D. Dietrich, P. Neumann, H. Schweinzer (Eds.)

Fieldbus Technology:
Systems Integration - Networking - Engineering

Proceedings of the Fieldbus Conference FeT'99
in Magdeburg, Germany,
September 23 - 24, 1999
Univ.-Prof. Dipl.-Ing. Dr. Dietmar Dietrich
Institute of Computer Technology
Vienna University of Technology

Prof. Dr.-Ing.habil. Peter Neumann
ifiak
Institute for Automation and Communication
Magdeburg

Ass.-Prof. Dipl.-Ing. Dr. Herbert Schweinzer
Institute of Electrical Measurement and Circuit Technology
Vienna University of Technology
Foreword

Although being a matter of course in science and industry, in the public opinion fieldbus technology is not always seen in its real importance. Terms like “home automation”, “industry automation”, etc. are not always perceived in a positive way: they sound ultramodern, mysterious, unreliable. Often conventional but well-known solutions instead of fieldbus technology are used. On the other hand, fieldbus technology saves money, systems are offering more services and test integration increases reliability.

Fieldbus technology is not an argument for marketing. However, its potential is enormous and unlimited although some believe realization will be a matter of the far future.

For several years, fieldbus systems have been seen as local installations of small interest in comparison with LANs, Internet, or mobile phones. This situation has changed: in automobiles, a fieldbus has to manage the communication of about one hundred nodes. Fieldbus systems are monitored via classical LANs, fieldbus systems in airplanes are used not only for control, but also for online testing, and in some building automation systems more than 10,000 nodes are connected by fieldbus systems. Great demands are arising with consequences in system complexity, reliability, availability and security, all being aspects relevant for scientific work. Activities in this field are numerous and mostly combined with other areas of scientific or engineering work. This is challenging and important because of the connection to different engineering disciplines.

There are slogans as “IT revolution in industry”¹, “the transparent factory”², or “concert of intelligent chips”³. In any way, our age is stamped by information technology. All spheres of our living are being influenced and changed by innovations of information technology. Mobile phones, teleworking, electronic commerce are revolutions in daily life. Similar to the industrial revolution which brought dramatic modifications, collecting, storing, transporting and computing of information leads to radical changes in human society.

In nature which is an important model for technical systems, primitive micro-organisms bear the information in their system structure. Animals being “more intelligent” are based on internal information systems, neuronal networks in the most complex form. Reception and communication with the external world is performed by use of highly sophisticated and adaptable sensor systems, but also internally a great number of sensors is used for process control of life functions.

¹ Die IT-Revolution in der Industrie, MegaLink 11/99
² Die transparente Fabrik; Messe Wien viett; Presse-Info, 18.6.1999
³ Drössler, Ch.: Konzert der schlauen Chips, DIE ZEIT Nr. 24; 10.6.1999
Also fieldbus technology allows more intelligent systems. Smart sensors and complex sensor systems increase the functionality and the effectiveness of the system. In a weekly newspaper a prognosis of the household of tomorrow is given where cooking, controlling of goods in stock and so on are performed by integrated transponders and neuronal algorithms. This leads to the following scenario:

- more and more smart sensors will be integrated in things of every day life and will be part of the fieldbus system,
- demand of controllers and software will increase dramatically to compute, filter and apply all of these data,
- various aspects of this new technology demand extensive analysis because numerous arising questions have to be answered by scientists,
- average life will change completely, a process which cannot be stopped.

Fieldbus technology carries an enormous part of this development without appearing in public like the Internet or the use of mobile phones. Moreover, this part will increase in the years to come. A clear example for this is the continuous change of mechanical systems by the use of fieldbus technology: when for the first time in Airbus A320, mechanical control of an airplane was replaced by “fly by wire”, the public did not take notice of this, moreover passengers should not be informed about this fact. Nowadays, automobiles are in a similar situation. “Steer by wire” replaces the mechanical steering-gear by electronic control of every wheel, a technique more efficient and flexible, but also cheaper.

In industry and in the private sphere a similar development can be assumed. More and more, decisions for product development are influenced by the total costs which includes service and maintenance. Moreover, the competition of producers leads to increased features of the products. These are all arguments for an integration of fieldbus technology.

Large organizations like factories, hospitals, laboratories need transparency gained by automatic data acquisition. These data are not only directly related to the costs, but also to the personnel and to logistic parameters such as location, functionality, and status of maintenance of the equipment. Dynamic management of the facilities combined with data from processes and the personnel enables a more efficient and reliable operation of this complex system.

In the technical realization of such systems, problems are arising from the interconnection of different types of networks, especially fieldbus systems with LANs and the Internet. Furthermore, security is an important aspect. These all are subjects reflected in this book.

4 Drössler, Ch.: Konzert der schlauen Chips, DIE ZEIT Nr. 24; 10.6.1999
Network interconnection is a technical and financial problem. Solutions are normally based on compromises and can be optimized by technical efforts. Security is a complex problem because of various aspects, especially the anxiety of the users. Intranet used in companies and banks is an expensive technique which shields against the Internet. On the other hand, an increasing number of systems can be read out and manipulated by remote control and remote service over networks which allow system access needing strict security provision methods. Several principles are known which have to proof their values.

Communication networks connect different spheres and in so far they help to overcome barriers. They create new products, new markets and also new professions. Fieldbus technology is not at the front end of this trend because it acts in the background and in critical domains. Equipped with sensitive sensors, fieldbus technology becomes the backbone of many processes of our life.

This book is a collection of articles dealing with the matter of fieldbus technology. The articles were submitted to the fieldbus conference FeT’99 taking place in Magdeburg, Germany. Two very successful conferences before, the FeT’95 and the FeT’97, were held in Vienna, Austria. The articles were reviewed by the international program committee which decided to also include some high quality articles not presented at the conference.

The book comprises eleven chapters dealing with important aspects of fieldbus technology and reflecting areas of main activity in science and industry. These chapters also coincide with the sessions at the conference.

A number of people were strongly involved in the preparation and completion of this book: M. Wollschlaeger, Magdeburg, managed a main part of the communication with the authors to ensure the preparation of the articles in time. W. Kandler, Vienna, made the final check of the layout of the book which entailed a lot of corrections. We like to thank them very much. We also thank the Springer Verlag, Vienna, for printing and binding the book in its well known high quality.

We would like to thank all those who helped in the organization of the conference: H. Mueller and H. Rosenzweig, VDI/VDE-GMA, who were responsible for the organization, Th. Sauter, W. Kandler and M. Wollschlaeger, who made preparations for the program committee meetings, and the program committee itself. We thank our authors and speakers who provided the valuable contributions for our stimulating discussions. We also thank our four invited speakers who followed our invitation.

Our aim is to reach a broad audience. Therefore the conference fees were kept moderate. This became possible only with the support of sponsoring organizations whose financial support we appreciate very much.

Magdeburg, September 1999

Dietmar Dietrich Herbert Schweinzer Peter Neumann

Supported by: ABB Automation Products, D-30179 Hannover
Endress + Hauser GmbH + Co, D-79689 Maulburg
Kist Europe, D-66123 Saarbruecken
Phoenix Contract GmbH & Co, D-32825 Blomberg
Siemens AG, D-90327 Nürnberg
Weidmueller Connext GmbH & Co, D-32760 Detmold
Table of Contents

Program Committee

Index of Authors

1 Protocol Specifications 1

Main Paradigms as a Basis for Current Fieldbus Concepts 2
Thomesse, J.-P.; Leon Chavez, M.

Communication Profile for Embedded Networks 16
Zeltwanger, H.

Shared Data on InterBus 22
Schweinzer, H.; Kandler, W.

Adding Multi-Master Capabilities to Interbus-S 30
Cavalieri, S.; Consoli, A.; Mirabella, O.

Telecontrol standard IED 60870-6 TASE.2 globally adopted 38
Schwarz, K.

2 Network Interconnections 47

Opportunities and Problems of Wireless Fieldbus Extensions 48
Rauchhaupt, L.; Hähniche, J.

The Use of Radio Technologies in the Fieldbus Area – Using Interbus as an Example 55
Peter, M.

Internet technologies and fieldbuses 61
Laîné, T.

Security Architecture for Field Area Networks Connected to Internet 69
Gordeev, M.

P-NET-Management über das Internet 76
Ayal, M.; Knizak, M.; Sauter, Th.

Wireless Data Transfer System for Oil Drawing Plants 83
Perez, A. A.; Reguera, V. A.; Paliza, F. A.
3 Profiles

Profiles for Fieldbuses - Scope and Description Technologies
Diedrich, Ch.

A Functional Profile for Laboratory Measurement Equipment based on Measurement Bus and Profibus-DP/PA
Wagner, U.

Mapping of Fieldbus Protocols to Standardised Field Level Objects
Fischer, P.

Device Based Process Control In Foundation Fieldbus
Thiele, D.; Blevins, T.; Wojsznis, W.

CANopen Device Profile for Hydraulic Proportional Valves
Wollschlaeger, M.; Unger, E.; Witte, H.

4 Validation

Comparing the networks CAN and ARINC 629 CP with respect to the quality of the service provided to an automatic control application
Blum, I.; Juanole, G.

Modelling and Evaluation of Systems for the Interconnection of Industrial Communications Networks
Sempere Payá, V.M.; Mataix Oltra, J.; Utrilla Ginés, E.

Prüßner, M.; Gemici, A.

CANopen Conformance Test
Schumann, Th.

Formal Description Software for WorldFIP Industrial Fieldbus
Mariño, P.; Domínguez, M.A.; Poza, F.; Nogueira, J.

Experiences in Different Fieldbuses Used Together with PC-based Control Systems
Saarimäki, V.; Siltala, N.; Partanen, P.; Vihinen, J.; Tuokko, R.

5 Management

Mapping of Fieldbus Components to WWW based Management Solutions
Wollschlaeger, M.

Integration of Fieldbus Objects into Computer-aided Network Facility Management Systems
Bangemann, Th.; Dübner, R.; Neumann, A.

Enabling e-Services through Resource Management API’s on multi-vendor EIB Building Networks
Goossens, M.; Reiter, H.
Modulares Agent-Design für Feldbusmanagement
Haidvogl, R.; Knizak, M.; Sauter, Th.

Linux-Gateway zur Fernwartung von Profibus-DP Geräten
Kastner, W.

Tele-Diagnosis at Networked Automation Systems
Kabitzsch, K.; Vasyutynsky, V.

Diagnose von Feldbussen im Systemverbund
Kriesel, W.; Heimbold, T.; Minner, Th.

Engineering of Distributed Automation Systems based on novel information technologies and methods
Simon, R.; Hörger, J.

PROFIBUS goes Microsoft - Herstellerunabhängige Integration von Feldgeräten in Engineeringssysteme
Bruns, H.; Hempen, U.; Ott, W.; Vahldieck, R.; Niemann, K.-H.

6 OLE for Process Control OPC
A modular OPC-Server connecting different Fieldbussystems and Internet Java Applets
Rüping, S.; Klugmann, H.; Gerdes, K.-H.; Mirbach, S.

OPC-Schnittstellen in einer offenen Systemumgebung – Praxis und Erfahrungen
Langmann, R.; Groppe, A.; Ossipov, V.; Stuhrmann, N.

OPC – Making the Fieldbus Interface Transparent
Hadlich, Th.; Szczepeanski, Th.

7 System Aspects
IEEE Utility Communications Architecture (UCA) applies mainstream standard Ethernet
Schwarz K.

A Component-Based Architecture for Integrating Fieldbus Systems into Distributed Control Applications
Bachmann, R.; Hoang, M. S.; Rieger, P.

Decentralized automation concepts based on Ethernet-TCP/IP and CANopen
Ziegler, A.

Considerations on a LonWorks/IP Gateway Implementation
Soucek, S.; Schweinzer, H.-J.

The importance of being competent. The role of competence centres in the fieldbus world
Sauter, Th.; Felser, M.
8 Research

Some Future Directions in Fieldbus Research and Development
Decotignie, J.-D. 308

IEEE1394 in comparison with other bus systems
Stampfl, N. 313

On Interoperability and Intelligent Software Agents for Field Area Networks
Palensky, P. 319

Transmitting Voice on InterBus
Kandler, W.; Schweinzer, H. 326

9 Real-Time Aspects

Simulation of Communication Systems in Industrial Area
Bäuerle, D.; Popp, W. 334

A Flexible Time-Triggered Communication System Based on the Controller
Area Network: Experimental Results
Almeida, L.; Fonseca, J. A.; Fonseca, P. 342

Analysis of Switched Ethernet Networks with different Topologies used in Automation Systems
Rüping, S.; Vonnahme, E.; Jasperneite, J. 351

Analysis of the Worst-Case Real Token Rotation Time in PROFIBUS Networks
Tovar, E.; Vasques, F. 359

10 Realisations

Powerline Communication in der Feldebene
Beikirch, H. 368

Design of Bus Media Redundancy in CAN
Rufino, J.; Verissimo, P.; Arroz, G. 375

Programmable Process Interfaces for Smart Bus Nodes
Beikirch, H.; Vojić, M. 381

Eine Feldbusarchitektur mit realzeitfähiger Fehlerkorrektur
Erdner, T. 387

Safety-Oriented INTERBUS - INTERBUS Safety
Meyer-Gräfe, K. 394

MultiPort RAM: a PC-based implementation of the fieldbus concept
Lobachov, M.; Sauter, Th., Plagemann, B. 400

Fieldbus Physical Layer in the Application
Fetzer, U. 408
11 NOAH Esprit 26951 Project

ESPRIT Project NOAH - Introduction
Döbrich, U.; Noury, P.

Fieldbus Profile Harmonization - Approach of NOAH ESPRIT 26951 Project
Otto, H-P.; Borodino, Ch.; Bregulla, T.; Diedrich, Ch.; Döbrich, U.; Hörger, J.; Szymanski, J.; Verney, Ch.

Electronic Device Description
Simon, R.; Demartini, C.

A DBR Based Approach for System Management
Demartini, C.; Iosif, R.; Raibulet, C.; Thomesse J.P.

NOAH project: an example of application
Mella, A.; Russo, F.
Conference Chairman
Prof. Dr. P. Neumann, ifak, D

Chairman of the Program Committee
Prof. Dr. D. Dietrich, TU Vienna / ICT, A

Program Committee
Dr. M. Adams, Dr. Seufert GmbH, D
Prof. Dr. K. Bender, TU Munich / ITM, D
Dipl.-Ing. R. Bent, Phoenix Contact GmbH & Co., D
Prof. Dr. J. Böttcher, Univ. der Bundeswehr Munich, D
Prof. Dr. J.-D. Decotignie, CSEM Neuchatel, CH
Dipl.-Ing. A. De Decker, Siemens NV, B
Dr. Keith Dimond, University of Kent, GB
Prof. Dr. D. Dietrich, TU Vienna / ICT, A
Prof. Dr. K. Etschberger, stzp, IXXAT Automation GmbH, D
Josef F. Faller, Carinthian Tech Research, A
Prof. P. Fischer, FH Dortmund, D
Prof. Dr. W. A. Halang, Fernuniversität Hagen, D
G. Hodgkinson, PROFIBUS International, GB
Dipl.-Ing. J. Johansen, PROCES-DATA A/S, DK
Prof. Dr. K. Kabitzsch, TU Dresden, D
Prof. Dr. W. Kriesel, GMA, D
L. Liljegren, ABB, S
Dr. M. Merx, Weidmüller ConneXt GmbH&Co., D
Ing. W. Morrenth, Siemens AG, A
Dipl.-Ing. H. Müller, VDI/VDE-GMA, D
K. A. Myrvang, AD Elektronikk AS, N
Prof. Dr. P. Neumann, ifak Magdeburg, D
Prof. Dr. O. Nisamutdinov, TU Perm, RUS
Dipl.-Ing. P. Noury, CEGELEC, F
Dr. T. Sauter, TU Vienna / ICT, A
Ass. Prof. Dr. H. Schweinzer, TU Vienna / EMST, A
Dipl.-Ing. H.-J. Schweinzer, TU Vienna / ICT, A
Dipl.-Ing. H. K. Tronnier, EIBA, B
Dr. K. Watson, Fraunhofer-IITB, D
Dr.-Ing. M. Wollschlaeger, IPE, University Magdeburg, D
Dipl.-Ing. H. Zeltwanger, CAN-in-Automation e. V., D

Steering Committee
Prof. Dr. D. Dietrich, TU Vienna / ICT, A
Prof. Dr. P. Neumann, ifak, D
Ass. Prof. Dr. H. Schweinzer, TU Vienna / EMST, A
Dipl.-Ing. W. Kandler, TU Vienna / EMST, A
Dr. Th. Sauter, TU Vienna / ICT, A
Dr.-Ing. M. Wollschlaeger, IPE, University Magdeburg

Organisation
Dipl.-Ing. H. Mueller, VDI/VDE-GMA
Mrs. H. Rosenzweig, VDI/VDE-GMA
Index of Authors

<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almeida, L.</td>
<td>342</td>
<td>Goossens, M.</td>
<td>188</td>
</tr>
<tr>
<td>Arroz, G.</td>
<td>375</td>
<td>Gordeev, M.</td>
<td>69</td>
</tr>
<tr>
<td>Ayal, M.</td>
<td>76</td>
<td>Groppe, A.</td>
<td>247</td>
</tr>
<tr>
<td>Bachmann, R.</td>
<td>276</td>
<td>Hälßniche, J.</td>
<td>48</td>
</tr>
<tr>
<td>Bangemann, Th.</td>
<td>180</td>
<td>Haidvogl, R.</td>
<td>195</td>
</tr>
<tr>
<td>Bäuerle, D.</td>
<td>334</td>
<td>Heimbold, T.</td>
<td>215</td>
</tr>
<tr>
<td>Beikirch, H.</td>
<td>368, 381</td>
<td>Hempen, U.</td>
<td>230</td>
</tr>
<tr>
<td>Blevins, T.</td>
<td>112</td>
<td>Hoang, M. S.</td>
<td>276</td>
</tr>
<tr>
<td>Blum, I.</td>
<td>128</td>
<td>Hörger, J.</td>
<td>223, 423</td>
</tr>
<tr>
<td>Borodino, Ch.</td>
<td>423</td>
<td>Iosif, R.</td>
<td>437</td>
</tr>
<tr>
<td>Bregulla, T.</td>
<td>423</td>
<td>Jasperneite, J.</td>
<td>351</td>
</tr>
<tr>
<td>Bruns, H</td>
<td>230</td>
<td>Juanole, G.</td>
<td>128</td>
</tr>
<tr>
<td>Cavalieri, S.</td>
<td>30</td>
<td>Kabitzsch, K.</td>
<td>209</td>
</tr>
<tr>
<td>Consoli, A.</td>
<td>30</td>
<td>Kandler, W.</td>
<td>22, 326</td>
</tr>
<tr>
<td>Decotignie, J.-D.</td>
<td>308</td>
<td>Kastner, W.</td>
<td>203</td>
</tr>
<tr>
<td>Demartini, C.</td>
<td>429, 437</td>
<td>Klugmann, H.</td>
<td>240</td>
</tr>
<tr>
<td>Diedrich, Ch.</td>
<td>90, 423</td>
<td>Knizak, M.</td>
<td>76, 195</td>
</tr>
<tr>
<td>Döbrich, U.</td>
<td>414, 423</td>
<td>Kriesel, W.</td>
<td>215</td>
</tr>
<tr>
<td>Domínguez, M.A.</td>
<td>157</td>
<td>Kriesl, W.</td>
<td>215</td>
</tr>
<tr>
<td>Dübben, R.</td>
<td>180</td>
<td>Laîné, T.</td>
<td>61</td>
</tr>
<tr>
<td>Erdner, T.</td>
<td>387</td>
<td>Langmann, R.</td>
<td>247</td>
</tr>
<tr>
<td>Felser, M.</td>
<td>299</td>
<td>Leon Chavez, M.</td>
<td>2</td>
</tr>
<tr>
<td>Fetzer, U.</td>
<td>408</td>
<td>Lobachov, M.</td>
<td>400</td>
</tr>
<tr>
<td>Fischer, P.</td>
<td>105</td>
<td>Mariño, P.</td>
<td>157</td>
</tr>
<tr>
<td>Fonseca, J. A.</td>
<td>342</td>
<td>Mataix Oltra, J.</td>
<td>136</td>
</tr>
<tr>
<td>Fonseca, P.</td>
<td>342</td>
<td>Mella, A.</td>
<td>445</td>
</tr>
<tr>
<td>Gemici, A.</td>
<td>146</td>
<td>Meyer-Gräfe, K.</td>
<td>394</td>
</tr>
<tr>
<td>Gerdes, K.-H.</td>
<td>240</td>
<td>Minner, Th.</td>
<td>215</td>
</tr>
<tr>
<td>Name</td>
<td>Page</td>
<td>Co-Author</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>--------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Mirabella, O.</td>
<td>30</td>
<td>Schweinzer, H.</td>
<td>22, 326</td>
</tr>
<tr>
<td>Mirbach, S.</td>
<td>240</td>
<td>Schweinzer, H.-J.</td>
<td>291</td>
</tr>
<tr>
<td>Neumann, A.</td>
<td>180</td>
<td>Sempere Payá, V.M.</td>
<td>136</td>
</tr>
<tr>
<td>Niemann, K.-H.</td>
<td>230</td>
<td>Siltula, N.</td>
<td>164</td>
</tr>
<tr>
<td>Nogueira, J.</td>
<td>157</td>
<td>Simon, R.</td>
<td>223, 429</td>
</tr>
<tr>
<td>Noury, P.</td>
<td>414</td>
<td>Soucek, S.</td>
<td>291</td>
</tr>
<tr>
<td>Ossipov, V.</td>
<td>247</td>
<td>Stampfl, N.</td>
<td>313</td>
</tr>
<tr>
<td>Ott, W.</td>
<td>230</td>
<td>Stuhrlmann, N.</td>
<td>247</td>
</tr>
<tr>
<td>Otto, H-P.</td>
<td>423</td>
<td>Szczepanski, Th.</td>
<td>256</td>
</tr>
<tr>
<td>Palensky, P.</td>
<td>319</td>
<td>Szymanski, J.</td>
<td>423</td>
</tr>
<tr>
<td>Paliza, F.A.</td>
<td>83</td>
<td>Thiele, D.</td>
<td>112</td>
</tr>
<tr>
<td>Partanen, P.</td>
<td>164</td>
<td>Thomesse, J.-P.</td>
<td>2, 437</td>
</tr>
<tr>
<td>Perez, A.A.</td>
<td>83</td>
<td>Tovar, E</td>
<td>359</td>
</tr>
<tr>
<td>Peter, M.</td>
<td>55</td>
<td>Tuokko, R.</td>
<td>164</td>
</tr>
<tr>
<td>Plagemann, B.</td>
<td>400</td>
<td>Unger, E.</td>
<td>118</td>
</tr>
<tr>
<td>Popp, W.</td>
<td>334</td>
<td>Utrilla Ginés, E.</td>
<td>136</td>
</tr>
<tr>
<td>Poza, F.</td>
<td>157</td>
<td>Vahldieck, R.</td>
<td>230</td>
</tr>
<tr>
<td>Prüßner, M.</td>
<td>146</td>
<td>Vasques, F.</td>
<td>359</td>
</tr>
<tr>
<td>Raibulet, C.</td>
<td>437</td>
<td>Vasyutynskyy, V.</td>
<td>209</td>
</tr>
<tr>
<td>Rauchhaupt, L.</td>
<td>48</td>
<td>Verissimo, P.</td>
<td>375</td>
</tr>
<tr>
<td>Reguera, V.A.</td>
<td>83</td>
<td>Verney, Ch.</td>
<td>423</td>
</tr>
<tr>
<td>Reiter, H.</td>
<td>188</td>
<td>Vihinen, J.</td>
<td>164</td>
</tr>
<tr>
<td>Rieger, P.</td>
<td>276</td>
<td>Vonnahme, E.</td>
<td>351</td>
</tr>
<tr>
<td>Rufino, J.</td>
<td>375</td>
<td>Voß, M.</td>
<td>381</td>
</tr>
<tr>
<td>Rüping, S.</td>
<td>240, 351</td>
<td>Wagner, U.</td>
<td>98</td>
</tr>
<tr>
<td>Russo, F.</td>
<td>445</td>
<td>Witte, H.</td>
<td>118</td>
</tr>
<tr>
<td>Saarimäki, V.</td>
<td>164</td>
<td>Wojsznis, W.</td>
<td>112</td>
</tr>
<tr>
<td>Sauter, Th.</td>
<td>76, 195, 299, 400</td>
<td>Wollschaeger, M.</td>
<td>118, 172</td>
</tr>
<tr>
<td>Schumann, Th.</td>
<td>152</td>
<td>Zeltwanger, H.</td>
<td>16</td>
</tr>
<tr>
<td>Schwarz, K.</td>
<td>38, 268</td>
<td>Ziegler, A.</td>
<td>284</td>
</tr>
</tbody>
</table>