
2010/02/15(C) Herbert Haas

WLAN

Security Summary

2(C) Herbert Haas 2010/02/15

Threat Summary

 Simple eavesdropping
 Radio broadcast
 Reduce TX powers!
 Encryption (WEP, TKIP, AES, IPsec)

 Authentication
 Shared secrets vs. stolen devices, large nets
 Centralized AAA => 802.1x
 Mutual authentication (Rogue APs)

 DoS Attacks
 Physical jamming
 Difficult to prevent (shielding, directional

antennas)

3(C) Herbert Haas 2010/02/15

WLAN Security Overview

802.11 Standard

WEP Encryption

Open Authentication

Shared Authentication

TKIP & MIC 802.1x

802.11i

AES WPA-2

WPA

IPsec VPN

2010/02/15(C) Herbert Haas

WEP Problems

5(C) Herbert Haas 2010/02/15

Intro

 Wireless LAN is a perfect media for attackers
 Sniffers easily remain undetected
 Outdoor attacks
 Simple DoS attacks through jamming

 Vulnerabilities found in initial standards
 Authentication / Encryption / Integrity
 Centralized management of user credentials

 “Mobile devices” => frequent hardware theft
 Rogue APs often remain undetected

 Mutual auth required
 Interoperability of security features of different vendors still

in question (nevertheless WPA)
 Lots of cracker tools available (WEPCrack, AsLeap, …)
 2002/2003: 66% of WLANs unprotected (but better security

awareness in 2004)

6(C) Herbert Haas 2010/02/15

RC4 Facts

 Simple and fast stream cipher
 Variable key lengths (1-256 bytes)
 15 times faster than 3DES

• 8-16 operations per output byte

 Also used by SSL/TLS

 Designed 1987 by Ron Rivest for
RSA Security
 Kept as trade secret by RSA Security

but leaked out in 1994

 Period is larger than 10100 !!!

7(C) Herbert Haas 2010/02/15

How RC4 Works

for i = 0 to 255 do
 S[i] = i;
 T[i] = K[i mod keylen];

j = 0;
for i = 0 to 256 do
 j = (j + S[i] + T[i]) mod 256;
 Swap (S[i], S[j]);

i, j = 0;
while (1)
 i = (i + 1) mod 256;
 j = (j + S[i]) mod 256;
 Swap (S[i], S[j]);
 t = (S[i] + S[j]) mod 256;
 k = S[t];

Initialize S[0]..S[255] with ascending numbers.
Initialize T[0]..T[255] with the key K (If keylen < 256 then
repeat K as often as necessary).

Use T to produce initial permutation of S.
Hereby go from S[0] to S[255] and swap each S[i] with
another byte dictated by T[i].

After that, S still contains all numbers from 0 to 255 but
in a permutated order.

Now again swap S[i] with another byte in S, but this time
it is dictated by S itself (the key is no longer used).

After S[255] is reached, repeat again with S[0], as long as
there are bytes to encrypt or decrypt.

XOR byte k with plaintext byte or ciphertext byte for
encryption or decryption respectively.

8(C) Herbert Haas 2010/02/15

General Stream Cipher Issues

 Every stream cipher is supposed to
produce a good pseudorandom
"keystream"
 This is the idea of a "one-time pad"

 The keystream is XORed with the
plaintext

 This method is secure if
 The keystream-generator has high

entropy (i. e. really random)
 Each keystream is only used once

9(C) Herbert Haas 2010/02/15

Wired Equivalent Privacy (WEP)

 Only encryption method of the 802.11
standard
 Used for privacy, integrity and authentication

 Shared key method
 Either one static key
 Or short list of dynamic keys (up to four)

 Key lengths:
 40 bit (default, aka "64 bit" with IV)
 Optionally 104 (or "128" bit with IV)

 No key distribution method defined(!)

10(C) Herbert Haas 2010/02/15

Basic Principle

 Payload is XORed with a RC4-generated
pseudorandom keystream K
 S depends on shared key and 24 bit

Initialization Vector (IV)
 Ciphertext C = Plaintext P ⊕ Keystream K

IV Key ID Payload

24 Bits 8 Bits

ICV

RC4 encrypted

(6 bits pad
and 2 bits

key ID)

MAC

CRC-32

11(C) Herbert Haas 2010/02/15

WEP – Design Flaw in Detail

 The Problem:
 XOR operation eliminates two identical terms!
 If same S is used on different plaintexts, then

• C1=S ⊕ P1 and C2=S ⊕ P2
• C1 ⊕ C2 = P1 ⊕ P2
• Same keystream S cancels out!

 If P1 is known then P2 can be easily calculated!

1 0 1 0 0 0 1 1 0 1

1 1 0 1 0 1 1 0 0 0

0 1 1 1 0 1 0 1 0 1

P1

S

C1
⊕

0 0 1 0 0 1 0 1 1 1

0 1 0 1 0 0 0 0 1 0

0 1 1 1 0 1 0 1 0 1

P2

S

C2
⊕

⊕

C1 ⊕ C2 1 0 0 0 0 1 1 0 1 0

⊕

P1 ⊕ P2 1 0 0 0 0 1 1 0 1 0

12(C) Herbert Haas 2010/02/15

IV Collisions

 Keystream should change for each packet
 Assures that same plaintexts result in different

Ciphertext
 802.11 does not specify how to pick IVs
 Many implementations reset IV to zero at startup and

then count up

 Only 224 IV choices  Collisions will occur !!!
 Attacker could maintain a "codebook" of all possible S
 1500 byte × 224 = 24 GByte
 Matter of hours only

 Shared key length does not hamper the attack!

13(C) Herbert Haas 2010/02/15

Integrity Vulnerability

 Encrypted CRC is used to
check integrity

 But CRC is linear:
 CRC(X ⊕ Y) = CRC(X) ⊕ CRC(Y)

 Thus payload bits can be
manipulated, because
 RC4K (X ⊕ Y) = RC4K (X) ⊕ Y
 RC4K (CRC(X ⊕ Y)) =

RC4K (CRC(X)) ⊕ CRC(Y)

 Attacker can easily modify
known bytes of packets (at
least L3/L4 header structures
are known)

011010010101 . . . 0110

100110110010 . . . 1100

plaintext CRC

111100100111 . . . 1010

0000110000000 . . . 1001

keystream

ciphertext

manipulation frame

111110100111 . . . 0011
manipulated ciphertext correct CRC

⊕

⊕

=

=

14(C) Herbert Haas 2010/02/15

Bit-Flipping Attack Example

 Attacker catches and manipulates
encrypted frame, updates ICV

 AP decrypts frame, validates ICV and
forwards frame

 Router detects fault and sends
predictable error message

 Keystream = C'' + P''

C' P'

P''C''

15(C) Herbert Haas 2010/02/15

Arbaugh Attack

 Allows to arbitrarily expand a known
keystream of size n
 Easily done with known messages (e. g.

DHCP discoveries)

 Create messages of size n-3 and
encrypt it with the known keystream

 Only the last byte (4th CRC byte) is
not encrypted: trial and error!

 On average only 128 trials necessary
for every additional byte!

16(C) Herbert Haas 2010/02/15

Attacks Summary (1)

 Keystream reuse (IV collisions)
 Dictionary-building attacks
 Allows real-time automated decryption of all traffic

 Bit-flipping attacks
 Attacker intercepts WEP-encrypted packet, flips

bits recalculates CRC and retransmits forged
packet to AP with same IV

 Because CRC32 is correct, AP accepts and
forwards frame

 Layer 3 end device rejects and sends a predictable
response

 AP encrypts response and sends it to attacker
 Attacker uses response to derive key

17(C) Herbert Haas 2010/02/15

Attacks Summary (2)

 Fluhrer, Mantin, Shamir (FMS) attack on RC4
 RC4 key scheduling is insufficient

• The beginning of the pseudorandom stream should be
skipped, otherwise some IV values reveal information
about the key state

 Key can be recovered after several million packets
 'WEPplus' = WEP with avoidance of weak IVs

 KoreK Attack
 Packet manipulation, reinjection and CRC analysis
 Key can be recovered after several 100,000

packets
 Arbaugh Attack

 Calculate arbitrary additional bytes on a known
but short keystream

2010/02/15(C) Herbert Haas

Interim Solutions: TKIP and MIC

19(C) Herbert Haas 2010/02/15

802.11i

 Two new network types
 Transition Security Network (TSN)
 Robust Security Network (RSN)

 An RSN only allows devices using
TKIP/Michael and CCMP

 A TSN supports both RSN and pre-RSN
(WEP) devices
 Problem: broadcast packets have to be

transmitted with the weakest common
denominator security method

 Consider a single client only supporting WEP

20(C) Herbert Haas 2010/02/15

802.11i

 Message Integrity Check (MIC)
 Nonlinear algorithm

 Temporal Key Integrity
Protocol (TKIP or “WEP2”)
 Also uses RC4-based WEP

without the known flaws
• Per-packet keys through IV mixing
• Replay protection

 Essentially a patch for WEP
 Counter Mode CBC MAC

(CCMP)
 = AES + CBC-MAC
 Replaces WEP !!!

(requires new HW support)

Pre-standard
802.11i
(WPA)

Ratified 802.11i
(WPA2)

First WPA2 certifications
already since 1st Sept 2004

21(C) Herbert Haas 2010/02/15

MIC (as used by WPA)

 Encrypted checksum
 => Nonlinear function now

 Uses "Michael" algorithm
 Much more lightweight than MD5 or SHA

 Uses separate 64-bit key
 Data Integrity Key (DIK) derived from PTK after WPA

key management
 AP and STA use different MIC keys (128-bit DIK is split)

DATA MIC ICV

Additional 8 byte 4 byte (CRC)

Integrity
Check Value

RC4 encrypted

MAC Header

22(C) Herbert Haas 2010/02/15

MIC Problems

 Michael algorithm
 Provides security level of only

20 bit strength
 Attacker can construct

forgery after approx 2^19 tries
(520,000 frames)

 MIC Countermeasures
 Upon two MIC failures within

60 seconds, this AP
disassociates all stations for
at least 60 seconds and
erases current keys in use

 So attacker forgery trials
become nearly impossible

 Typically turned OFF (DoS!!!)

PayloadDA SA Key

MMH
Hash

8-byte MIC

WPA

23(C) Herbert Haas 2010/02/15

Cisco MIC (CMIC)

 Uses a seed value as pseudo-key

 Uses sequence number (AP verifies
order)

MMH
Hash

DA SA LLC SNAP Payload

4-byte MIC

Cisco
(CMIC)

SEQSeed

DATA MIC ICV

Integrity Check
Value (ICV)

additional 4 byte 4 byte (CRC)

24(C) Herbert Haas 2010/02/15

TKIP (As used by WPA)

 Features
 Longer and unpredictable IV through IV/key mixing
 Encrypted replay protection number (TSC)

 WPA TKIP
 48 bit IV, includes MAC
 Fast S-box mixer
 Fresh session keys on every association

TX-MAC TTAKPhase 1

32 bits 16

Phase 2 24 104 bits

TEK (Temporal Encryption Key)

IV WEP-Key

128 Bits

TKIP Sequence Counter (TSC)

TKIP mixed Transmit
Address and Key (TTAK)

48 Bits "WEP Seed"

KEY STREAM

RC4

80 Bits

Padded such
to avoid
weak IVs

25(C) Herbert Haas 2010/02/15

TKIP Details

 Phase 1
 The high-order 32 bits of the TSC are combined with the TA and the first 80 bits

of the TEK.
 This phase of the key mixing is an iteration involving inexpensive addition, XOR,

and AND operations, plus an S-box lookup reminiscent of the RC4 algorithm.
These were chosen for their ease of computation on low-end devices such as
APs.

 Phase 1 produces an 80-bit value called TKIP mixed Transmit Address and Key
(TTAK). Note that the only input of this phase that changes between packets is
the TSC. Because it uses the high-order bits, it only changes every 64K packets.

 Phase 1 can thus be run infrequently and use a stored TTAK to speed up
processing. The inclusion of the transmitter's MAC address is important to allow
a pair of stations to use the same TEK and TSC values and not repeat RC4 keys.

 Phase 2
 Now the TTAK from phase 1 is combined with the full TEK and the full TSC.
 This phase again uses inexpensive operations, including addition, XOR, AND,

OR, bit-shifting, and an S-box.
 The output is a 128-bit WEP seed that will be used as the RC4 key in the same

manner as traditional WEP.
 In the phase 2 algorithm, the first 24 bits of the WEP seed are constructed from

the TSC in a way that avoids certain classes of weak RC4 keys.

26(C) Herbert Haas 2010/02/15

Cisco TKIP ("CKIP")

 Simple proprietary solution

 Still uses 24 bit IV but calculates per-
packet WEP keys from IV
Hash-based mixer

HASH

Base WEP KeyIV

KEY STREAMRC4IV Packet Key

27(C) Herbert Haas 2010/02/15

Security

 Against rumors, TKIP is reasonably safe!
 For each packet, the 48-bit IV is mixed with the

128-bit PTK to create a 104-bit RC4 key
• There is practically no statistical correlation
• Estimated one weak-IV per century (!)

 Countermeasures against traffic re-injection
• Sequence numbers + MIC

 Robust 4-way handshake

 Only problem: WPA-PSK
 Which uses a specified passphrase to PMK

mapping => good passphrase required !!!
 Otherwise dictionary attack possible

2010/02/15(C) Herbert Haas

AES and CCMP

29(C) Herbert Haas 2010/02/15

802.11i

 Message Integrity Check (MIC)
 Nonlinear algorithm

 Temporal Key Integrity Protocol
(TKIP or “WEP2”)
 Also uses RC4-based WEP without

the known flaws
• Per-packet keys through IV mixing
• Replay protection

 Essentially a patch for WEP
 Counter Mode CBC MAC

(CCMP)
 = AES + CBC-MAC
 Replaces WEP !!!

(requires new HW support)

Pre-standard
802.11i – TSN

(WPA)

Ratified 802.11i
– RSN

(WPA2)
First WPA2 certifications

already since 1st Sept 2004

30(C) Herbert Haas 2010/02/15

WPA2 aka 802.11i

 Exactly the same as WPA1 except...
 CCMP (AES in counter mode) instead of

RC4
 HMAC-SHA1 instead of HMAC-MD5 for the

EAPoL MIC

 Against rumors WPA2 is only a LITTLE
better than WPA1
 But neither will be cracked in the near

future !!!

31(C) Herbert Haas 2010/02/15

802.11i: CCMP – Overview

 AES for data encryption (privacy)
 128-bit block cipher
 No per-packet keying needed
 HW-realization recommended
 Key-life determined by 48-bit IV

 AES requires a feedback mode
 To avoid the risks associated with the trivial Electronic Codebook

(ECB) mode
• Repeating patterns are not hidden
• Not recommended for messages longer than one block !

 The IEEE is still deciding which feedback mode to standardize for
AES encryption – two choices:
 Counter Mode CBC MAC (CCM)

• Provides encryption, authenticity and integrity
• Applied on both header and data
• IV also used to prevent replay attacks
• WLAN's current favourite

 Offline Code Book (OCB) mode
• Problem: patented
• Also supported by some WLAN vendors

32(C) Herbert Haas 2010/02/15

Cipher Block Chaining (CBC)

 No patent
 Encryption and MAC use different nonces

 Collision attacks possible but sufficient mitigation when
key management provides frequent key changes

 Identical ciphertext blocks result only when:
 Same key and
 Same plaintext and
 Same IV is used

 CBC is self-synchronizing
 If an error (including loss of one or more entire blocks)

occurs in block cj but not cj +1, then cj +2 is correctly
decrypted to xj +2.

33(C) Herbert Haas 2010/02/15

Counter Mode (CCM)

 Instead of directly encrypting the
data only a counter is encrypted

 Message is then XORed with this
encrypted counter

 Counter = nonce (SQNR, Source-
MAC, Priority fields)

34(C) Herbert Haas 2010/02/15

Offset Code Book (OCB)

 Patented
 Combines authentication and encryption

 Slightly faster than CBC encryption
 More prone to collision attacks than CBC-MAC

 If a particular collision on 128-bit values occurs,
then an attacker can modify the message without
being detected by the OCB authentication
function
 Weak authentication algorithm – uses same nonce for

encryption and authentication
 In order to limit the probability of a successful forgery

attempt to less than 2^-64 change the key after 2^32
blocks of data

 Indeed strong enough for many people but does not
justify 128-bit AES as successor of DES

35(C) Herbert Haas 2010/02/15

OCB Algorithm

Convention: Message M, Key K, Nonce N

Define from which the offset follows.

Then the message is split into M1, …, Mm,
where only Mm is typically a non-128 bit
block. The messages M1, … Mm-1 are
encrypted as follows:

While Mm is encrypted
using μ denoting the
length of this block:

The authentication is performed in two steps:

… "Checksum"

… "MAC Tag" of arbitrary length,
depending on security vs.

transmission cost trade-off.
Typically 32..80 (documentation)

Cm0* … last ciphertext block padded
with zeros to full 128 bit length

2010/02/15(C) Herbert Haas

802.11 Standard Authentication

37(C) Herbert Haas 2010/02/15

802.11 Standard Authentication
Methods

 Open System Authentication
 Anyone is granted access
 Ideal for transient users
 Default method
 All frames sent in clear, even

when WEP is enabled

 Shared Key Authentication
 Relies on WEP algorithm
 Every user has same shared

key—and same as AP
 Only client device

authentication
 User is not authenticated

(device theft critical)
 AP is not authenticated (!)
 Vulnerable…

Initiator Responser

Authentication request

Authentication result (OK)

Initiator Responser

Authentication request

Challenge and IV

WEP encrypted response

Authentication result

38(C) Herbert Haas 2010/02/15

Shared Key Authentication

 Attacker captures 2nd and 3rd
authentication message and
has
 Plaintext P (the challenge)
 Ciphertext C = RC4K (P)

 The keystream is simply
S = C ⊕ P

 Other fields than the challenge
are known a priori
 Have always the same value in

each authentication process
 Possessing S, an attacker can

correctly respond to each
challenge

 Never use Shared Key
Authentication !!!

Initiator Responser

Authentication request

Challenge and IV

WEP encrypted response

Authentication result

2010/02/15(C) Herbert Haas

802.1x and EAP Authentication

40(C) Herbert Haas 2010/02/15

802.1x Authentication – Intro

 Port-based network access control method
utilizing IETF’s Extensible Authentication
Protocol (EAP)
 Supports mutual authentication between client and AP

 Dynamic WEP/TKIP key distribution and refresh
 Only for unicast traffic

• Each client has its own key—as long as AP has enough
key slots

• Session lifetime
 But static and shared broadcast key

• Either pre-configured or automatically assigned after
authentication

 Centralized user credential management via
RADIUS
 Various client credentials supported

 (Fast) L2 roaming support (possible)

41(C) Herbert Haas 2010/02/15

What is EAP?

 Extensible: allows to develop and deploy
new authentication protocols easily
 No SW update on authenticator (AP) needed
 Only supplicant and AS server need to be

updated

 See RFC 2284

TLS

EAP

MD5 AKA/SIM TTLS PEAP FAST LEAP

PPP 802.3 802.11

RADIUS

UDP

IP

802.3

802.1x "EAPoL" or "EAPoW"

42(C) Herbert Haas 2010/02/15

802.1x – Protocol Layers

 Authenticator (AP) blocks access until client is authenticated
 Only accepts Ethertype 0x888E (EAPoL)

 802.1x frames are sent to multicast DA = 01-80-C2-00-00-03
 Authenticator translates 802.1x to UDP/IP

Supplicant Authenticator
(802.11 AP)

Authentication Server
(E.g. Cisco ACS)

EAP over Radius

EAP over LAN (EAPoL)
EAP over Wireless (EAPoW)

EAP's Authentication Method

EAP

802.11

802.1x
RADIUS

UDP/IP

RADIUS

UDP/IP
802.1x

802.11 802.3 802.3

43(C) Herbert Haas 2010/02/15

802.1x – EAP Concept

Supplicant Authenticator
(802.11 AP)

Authentication Server
(E.g. Cisco ACS)

Client associates with AP

AP blocks
all traffic

User provides authentication credentials Credentials forwarded via RADIUS

User
authenticated

RADIUS Server
authenticated Both ends derive unicast WEP key

Send unicast WEP key to AP

AP creates broadcast
WEP keySend broadcast WEP key encrypted

with unicast WEP key to client

AP accepts
WEP encrypted packets

AS provides authentication credentials Credentials forwarded via EAPoW

44(C) Herbert Haas 2010/02/15

802.1x – EAP Protocol

Supplicant Authenticator
(802.11 AP)

Authentication Server
(E.g. Cisco ACS)

EAP over Radius

EAP over LAN (EAPoL)
EAP over Wireless (EAPoW)

802.11 ASSOC Request (Open)

802.11 ASSOC Response

EAP Request ID

EAPoW Start

EAP Response ID

EAP Request Method

EAP Response Method

EAP SUCCESS

EAP 4-Way Key-exchange
Handshake

RADIUS Access Request (EAP)

RADIUS Access Challenge (EAP)

RADIUS Access Request (EAP)

Radius Access Accept (EAP)

Original 802.1x used single EAPoW key message.
New improved 802.1x (802.1aa) uses a 4-way handshake
to prevent MITM attacks.

With MPPE attributes for keys

45(C) Herbert Haas 2010/02/15

802.1x – EAP-TLS (1)

 First secure 802.1x realization, EAP method 13 (RFC 2716)
 Relies on Transport Layer Security (TLS)

 Successor of SSL version 3.0, adopted by IETF
 Both clients and AS authenticated via certificates
 Only TLS authentication and tunnel establishment procedure (tunnel not used)
 TLS also used to derive link-layer key between endpoints

 Problems:
 Client identity is not protected
 No fast session reconnection
 Need for PKI (practical: certificate stored in token card or similar)

 Prerequisite for WPA certification
 Until May 2005 the only required EAP method for WPA

EAP ID Request

EAPoW Start

EAP ID Response RADIUS Access Request (EAP)

TLS Authentication Client CertificateServer Certificate

46(C) Herbert Haas 2010/02/15

802.1x – EAP-TLS (2)

 After each re-authentication a new session key can be generated based on
the same master key

 Note: TLS details omitted in the picture
 Such as record details (server_key_exchange, change_cipher_spec, …)

ClientHello: Random_1, Session_ID

E
A

P
-T

yp
e

 =
 E

A
P

-T
L

S

ServerCertificate, ServerHello: Random_2, Session_ID

ClientCertificate

Pre-masterSecret (encrypted with server's public key)

MasterSecret = PRF (Pre-masterSecret,
Random_1, Random_2, "master secret")

MasterSecret = PRF (Pre-masterSecret,
Random_1, Random_2, "master secret")

Session Key = PRF (MasterSecret,

Random_1, Random_2,
"client EAP encryption")

Session Key = PRF (MasterSecret,

Random_1, Random_2,
"client EAP encryption") Authenticator MAY choose subsequent keying material

(encryption keys, MAC-keys, and IV) from this session key
(for example using the 1st 32-byte block as encryption key,
the 2nd 32-byte block as MAC-key and so on…)

47(C) Herbert Haas 2010/02/15

802.1x – LEAP

 Cisco’s lightweight implementation
 Fast Secure Roaming (< 150 ms)
 Challenge-response based on shared secrets

 Implemented similar as MS-CHAPv2 (two stage MD4 hashing
of passwords)

 Can utilize existing Windows NT Domain Services
authentication databases as well as Windows 2000 Active
Directory databases
 No support for LDAP and NIS

 Drivers for Windows 95, 98, Me, 2000, NT and XP and uses
the Windows logon as the Cisco LEAP logon

 Also Linux and Mac support
 Vulnerable to dictionary attacks

 Secure if strong passwords are enforced (10 chars at
minimum)

48(C) Herbert Haas 2010/02/15

LEAP / MSCHAPv2 Flaws

 AS sends 8 byte challenge
 Client encrypts challenge 3 times using NT hash

of the password as DES seed (=key)
 DES requires a 7 byte seed value in this algorithm
 So client splits 16 byte NT hash into three portions:

• Seed1 = B1 .. B7
• Seed2 = B8 .. B14
• Seed3 = B15, B16, 0x00, 0x00, 0x00, 0x00, 0x00

 Flaw: third DES output is cryptographically weak,
leaving only 2^16 possible permutations

 After B15 and B16 are known, we can
significantly reduce the number of potential
matches in our dictionary file, using the known 2
bytes of the user's hash as a keying mechanism

49(C) Herbert Haas 2010/02/15

Asleap

 Offline attack on LEAP
 Principle:

 LEAP performs
unencrypted MSCHAPv2
(challenge-handshake)

 Asleap captures
challenge and encrypted
reply and performs an
offline dictionary attack

 Written by Joshua
Wright

 http://asleap.sourceforg
e.net/

 Also see Leapcrack

Example: Asleap, cracking password “test”

50(C) Herbert Haas 2010/02/15

802.1x – EAP-TTLS

 Created by Funk and
Certicom
(Internet draft)

 EAP method 21
 Widely implemented,

also Linux support; but
no Cisco support

 Supports ANY inner
authentication method
 Any EAP method
 As well as older

methods such as CHAP,
PAP, MS-CHAP and MS-
CHAPv2

Outer EAP
AVP

PAP, CHAP,
MCHAP,

MSCHAPv2, …

EAP-TTLS
TLS using

Server-Certificates

Basic Idea:

51(C) Herbert Haas 2010/02/15

802.1x – EAP-TTLS

 Radius-like AVPs
between client and Server

 Client certificate not
required but user has two
identities:
1. A anonymous identity

such as
"anonymous@example.c
om" and

2. The real identity, which
is only sent encrypted,
such as
user342@example.com".

 Client identity protected
by TLS

 Fast session reconnect
(but too slow for VoIP)

Detailed:

PAP, CHAP,
MSCHAP, MSCHAPv2

AVP TLS EAP
Ethernet

or Radius

52(C) Herbert Haas 2010/02/15

802.1x – Other EAP Choices

 More than 44 EAP types already defined
 EAP-AKA: username and password (UMTS systems)
 EAP-MD5: No dynamic WEP keys, no mutual authentication,

dictionary attacks possible
(EAP method 4)

 EAP-GTC: Generic Token Card (EAP method 6), no mutual
authentication

 PEAP-GTC: Cisco’s PEAP method
 EAP-SIM: Used for SIM-card based devices (3GPP, also known

as EAP-GSM)
 EAP-SRP: Secure Remote Password
 …

 EAP-FAST: Successor of LEAP
 See dedicated section

 PEAP-EAP-TLS
 Another Microsoft solution similar as EAP-TLS

53(C) Herbert Haas 2010/02/15

EAP Types Overview

 1–6 Assigned by RFC
 1Identity
 2Notification
 3Nak (response only)
 4MD5-Challenge
 5One-Time Password (OTP)
 6Generic Token Card (GTC)

 7-8 Not assigned
 9 RSA Public Key Authentication
 10 DSS Unilateral
 11 KEA
 12 KEA-VALIDATE
 13 EAP-TLS
 14 Defender Token (AXENT)
 15 RSA Security SecurID EAP
 16 Arcot Systems EAP
 17 EAP-Cisco Wireless (LEAP)
 18 Nokia IP SmartCard authentication
 19 SRP-SHA1 Part 1
 20 SRP-SHA1 Part 2
 21 EAP-TTLS
 22 Remote Access Service
 23 UMTS Authentication and Key Agreement
 24 EAP-3Com Wireless
 25 PEAP
 26 MS-EAP-Authentication
 27 Mutual Authentication w/Key Exchange (MAKE)
 28 CRYPTOCard

 29 EAP-MSCHAP-V2
 30 DynamID
 31 Rob EAP
 32 SecurID EAP
 33 EAP-TLV
 34 SentriNET
 35 EAP-Actiontec Wireless
 36 Cogent Systems Biometrics

Authentication EAP
 37 AirFortress EAP
 38 EAP-HTTP Digest
 39 SecureSuite EAP
 40 DeviceConnect EAP
 41 EAP-SPEKE
 42 EAP-MOBAC
 43 EAP-FAST
 44–191 Not assigned; can be assigned by

IANA on the advice of a designated expert
 192–253 Reserved; requires standards

action
 254 Expanded types
 255 Experimental usage

2010/02/15(C) Herbert Haas

PEAP

55(C) Herbert Haas 2010/02/15

802.1x using PEAP

 Created by Cisco and
Microsoft
 Similar to EAP-TTLS

 Open standard
 EAP method 25

 Since third EAP
message is always in
clear
 Client may send a

routing realm instead
of the user identity to
protect the user
identity

Outer EAP
Inner
EAP

EAP-MSCHAPv2

EAP-PEAP

Username/Password

TLS using
Server-Certificates

Basic Idea:

56(C) Herbert Haas 2010/02/15

Version Overview

 PEAPv0
 Supported since Windows XP SP1
 Microsoft proposes MS-CHAPv2

• EAP method 29

 PEAPv1
 Cisco's proposal: EAP-GTC

• EAP method 6

 PEAPv2
 Latest draft
 Security updates and more features

• Various cipher-suites supported
• MITM protection through "crypto-binding"

57(C) Herbert Haas 2010/02/15

PEAP as Pipe Model

 Only supports EAP-
type authentication

 Client certificate not
required

 Fast session reconnect
(but too slow for VoIP)

 Version 2 still in
development

PEAP Detailed

TLS

Outer EAP

Ethernet
or Radius

MSCHAPv2
or GTC

(or EAP-TLS, …)
Inner EAP

TLV PEAP

58(C) Herbert Haas 2010/02/15

PEAPv2 Layers

 In PEAPv2 Part 1
 Outer-TLVs are used to help

establishing the TLS tunnel,
but no Inner-TLVs are used

 In PEAPv2 Part 2
 TLS records may encapsulate

zero or more Inner-TLVs, but
no Outer-TLVs

 EAP packets used within
tunneled EAP authentication
methods are carried within
Inner-TLVs

TLS Optional Outer-TLVs

PEAP

EAP

PEAP

EAP

EAP

Inner-TLVs (EAP-Payload TLV)

TLS

Part 2

Part 1

59(C) Herbert Haas 2010/02/15

PEAPv2: Provisioning of Credentials

 Provisioning inside a server-authenticated
TLS tunnel

 Provisioning inside a server-
unauthenticated TLS tunnel
 If TLS tunnel cannot be validated by client

(lacking required credentials) the client instead
may rely on inner EAP method

 Although this reduces deployment costs, MITM
attacks are possible !

 An implementation is therefore optional and
not recommended

60(C) Herbert Haas 2010/02/15

PEAPv2

 Also other than certificate-based
cipher-suites are supported
 E. g. DH-based

 If certificates are sent by the server
 The client only verifies whether the

server possesses the corresponding
private key

 The client does not need to validate via
the trust anchor (CA)

61(C) Herbert Haas 2010/02/15

PEAPv2 – MITM Protection

 A sequence of zero or more inner EAP
authentication methods can be negotiated

 Crypto-Binding TLVs must be sent in the
PEAP success/failure (Result TLV)
messages
 In a sequence, also after each EAP-method a

Crypto-Binding TLV must be sent by both
parties

 The server should not reveal any sensitive
data to the client until after the Crypto-Binding
TLV has been properly verified !!!

62(C) Herbert Haas 2010/02/15

PEAP: Man-In-The-Middle Attack

Supplicant Authenticator
EAP-Server

MITM

TLS
inner user auth

inner key generation based on shared credentials

Crypto-Binding TLVs (inner key, initial TLS messages)

Let me in using PEAP

Here's my certificate

TLS

Let me in using PEAP

Here's my certificate

Trust anchor (CA-cert)
missing but private-key

validation positive

encrypt this

no problem

!!! MISMATCH !!!
NOT ALLOWED TO CONTINUE

!!! MISMATCH !!!
NOT ALLOWED TO CONTINUE

PEAPv2 MITM Protection

63(C) Herbert Haas 2010/02/15

Crypto-Binding TLVs

 PEAPv2 derives keys by combining keys
from TLS and the inner EAP methods

 The Crypto-Binding TLV calculation
includes
 The first two Outer-TLVs messages sent by

both peer and EAP-server
• (used for TLS tunnel establishment)

 The EAP-Type (= set to PEAP) sent in the first
two messages by both peer and EAP-server

64(C) Herbert Haas 2010/02/15

DoS Attacks

 Theoretically possible if the attacker
 Can modify unprotected fields in the

PEAP packet such as the EAP protocol
or PEAP version number

 Modify protected fields in a packet to
cause decode errors

65(C) Herbert Haas 2010/02/15

PEAPv2 – Other Features

 Fast session resumption
 Using the "sessionID" of the TLS protocol and

the Server-Identifier TLV in PEAP
• Server may send a Server-Identifier TLV to give

client a hint which sessionID should be used
(protected by MAC)

 If too much time elapsed since previous
authentication, the server will not allow the
continuation

 The inner authentication may or may not be
skipped !!!

 TLS compression must be supported

66(C) Herbert Haas 2010/02/15

PEAPv2 Fragmentation

 A single TLS message may consist of multiple
TLS records
 A single TLS record may be up to 16384 bytes in length
 A TLS certificate message may in principle be as long as

16 MByte

 Fragmentation needed
 RADIUS cannot handle such long messages
 Multilink PPP (MRRU LCP) method supported on

Ethernet/802.3
• But there's no PPP in 802.11 which could negotiate that

 PEAPv2 own fragmentation support defined
• DoS attacks (reassembly lockup) can be mitigated to set a

maximum size for one group of TLV messages (e. g. 64 KB)

67(C) Herbert Haas 2010/02/15

PEAPv2 Key Derivation

 New keys are derived from TLS master secret
to protect the conversation within the PEAPv2
tunnel
 Since normal TLS keys are used in the handshake

they should not be used in a different context

 Combines key material from TLS exchange
with key material from inner key generating
EAP methods
 To bind inner authentication mechanisms to TLS

tunnel

68(C) Herbert Haas 2010/02/15

Crypto-Binding TLV

 The Crypto-Binding TLV is used prove that
both peers participated in the sequence
of authentications
 That is, the TLS session and inner EAP

methods that generate keys

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type (12) | Length (56) |
 +-+
 | Reserved | Version | Received Ver. | Sub-Type |
 +-+
 | |
 ~ Nonce (32 bytes; temporally unique; ~
 | used for compound MAC key derivation at each end |
 +-+
 | Compound MAC |
 ~ (Computed using the HMAC-SHA1-160 keyed MAC that provides 160 ~
 | bits of output using the CMK key) |
 | |
 +-+

2010/02/15(C) Herbert Haas

EAP-FAST

70(C) Herbert Haas 2010/02/15

Quick Facts

 Cisco, LEAP successor
 Design by Cisco but open draft (IETF)
 Initially known as "Tunneled EAP

(TEAP)" or "LEAPv2"
 Supported by client devices since

Q4/2004
 Goals:

 PEAP/EAP-TTLS -like security
 Simple deployment
 Fast roaming support (VoIP)
 Computationally lightweight

• Symmetric cryptography is used

 Key concept:
 Also TLS-protected inner EAP

authentication
 But PACs instead X.509 certificates

TLV Encapsulation Protocol

TLS

EAP- FAST

EAP

Carrier Protocol
(EAPoL, RADIUS, Diameter, …)

Inner EAP or other method

71(C) Herbert Haas 2010/02/15

PACs

 First, Protected Access Credentials
(PACs) are generated by the
authentication server and distributed to
the clients
 Either manually ("out-of-band")
 Or automatically ("in-band" during "phase 0")

 PACs consist of a secret and opaque part
 Secret part contains keying material
 Opaque part is sent by client to prove that

he/she also possesses the secret part

72(C) Herbert Haas 2010/02/15

PAC Components (Detailed)

 1) PAC Key
 32 byte
 Randomly generated by AS
 Used as TLS pre-master-secret to establish "phase 1"

tunnel
 2) PAC Opaque

 Variable length field
 Sent to AS during phase 1 tunnel establishment
 Can only be interpreted by AS
 Contains the PAC key and the peer's identity

 3) PAC Info
 Variable length field
 Contains readable information such as authority identity

(A-ID), PAC issuer, and PAC-key lifetime

73(C) Herbert Haas 2010/02/15

Concept

 Two or three EAP-FAST phases
 Phase 0: (Optional) automatic PAC provision
 Phase 1: TLS tunnel establishment
 Phase 2: Mutual authentication

 After authentication
 Master Secret Keys (MSKs) are derived
 AS can update the client with a fresh PAC key

 A client may cache multiple PACs to
communicate with different authentication
servers

74(C) Herbert Haas 2010/02/15

802.1x – EAP-FAST – Details

Supplicant Authenticator
(802.11 AP)

Authentication Server

EAP over RadiusEAPoL

Optional Phase 0: TLS via DH

After MS-CHAPv2 authentication a PAC is assigned to client (disconn.)

OR
Manual PAC creation and assignment

PAC-Key

PAC-Opaque

PAC-Info
TTL, Issuer

PAC

PAC-Key

AS_priv

Protected with
AS_priv

Phase 1: TLS Tunnel Establishment

PAC-Opaque sent to AS

AS recovers
PAC-Opaque

TLS

Phase 2: Inner Authentication

PAP, GTC, …

75(C) Herbert Haas 2010/02/15

Note

 No Server States Needed!
 The PAC-opaque is sent by the client

and contains the PAC-key which is
encrypted by ACS's private key

 Only after receiving the PAC-opaque,
the server knows the shared secret and
can establish the TLS tunnel with it

76(C) Herbert Haas 2010/02/15

Unauthenticated Phase 0 - Detailed

 PAC auto-provisioning using
TLS with DH key agreement to
establish a secure tunnel

 Additionally, MS-CHAPv2 is
used to authenticate the client
and to prevent MITM

 After the PAC has been
successful provisioned, EAP-
FAST is restarted to gain
network access
 Therefore, after a successful

PAC provisioning transaction,
an EAP failure occurs to
terminate the EAP-FAST session

 Afterwards, the newly
provisioned PAC can be used to
establish an authenticated
session

Source: Cisco Systems

77(C) Herbert Haas 2010/02/15

EAP-FAST Phases - Detailed

 Phase 1
 Client sends only the PAC

opaque to the server, not
the PAC key

 The server decrypts the
PAC opaque using its
master-key

• Now server and client
have the same PAC key

 The PAC key is used to
create a TLS tunnel for
this client’s authentication

 Phase 2
 Inside the TLS tunnel,

user authentication
credentials are passed
securely (Phase 2)

• E. g. using EAP-GTC

Source: Cisco Systems

Source: Cisco Systems

78(C) Herbert Haas 2010/02/15

Phase 1 – Details

Supplicant Authenticator
(802.11 AP)

Authentication Server

EAP over RadiusEAPoL

EAP Request/Identity

EAP Response/Identity (username or anonymous user)

EAP-FAST Start, Authority-Identity (A-ID TLV)

EAP-FAST TLS/ClientHello (client_random, PAC_Opaque, use TLS_RSA_WITH_RC4_128_SHA ciphersuite)

Note: Any ciphersuite might be supported. The RSA key exchange is not executed
but 128-bit RC4 for confidentiality and SHA-1 for authenticity

Generate Master_Secret and tunnel keys using
client_random, server_random, and PAC-key

EAP-FAST Request,
TLS/ServerHello (server_random), TLS/ChangeCipherSpec, TLS/Finished (encrpyted keys and secrets)

Generate Master_Secret and tunnel keys using
client_random, server_random, and PAC-key

EAP-FAST TLS/ChangeCipherSpec, TLS/Finished

Now both sides are ready to transmit and receive protected authentication messages
i. e. the TLS tunnel had been established

79(C) Herbert Haas 2010/02/15

Phase 2 – Details

Supplicant Authenticator
(802.11 AP)

Authentication Server

EAP over RadiusEAPoL

EAP Request/Identity

EAP Response/Identity (user-ID)

EAP Request, List of supported EAP-types (e. g. EAP-GTC, …)

Inner EAP procedures
Result: key material

Now check whether both sides came to the same result

EAP Request, Crypto_Binding TLV

EAP Response, Crypto_Binding TLV

EAP Request, Final_Result TLV

EAP Response, Final_Result TLV

Cleartext EAP Success/Failure indication

80(C) Herbert Haas 2010/02/15

Additional Facts

 Client can resume TLS session by sending its
session-ID (in a ClientHello)
 Bypass inner EAP conversation
 But server must cache client's session-ID,

master_secret, and CipherSpec
 EAP-FAST supports single sign-on (SSO) using

username and password during Windows
networking logon
 Also supports separate machine authentication

 Seamless migration from LEAP to EAP-FAST
possible
 Similar AP settings
 ACU reconfiguration via ACAT

 WPA is also supported

2010/02/15(C) Herbert Haas

WPA and WPA2

82(C) Herbert Haas 2010/02/15

Introduction

 802.1x alone does not (need to) provide key management
 Often 802.1x is simply combined with WEP
 Even 802.1x with TKIP would always start with same base key

 Basic Idea of WPA:
 Strong per-user, per-session, per-packet keying (TKIP and

MIC)
 Use 802.1x and dynamical transient key management
 Alternatively pre-shared keys (SOHO apps.) instead of 802.1x

 WPA starts with a security capability negotiation
 Therefore cipher suites must be configured on AP
 APs advertises capabilities in beacon and in probe-response

frames
• "Cipher Suite" = Auth. Method + Encryption Method

 Client can select the desired method during association
request

83(C) Herbert Haas 2010/02/15

WPA/WPA-2

 Certified EAP Methods
 EAP-TLS (originally the only one)
 EAP-TTLS/MSCHAPv2
 PEAPv0/EAP-MSCHAPv2
 PEAPv1/EAP-GTC
 EAP-SIM

 Native OS support
 Windows XP with Service Pack 2 and WPA2

patch
 No support for Win2k
 Linux: wpasupplicant (large feature set)

84(C) Herbert Haas 2010/02/15

WPA Concepts

 1) Pairwise Master Key (PMK) is negotiated between client and AS
 Based on 802.1x credentials or based on a PSK in home environments

 PMK is designed to last the entire session

 Should be exposed as little as possible (therefore PTK needed)

 2) PMK is pushed from AS to AP
 Via RADIUS-Access-Accept message

 3) AP generates Pairwise Transient Key (PTK)
 Negotiated via Four-Way Handshake to client

 PTK= HASH (PMK, AP_nonce, STA_nonce, AP_MAC, STA_MAC)

 From PTK, other working keys are generated (KCK, KEK, TK)

 4) AP also derives a Group Temporal Key (GTK)
 To decrypt multicast and broadcast traffic

 Must be the same on all clients (!)

 Need to be updated periodically (e. g. when a device leaves the network)

 AP sends new GTK to each client, encrypted with client's PTK

 Each client must acknowledges the new GTK

85(C) Herbert Haas 2010/02/15

The Basic Steps

 PMK is derived from the master key of the preceding 802.1x
negotiations

 Four WPA (main-) steps are performed after 802.1x authentication
 Each step of this procedure is protected by dedicated transient

(temporary) keys

Push PMK to AP

Use PMK to derive, bind, and verify PTK

Use Group Key Handshake to send
GTK from AP to client

2

3

4

Client
(Supplicant)

AP
(Authenticator)

AS

802.1x Authentication using any EAP method

Calculate PMK Calculate PMK1

86(C) Herbert Haas 2010/02/15

WPA – Basic Handshake (Simplified)

1. The AP sends a nonce-
value and the STA now can
construct the PTK

2. The STA sends its own
nonce-value to the AP
together with a MIC

3. The AP sends the GTK and
a sequence number
together with another MIC
 This SeqNr will be used in

the next multicast or
broadcast frame, so STA
can perform basic replay
detection

1. The STA sends a
confirmation to the AP

Client
(STA)

AP AS

AP_nonce

Derive PTK

STA_nonce, MIC

Derive PTK

Ack

GTK, MIC

Push PMK to AP

PMKPMK

87(C) Herbert Haas 2010/02/15

WPA Details – Transient Keys

 The PTK (256 bit) is the basis to derive additional
transient keys
 Data Encryption Key (128 bit)

• For unicast frames
• Aka Temporal Key (TK)

 Data Integrity Key (128 bit)
• For unicast MIC

 Key Encryption Key (KEK, 128 bit)
• To encrypt EAPoL key messages

 Key Integrity Key (KIK, 128 bit)
• To calculate the MIC for EAPoL key messages

 The GTK (256 bit) is the basis to derive
 A Group Encryption Key (GEK)
 A Group Integrity Key (GIK)

88(C) Herbert Haas 2010/02/15

(WPA – Detailed)

 All WPA procedure messages are of type "EAPoL Key Messages"
 Temporary Key (TK) consists of (256-n) bits of the PTK, depending on cipher used
 Same Group Transient Key (GTK) is assigned to all clients within VLAN

Client
(Supplicant)

AP
(Authenticator)

AS

Generate random Nonce_2
Derive PTK = EAPoL_PRF (PMK, Nonce_1, Nonce_2, MAC_1, MAC_2)
Derive KEK and KIK from PTK

Push PMK to AP

Nonce_1, MAC_1

Nonce_2, MAC_2, MIC (using KIK)

Derive PTK = EAPoL_PRF (PMK, Nonce_1, Nonce_2, MAC_1, MAC_2)
Derive KEK and KIK from PTK
Verify MIC using KEK

Install PTK, Start_Seq_Number, MIC (using KIK)

Start_Seq_Number, MIC (using KIK)

("OK, use this PTK")

("OK, I will use this PTK and I am ready to communicate properly")

Install Temporary Key (TK) Install Temporary Key (TK)

Generate random Nonce_3
Generate random GTK, derive GEL and GIK

Nonce_3, GTK + MIC (encr. using KEK and Nonce_3)
("Use this GTK")

ACK, MIC
("OK")

89(C) Herbert Haas 2010/02/15

GTK Issues

 GTK is either
 A pseudo-random number chosen by AP
 The first PTK that the AP uses

 GTK Usage
 Cannot be used with sequence numbers

because it is used for ALL clients
• Distant clients might overhear some frames

 So management and broadcast frames are
encrypted via WEP only

• Broadcast key rotation recommended

90(C) Herbert Haas 2010/02/15

WPA-2: PKC

 WPA2 mandates both TKIP and AES
capability
 TKIP is used by the network if at least

one client supports TKIP only

 PMK Proactive Key Caching (PKC)
support
 AP caches credentials 1 hour to allow

fast reconnect

91(C) Herbert Haas 2010/02/15

WPA-2: Pre-Authentication

 Pre-authentication support
 Allows a client to pre-authenticate with

the AP toward which it is moving
 But still maintains a connection to the

AP it's moving away from

 Note that pre-authentication is done
through the AP to which the client is
currently assoicated!

 Roaming times below 100 ms

92(C) Herbert Haas 2010/02/15

WPA-PSK (1)

 ONLY useful for home WLANs

 Relies on Pre-Shared Key (PSK) only

 No AAA server needed

 PMK is a 4096-times hash of:
 Passphrase (8-63 chars or 64 hex digits)
 SSID and SSID-length
 Nonces

93(C) Herbert Haas 2010/02/15

WPA-PSK (2)

 2003: Robert Moskowitz published
an effective dictionary attack against
WPA-PSK

 Passphrase should be more than 20
characters !!!

 Attack Tools: CoWPAtty, KisMAC,
WPA Cracker, …

	WLAN
	Threat Summary
	WLAN Security Overview
	WEP Problems
	Intro
	RC4 Facts
	How RC4 Works
	General Stream Cipher Issues
	Wired Equivalent Privacy (WEP)
	Basic Principle
	WEP – Design Flaw in Detail
	IV Collisions
	Integrity Vulnerability
	Bit-Flipping Attack Example
	Arbaugh Attack
	Attacks Summary (1)
	Attacks Summary (2)
	Interim Solutions: TKIP and MIC
	802.11i
	Folie 20
	MIC (as used by WPA)
	MIC Problems
	Cisco MIC (CMIC)
	TKIP (As used by WPA)
	TKIP Details
	Cisco TKIP ("CKIP")
	Security
	AES and CCMP
	Folie 29
	WPA2 aka 802.11i
	802.11i: CCMP – Overview
	Cipher Block Chaining (CBC)
	Counter Mode (CCM)
	Offset Code Book (OCB)
	OCB Algorithm
	802.11 Standard Authentication
	802.11 Standard Authentication Methods
	Shared Key Authentication
	802.1x and EAP Authentication
	802.1x Authentication – Intro
	What is EAP?
	802.1x – Protocol Layers
	802.1x – EAP Concept
	802.1x – EAP Protocol
	802.1x – EAP-TLS (1)
	802.1x – EAP-TLS (2)
	802.1x – LEAP
	LEAP / MSCHAPv2 Flaws
	Asleap
	802.1x – EAP-TTLS
	Folie 51
	802.1x – Other EAP Choices
	EAP Types Overview
	Folie 54
	802.1x using PEAP
	Version Overview
	PEAP as Pipe Model
	PEAPv2 Layers
	PEAPv2: Provisioning of Credentials
	PEAPv2
	PEAPv2 – MITM Protection
	PEAP: Man-In-The-Middle Attack
	Crypto-Binding TLVs
	DoS Attacks
	PEAPv2 – Other Features
	PEAPv2 Fragmentation
	PEAPv2 Key Derivation
	Crypto-Binding TLV
	EAP-FAST
	Quick Facts
	PACs
	PAC Components (Detailed)
	Concept
	802.1x – EAP-FAST – Details
	Note
	Unauthenticated Phase 0 - Detailed
	EAP-FAST Phases - Detailed
	Phase 1 – Details
	Phase 2 – Details
	Additional Facts
	WPA and WPA2
	Introduction
	WPA/WPA-2
	WPA Concepts
	The Basic Steps
	WPA – Basic Handshake (Simplified)
	WPA Details – Transient Keys
	(WPA – Detailed)
	GTK Issues
	WPA-2: PKC
	WPA-2: Pre-Authentication
	WPA-PSK (1)
	WPA-PSK (2)

