Bayesian Neural Networks with Memristors

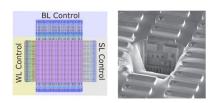


• Bayesian Learning with Memristors

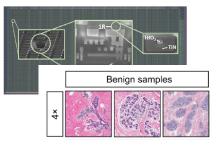
Bayesian In-Memory Computing



• The Memristor-Based Bayesian Machine

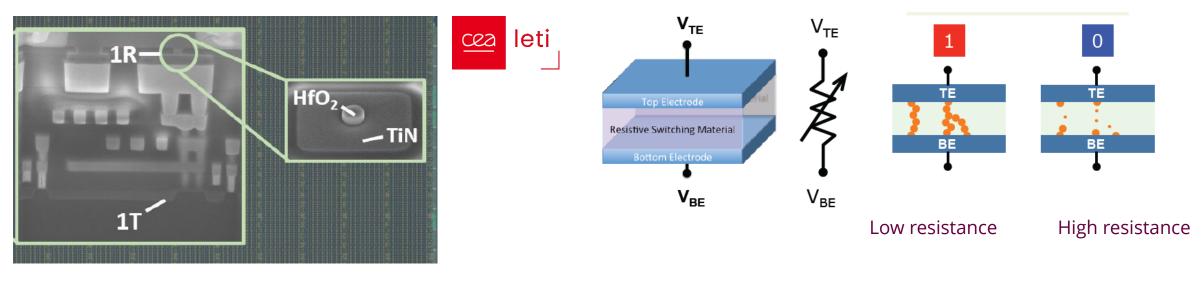


Bayesian Neural Networks with Memristors



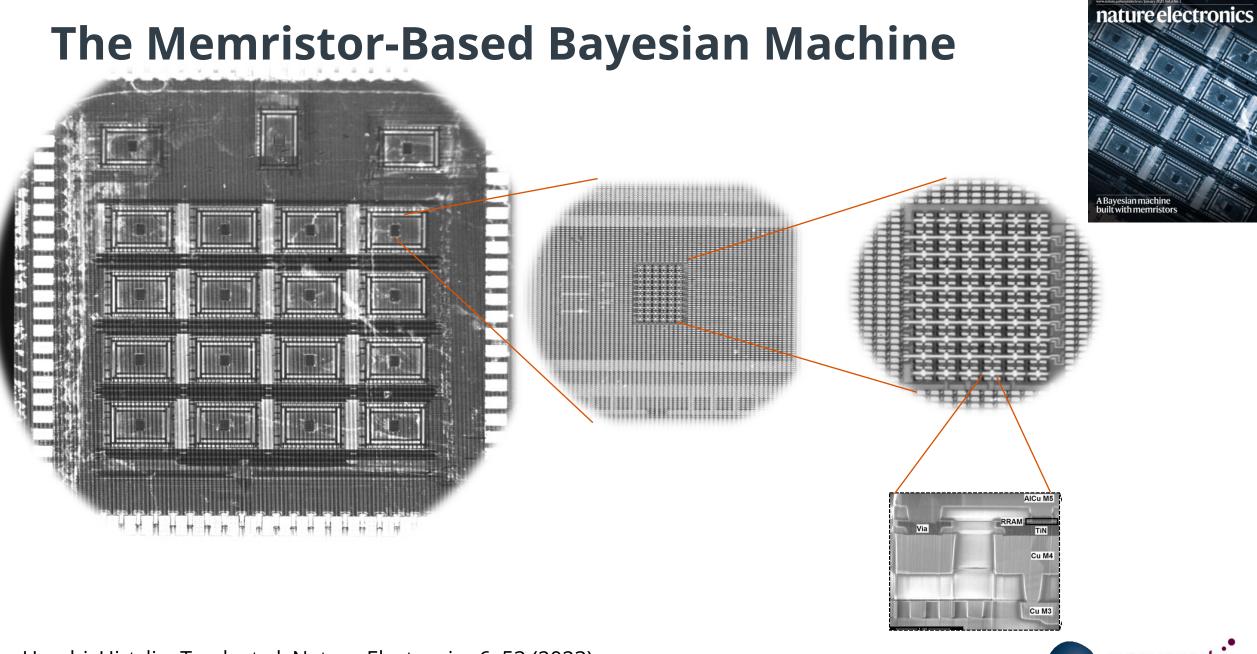
• Bayesian Learning with Memristors

Memristor/RRAM: A Nanomemory Embeddable at the Core of CMOS



TiN/HfO_x/Ti/TiN stack

High voltage: move atoms to switch memristor between low/high resistance **Low voltage:** allows reading the resistance



Harabi, Hirtzlin, Turck et al, Nature Electronics 6, 53 (2023)

Bayesian Reasoning: *Better at Small Data*

Likelihoods

Thomas Bayes

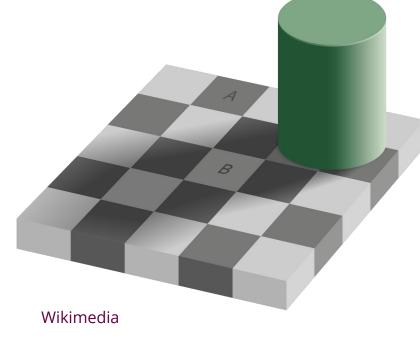
Prior

 $p(Disease | Observations) \propto p(Observations | Disease) \times p(Disease)$

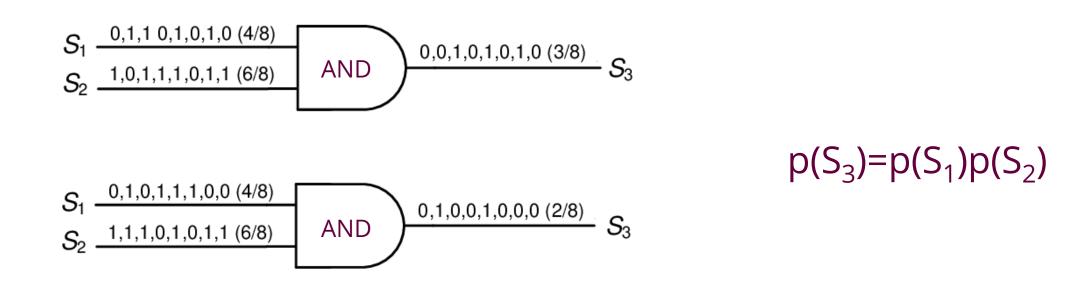
Constructed with expert knowledge+Data

Hard to Compute

The Brain Might Be Using Bayesian Reasoning



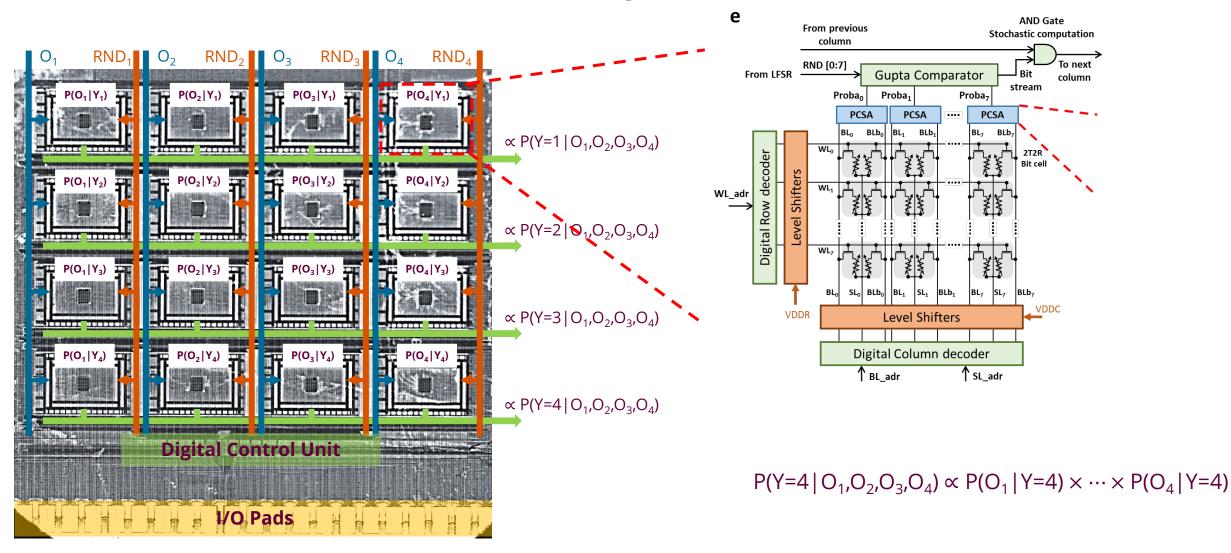
Stochastic Computing



A AND gate implements the multiplication of two probabilities!

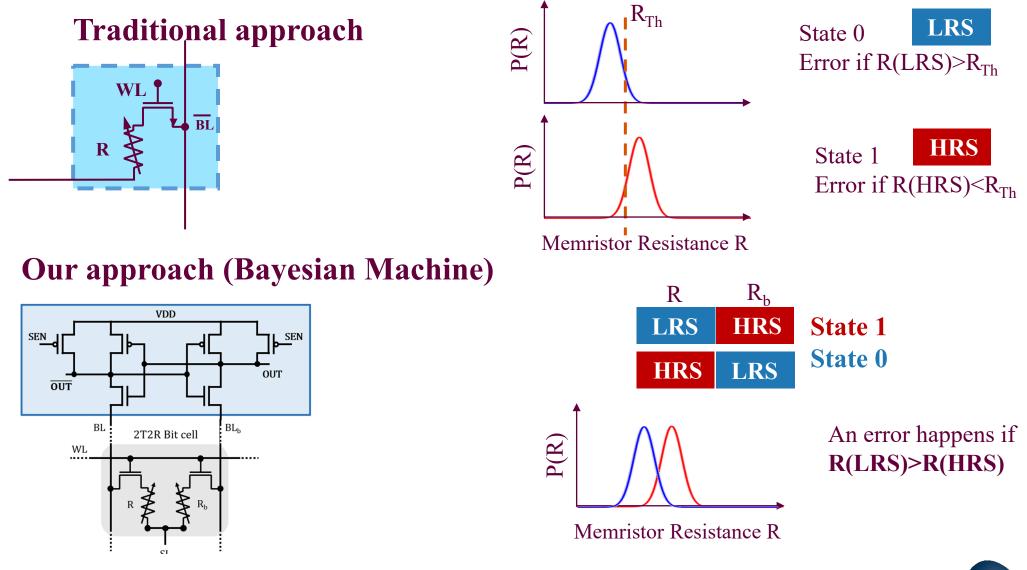
Some resemblance with neurons (one wire = one real number)

The Memristor-Based Bayesian Machine



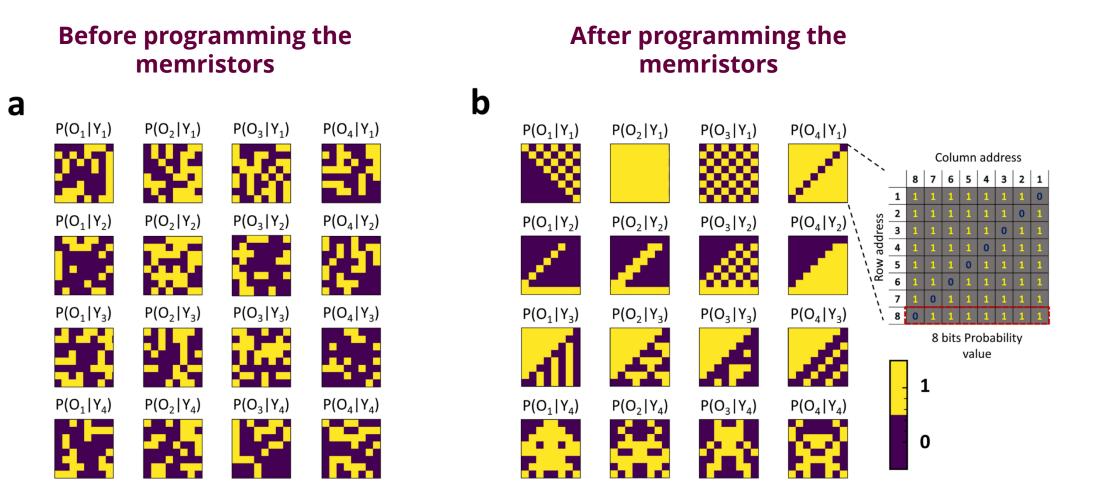
Harabi, Hirtzlin, Turck et al, Nature Electronics 6, 53 (2023)

Reducing the Error Rate without ECC



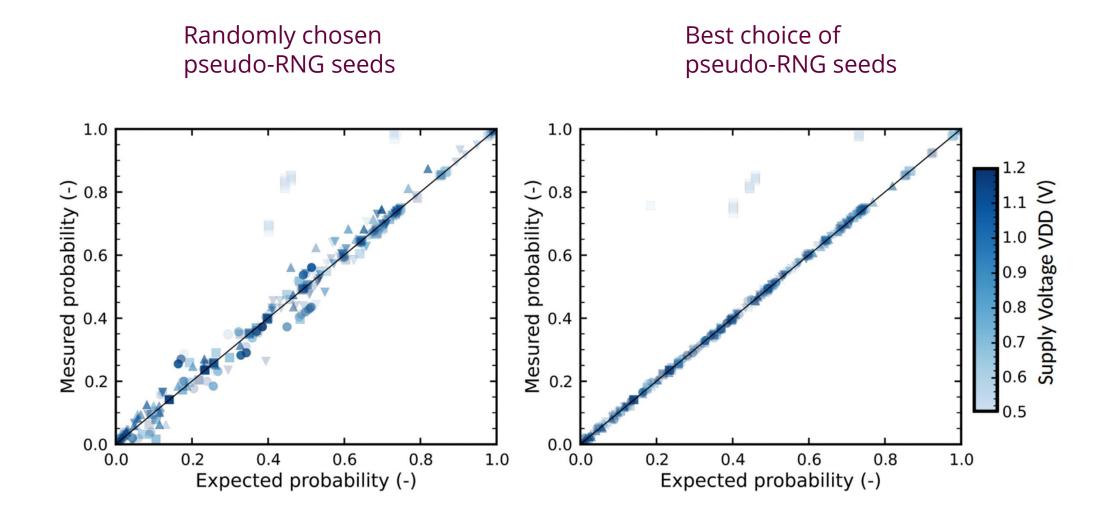
Bocquet et al, IEEE IEDM, p. 20.6.1, 2018; Hirtzlin et al., Front. Neurosci. 13, p. 1383, 2020

The Memristor-Based Bayesian Machine



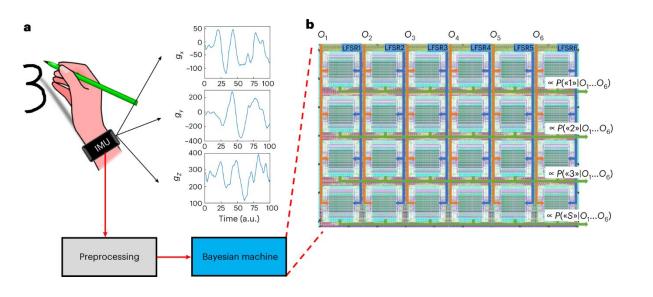
Harabi, Hirtzlin, Turck et al, Nature Electronics 6, 53 (2023)

The Memristor-Based Bayesian Machine



Harabi, Hirtzlin, Turck et al, Nature Electronics 6, 53 (2023)

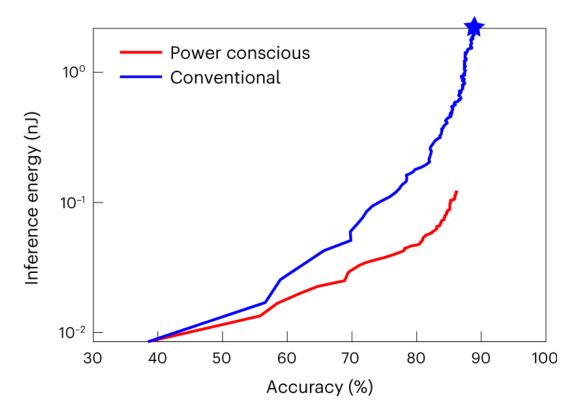
Energy Consumption Is Very Low



Two reasons for energy efficiency:

- Near-memory computing
- Stochastic computing

Harabi, Hirtzlin, Turck et al, Nature Electronics 6, 53 (2023)

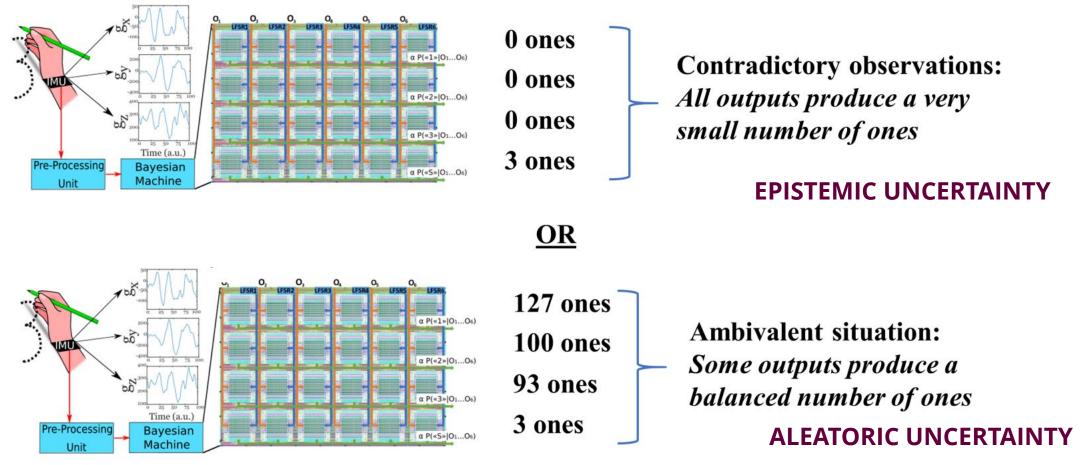


Same task, STM32 microcontroller unit: 2µJ

а **Benefits of Stochastic Computation** 100 90 Time (a.u.) 80 Pre-Processing Bayesian Machine Unit 70 60 Accuracy (%) 50 —Conventional 40 —Power conscious 50 cycle —Power conscious 100 cycle —Power conscious 255 cycle 30 20 10 0 10⁻¹ 10⁻⁴ 10^{-3} 10^{-2} **Bit Error Rate**

Harabi, Hirtzlin, Turck et al, Nature Electronics 6, 53 (2023)

Uncertainty Evaluation



Signatures of an uncertain Bayesian machine

Harabi, Hirtzlin, Turck et al, Nature Electronics 6, 53 (2023)

19 CNTS UNIVERSITE PARIS-SACLAY

Uncertainty Evaluation

Case when a gesture is presented to the Bayesian machine **corresponding to a different subject**

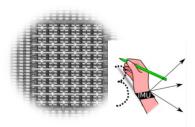
	T=0	T=5%	T=10%
Bayesian machine was uncertain	93%	97%	98%
(desired behavior)			
Bayesian machine provided a certain output	7%	3%	2%

Case when a gesture is presented to the Bayesian machine **corresponding to the appropriate subject**

	-		-
	T=0	T=5%	T=10%
Bayesian machine was certain about the correct gesture	88%	80%	71%
(desired behavior)			
Bayesian machine was certain about an incorrect gesture	7%	6%	5%
Bayesian machine was uncertain	5%	14%	24%

Harabi, Hirtzlin, Turck et al, Nature Electronics 6, 53 (2023)

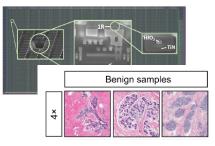
Bayesian In-Memory Computing



• The Memristor-Based Bayesian Machine



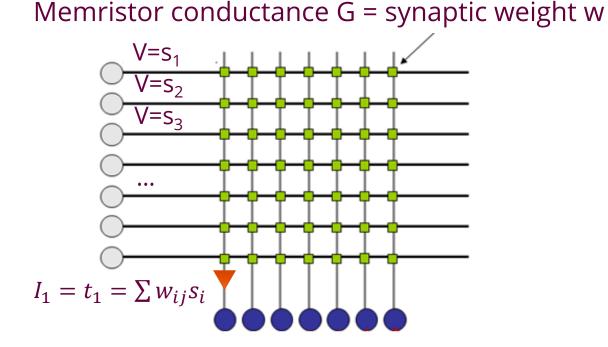
• Bayesian Neural Networks with Memristors

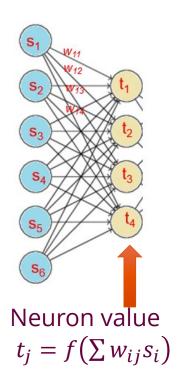


• Bayesian Learning with Memristors

How to Make a Neural Network with Memristors

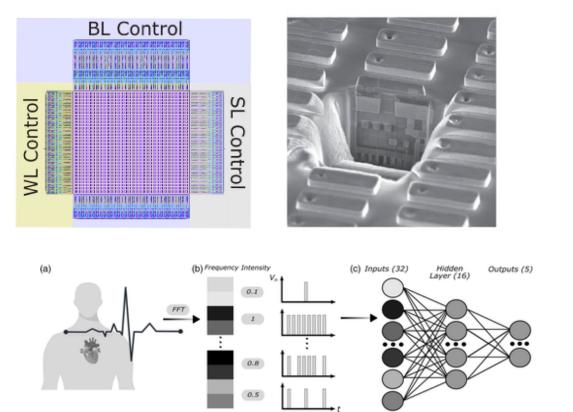
• A matrix of analog memristors naturally implements a layer of neural network with Kirchhoff laws!



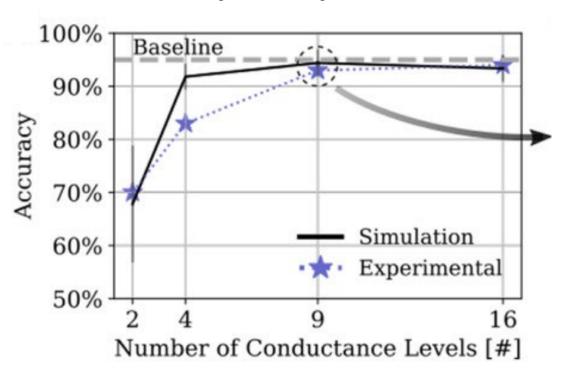


22

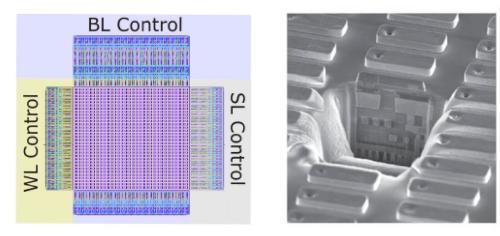
Experimental Realization with HfO_x Memristors

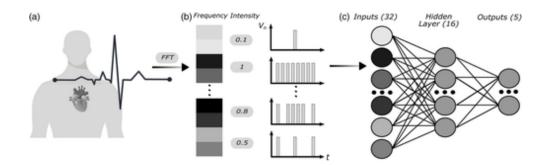


Accuracy on arrhythmia identification

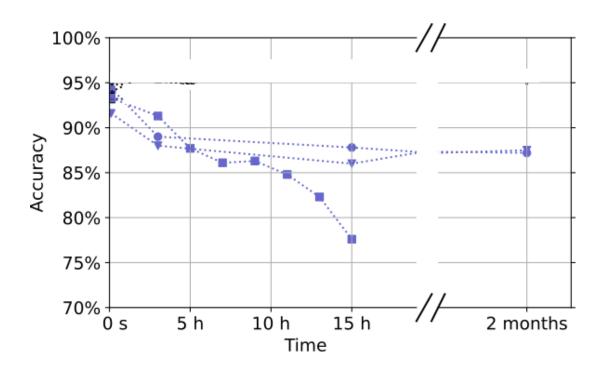


Experimental Realization with HfO_x Memristors



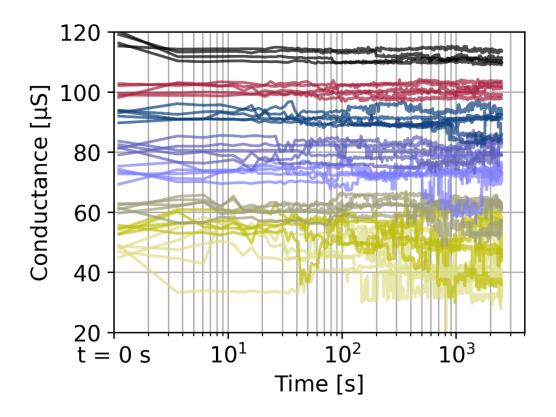


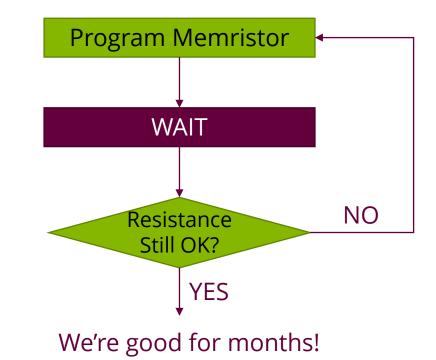
Accuracy on arrhythmia identification



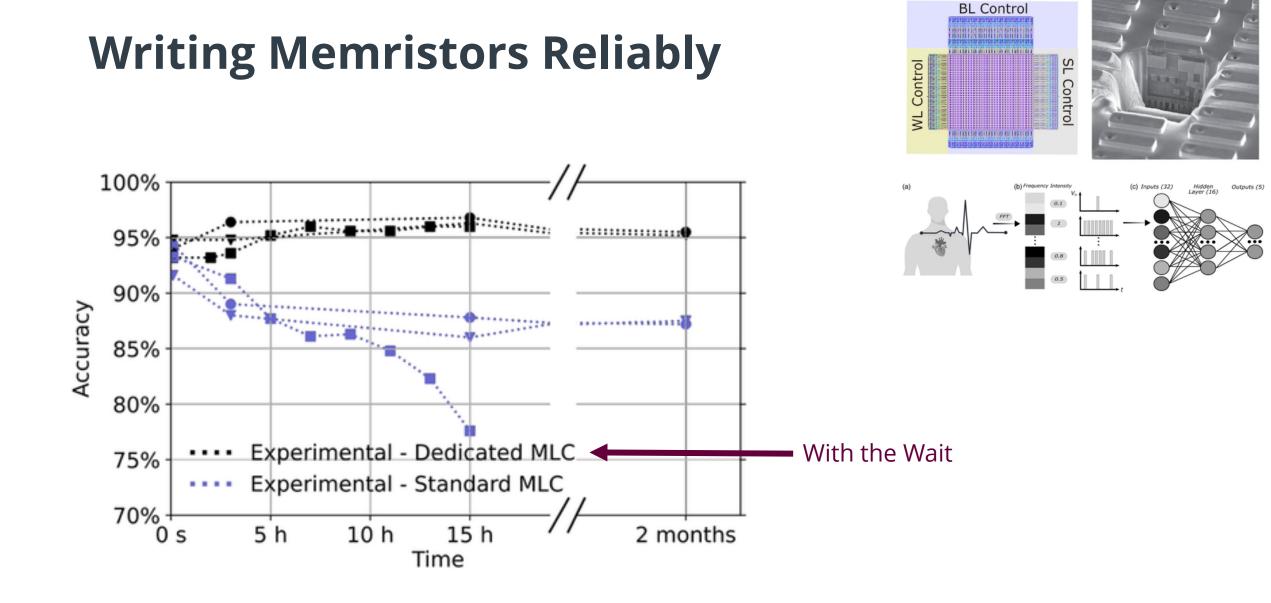
Writing Memristors Reliably

Problem





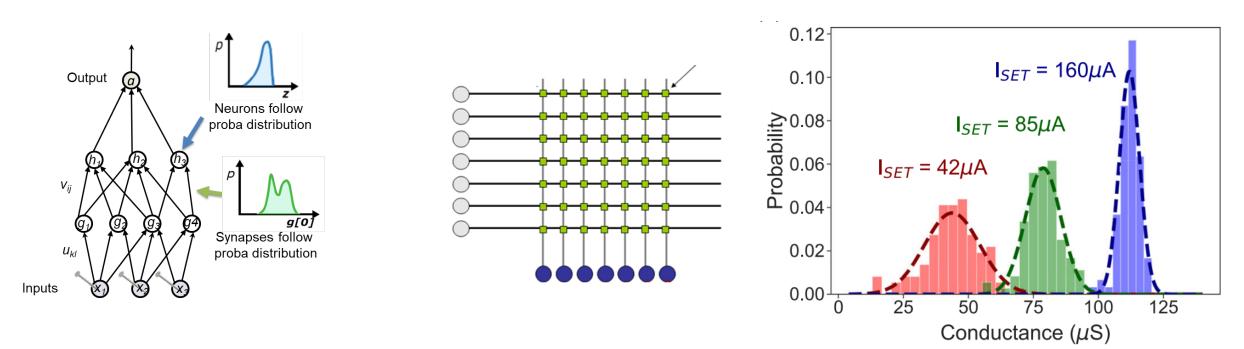
25 CNTS UNIVERSIT



Do Not Fight Memristor Imperfections: They Naturally Produce a Bayesian Neural Network!

In Bayesian models, everything is a random variable that follows specific probability distributions

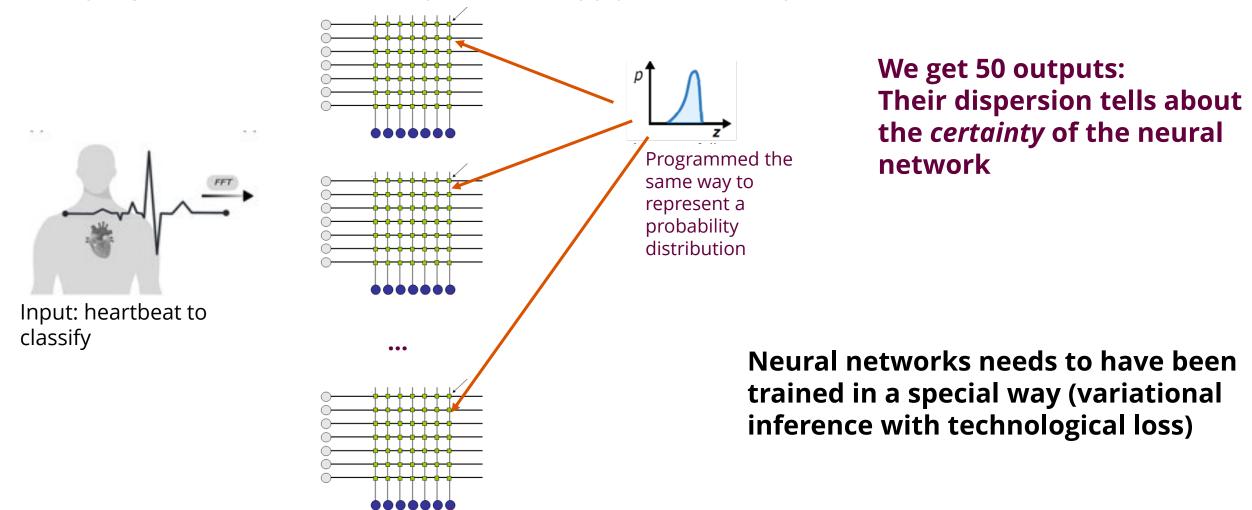
Memristors actually act as a random variable that follow specific probability distributions!



Our concept: Bayesian models can be a "better" way to exploit memristors

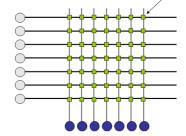
Now Let Us Make a Bayesian Version!

We program 50 memristor arrays, and we apply the same input to them



Now Let Us Make a Bayesian Version!

We program 50 memristor arrays, and we apply the same input to them

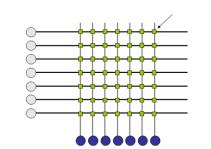


Hesitates between arrythmia type 1 and 2

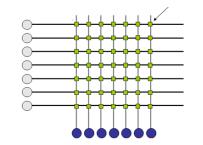
Ambivalence between two types or arrythmias:

ALEATORIC **UNCERTAINTY**

Input: heartbeat to classify



Hesitates between arrythmia type 1 and 2

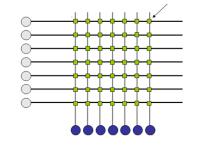


...

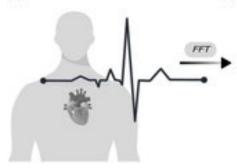
Hesitates between arrythmia type 1 and 2

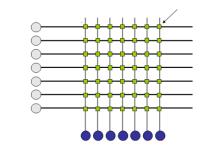
Now Let Us Make a Bayesian Version!

We program 50 memristor arrays, and we apply the same input to them



Hesitates between arrythmia type 1 and 2



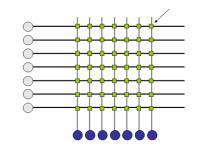


Hesitates between arrythmia type 3 and 4

Unknown data:

EPISTEMIC UNCERTAINTY

Input: heartbeat to classify

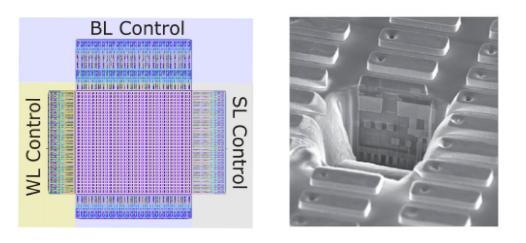


...

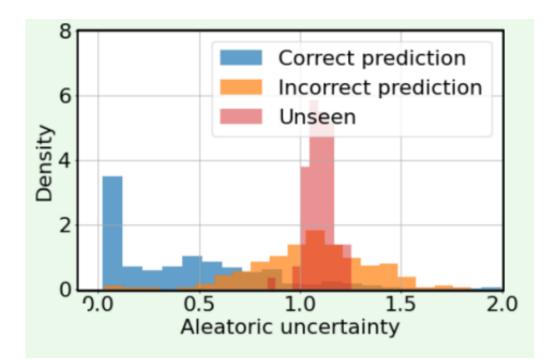
Hesitates between arrythmia type 1 and 5

Fully Experimental Arrythmia Recogniton with Uncertainty Evaluation

- 79% raw accuracy (software: 80%)
- Unknown types of arrythmia are easily recognized

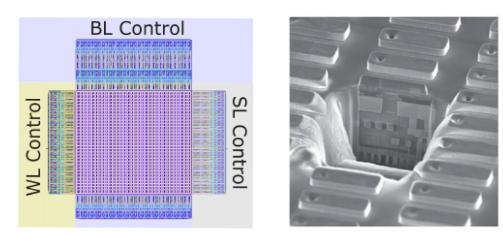


Using 50 memristors neural networks « Wait and Verify » Programming not needed

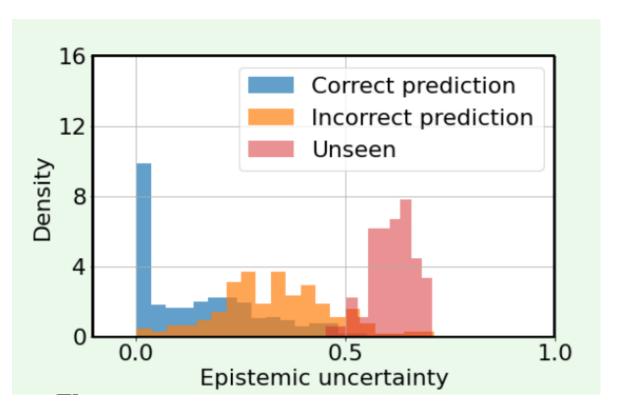


Fully Experimental Arrythmia Recogniton with Uncertainty Evaluation

- 79% raw accuracy (software: 80%)
- Unknown types of arrythmia are easily recognized

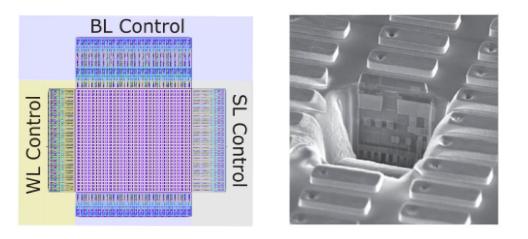


Using 50 memristors neural networks « Wait and Verify » Programming not needed

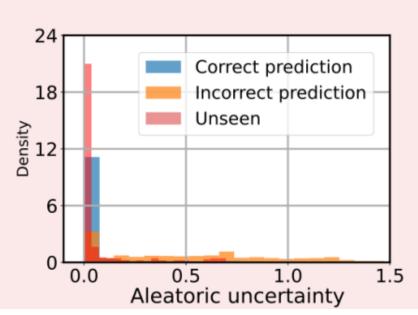


Fully Experimental Arrythmia Recogniton with Uncertainty Evaluation

- 79% raw accuracy (software: 80%)
- Unknown types of arrythmia are easily recognized

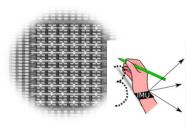


Using 50 memristors neural networks « Wait and Verify » Programming not needed

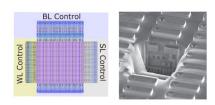


Simulation Conventional NN (float32)

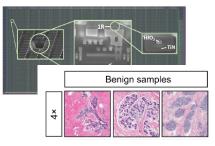
Bayesian In-Memory Computing



• The Memristor-Based Bayesian Machine

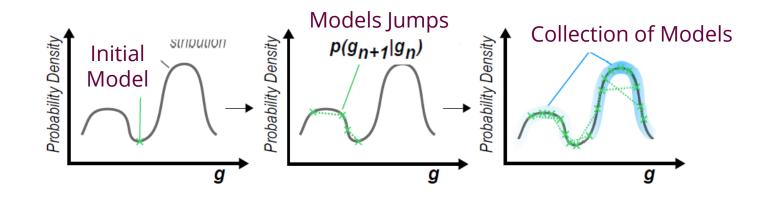


Bayesian Neural Networks with Memristors

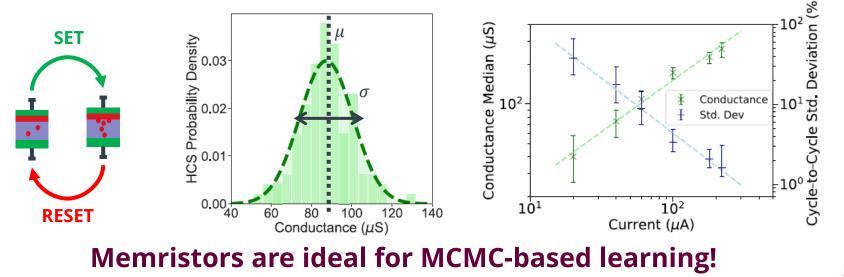


• Bayesian Learning with Memristors

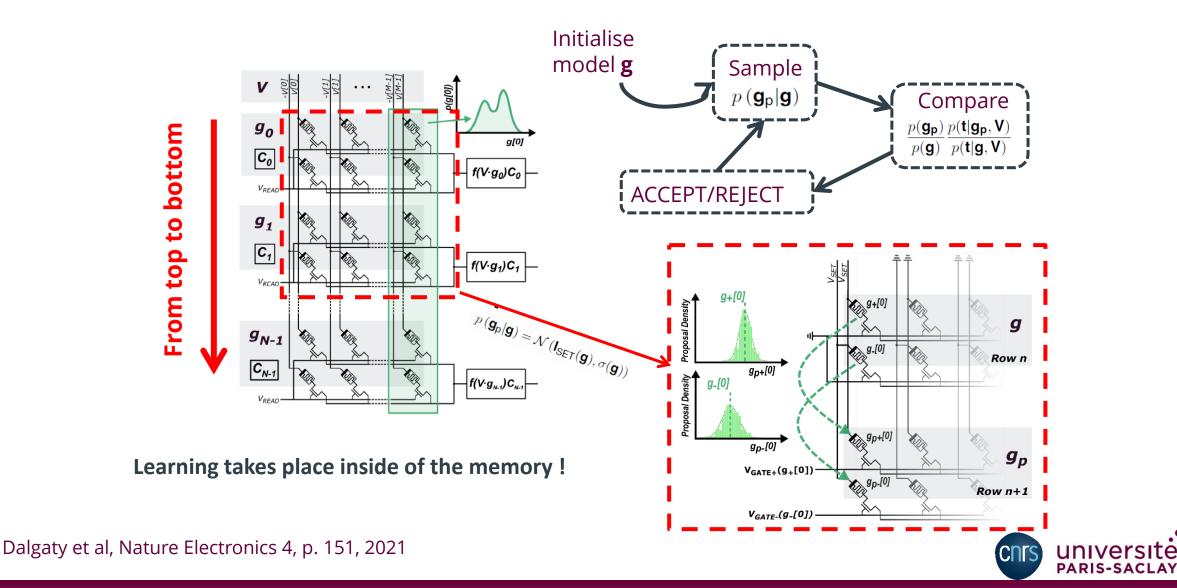
Bayesian Models Can Learn Using Metropolis-Hastings Markov Chain Monte Carlo (MCMC)



The jumps $p(g_{n+1}|g_n)$ can be performed easily using the statistical behavior of memristors!

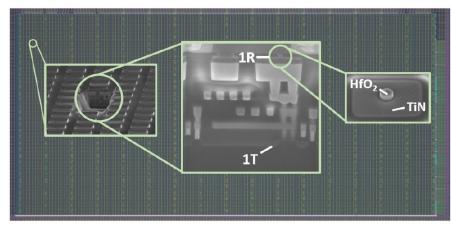


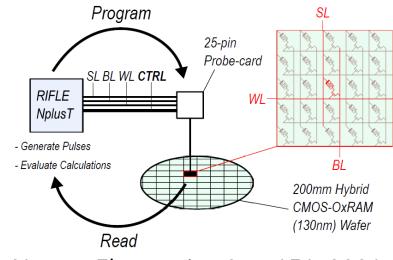
Memristor-Based MCMC in Practice



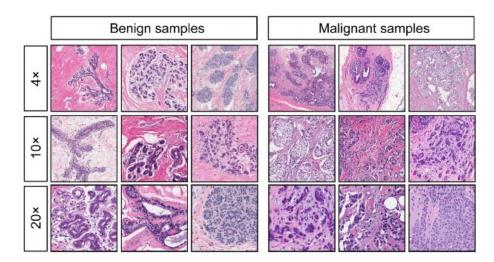
Memristor-Based MCMC in Practice

Computer-in-the-loop experiment with an array of 16,384 memristors



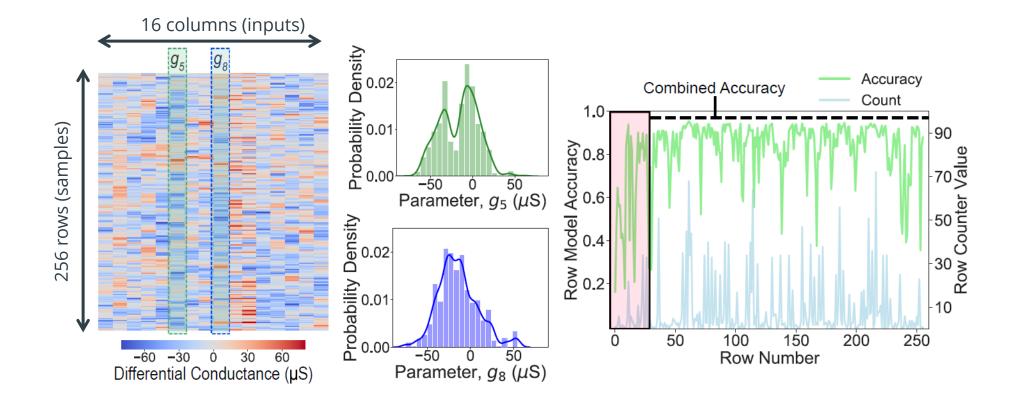


Dalgaty et al, Nature Electronics 4, p. 151, 2021



Mangasarian, O. L., et al (1995). Operations Research, 43(4), 570-577.

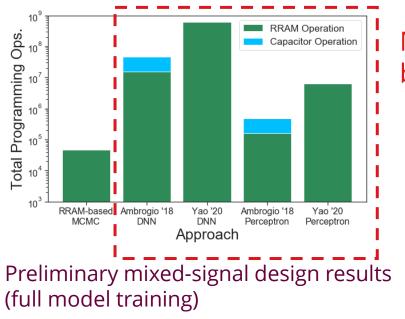
Supervised Learning with Memristor-Based MCMC



The experimental system was able to detect maligant tissue with 98% accuracy

Dalgaty et al, Nature Electronics 4, p. 151, 2021

MCMC Learning Is Highly Energy-Efficient for Small Data



Intel Xeon processor (7nm) implementation of MCMC sampling required **600mJ**

Memristor-based backpropagation

	Step 1 (Model evaluation)	Step 2 (Model accep- tance/rejection)	Step 3 (RRAM programming)	Total
Number of repetitions	$500 \times 10 \times 512$	10×512	10×512	
Total energy (130nm)	5.8µJ	120 <i>n</i> J	1.1µJ	6.9µJ
Total energy (28nm)	2.5µJ	34 <i>n</i> J	1.1µJ	3.6µJ

Conclusion

- Nanoelectronics enables a wide range of Bayesian concepts
- The probabilistic nature of memristors can be exploited for probabilistic machine learning, i.e., Bayesian models
- This approach can be used for both learning and inference
- Particularly appropriate for "small data"/ high uncertainty situations where wrong answers have dramatic impact, e.g., medical tasks

Acknowledgments

- Kamel-Eddine Harabi
- Clément Turck
- Tifenn Hirtzlin
- Atreya Majumdar
- Marie Drouhin
- Jacques-Olivier Klein

- Elisa Vianello
- Djohan Bonnet
- Thomas Dalgaty
- Tifenn Hirtzlin
- Eduardo Esmanhotto
- Niccolo Castellani
- François Andrieu

- Jacques Droulez
- Pierre Bessière

• Raphaël Laurent

- Jean-Michel Portal Jean-Pierre Walder
- Marc Bocquet

• Fadi Jebali

- Eloi Muhr
- Mathieu-Coumba Faye

Thank you for your attention!

@DamienQuerlioz damien.querlioz@universite-paris-saclay.fr https://sites.google.com/site/damienquerlioz/

