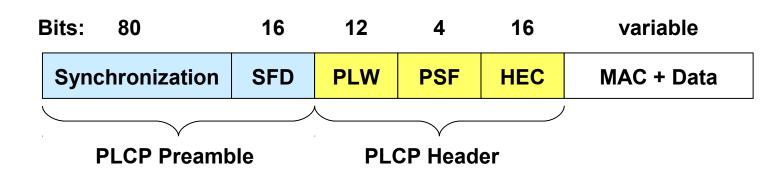

WLAN

Protocol

(C) Herbert Haas 2010/02/15

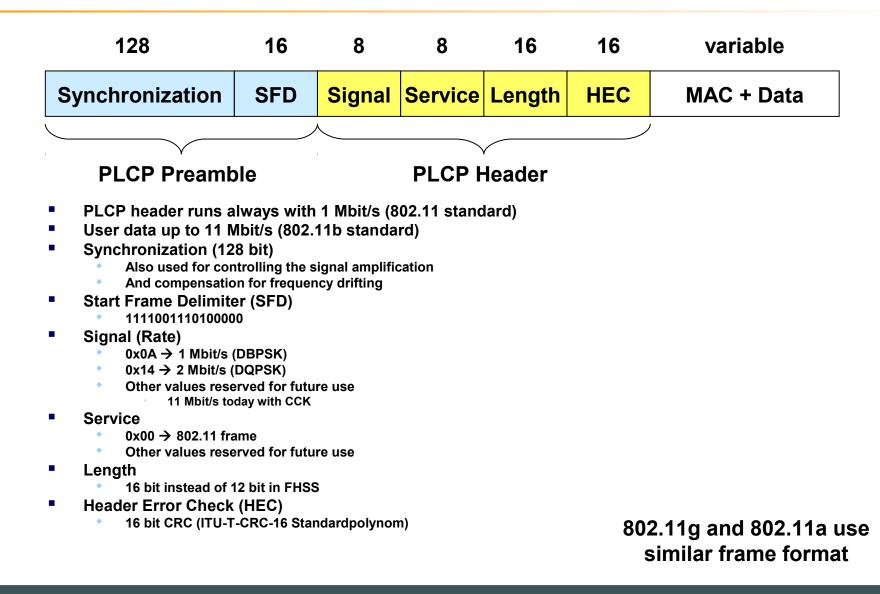
Protocol Layers

- MAC layer
 - Medium access control
 - Fragmentation
- PHY layer = PLCP + PMD
 - Established signal for controlling
 - Clear Channel Assessment (CCA)
 - Service access point
- Physical Layer Convergence Protocol (PLCP)
 - Synchronization and SFD
 - Header
- Physical Medium Dependent (PMD)
 - Modulation and coding


Clear Channel Assessment

- CCA is an algorithm to determine if the channel is clear
- But what is "clear" ?
 - Either measuring only WLAN carrier signal strengths
 - Or measuring the total power of both noise and carriers
- Minimum RX signal power levels should be configured at receivers (APs & clients)
 - CSMA would not allow to send any frames if the environmental noise level is too high
- Part of PHY, used for MAC

FHSS Frame Format



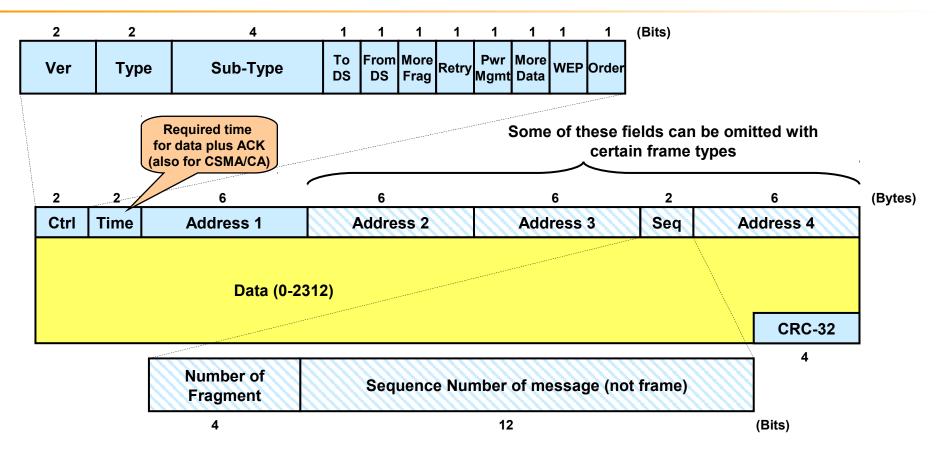
- PLCP header runs always with 1 Mbit/s
- User data up to 2 Mbit/s
- Synchronization with 80 bit string "01010101..."
- All MAC data is scrambled by a s_i=z¹+z⁴+1 polynomial to block any DC component
- Start Frame Delimiter (SFD)
 - Start of the PLCP header
 - 0000110010111101 bit string
- PLCP Length Word (PLW)
 - Length of user data inclusive 32 bit CRC of the user data (value between 0 and 4095)
 - Protects user data
- PLCP Signaling Field (PSF)
 - Describe the data rate of the user data
- Header Error Check (HEC)
 - 16 bit CRC
 - Protect Header

DSSS Frame Format

MAC Principles

Responsible for several tasks

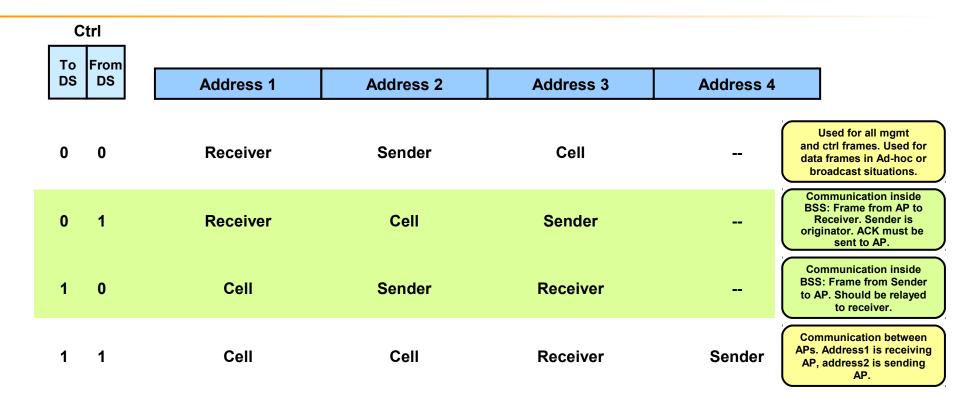
- Medium access
- Roaming
- Authentication
- Data services
- Energy saving
- Asynchronous data service
 - Ad-hoc and infrastructure networks
- Realtime service
 - Only infrastructure networks



MAC Header

- Frame Control (FC) includes
 - Protocol version, frame type
 - Encryption information
 - 2 Distribution System Bits (DS)
- Duration ID (D-ID) for virtual reservations
 - Includes the RTS/CTS values
- Addresses are interpreted according DS bits
- Sequence Control (SC) to avoid duplicates

MAC Header – More Specific



- Header length: 10-30 Bytes
- Total maximum length: 2346 Bytes (without CRC)
- Time field also used for power saving

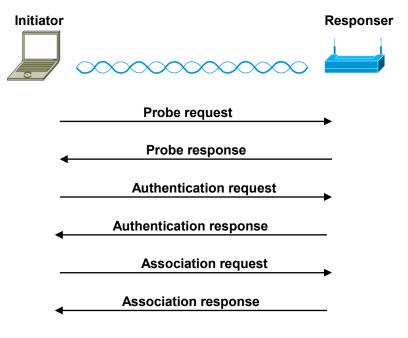
Header Details – Addresses

Infrastructure network: Cell address = AP's MAC address

- If an AP is used, ANY traffic runs over the AP
 - Because stations do not know whether receiver is associated to this AP or another AP
- Cell address = AP's MAC address
 - Always specified in header
 - Not needed in Ad-hoc network

Service Set Management Frames

Beacon frame


- Sent periodically by AP to announce its presence and relay information, such as timestamp, SSID, and other parameters
- Radio NICs continually scan all 802.11 radio channels and listen to beacons as the basis for choosing which access point is best to associate with

Probe request frame

- Once a client becomes active, it searches for APs in range using probe request frames
- Sent on every channel in an attempt to find all APs in range that match the SSID and client-requested data rates

Probe response frame

- Typically sent by APs
- Contains synchronization and AP load information (also other capabilities)
- Can be sent by any station (ad hoc)

Authentication and Association

- Authentication frame
 - AP either accepts or rejects the identity of a radio NIC
- Deauthentication frame
 - Send by any station that wishes to terminate the secure communication
- Association request frame
 - Used by client to specify: cell, supported data rates, and whether CFP is desired (then client is entered in a polling list)
- Association response frame
 - Send by AP, contains an acceptance or rejection notice to the radio NIC requesting association
- Reassociation request frame
 - To support reassociation to a new AP
 - The new AP then coordinates the forwarding of data frames that may still be in the buffer of the previous AP waiting for transmission to the radio NIC
- Reassociation response frame
 - Send by AP, contains an acceptance or rejection notice to the radio NIC requesting reassociation
 - Includes information regarding the association, such as association ID and supported data rates
- Disassociation frame
 - Sent by any station to terminate the association
 - E. g. a radio NIC that is shut down gracefully can send a disassociation frame to alert the AP that the NIC is powering off

Beacon Details

- Clients verify their current cell by examine the beacon
- Beacon is typically sent 10 times per second
- Information carried by beacon:
 - Timestamp (8 Bytes)
 - Beacon Interval (2 Bytes, time between two beacons)
 - Cell address (6 Bytes)
 - All supported data rates (3-8 Bytes)
 - Optional: FH parameter (7 Bytes, hopping sequenz, dwell time)
 - Optional: DS parameter (3 Bytes, channel number)
 - ATIM (4 Bytes, power saving in ad-hoc nets) or TIM (infrastructure nets)
 - Optional but very common: vendor-specific INFORMATION ELEMENTS (IEs)
- Problem: Beacons reveals features and existence of cell

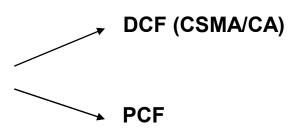
SSID

32 bytes, case sensitive

- Spaces can be used, but be careful with *trailing* spaces
- Multiple SSIDs can be active at the same time; assign the following to each SSID:
 - VLAN number
 - Client authentication method
 - Maximum number of client associations using the SSID
 - Proxy mobile IP
 - RADIUS accounting for traffic using the SSID
 - Guest mode
 - Repeater mode, including authentication username and password
- Only "Enterprise" APs support multiple SSIDs
 - Cisco: 16
 - One broadcast-SSID, others kept secret
 - Repeater-mode SSID

AP# configure terminal
AP(config)# configure interface dot11radio 0
AP(config-if)# ssid batman
AP(config-ssid) # accounting accounting-method-list
AP(config-ssid) # max-associations 15
AP(config-ssid)# vlan 3762
AP(config-ssid) # end

The IEEE 802.11 Protocol


CSMA/CA

(C) Herbert Haas 2010/02/15

Access Methods - CSMA/CA

"Distributed Foundation Wireless Medium Access Control" (DFWMAC)

Distributed Coordination Function (DCF)

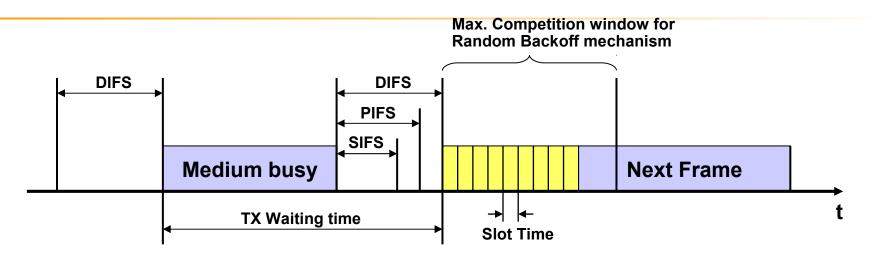
- Asynchronous data service
- Optionally with RTS/CTS


Point Coordination Function (PCF)

- Intended for realtime service (e. g. VoIP)
- Polling method

Optional

Superframe



- Beacon is sent by "Point Coordinator" (PC=AP)
- Minimum CP period guaranteed
 - **To avoid starvation of non-realtime data**
 - At least one frame can be sent
- Note: Poll-Frames and ACKs omitted in this picture!

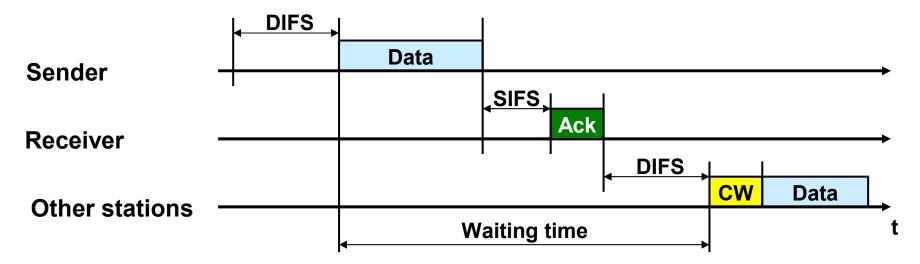
CSMA Access Method

Basic Ideas

- No standing waves in free space => no Ethernet-like collision detection possible
- Collision is detected by missing ACKs!
- Truncated Random Exponential Backoff like in Ethernet and 802.3
- Simple fragmentation mechanism
 - Ethernet compatibility
 - Performance (interferences)
- CCA to determine medium state
- CSMA: "Listen before talk"
- A safety Inter-frame Space (DIFS | PIFS | SIFS, plus Backoff) must be awaited before TX

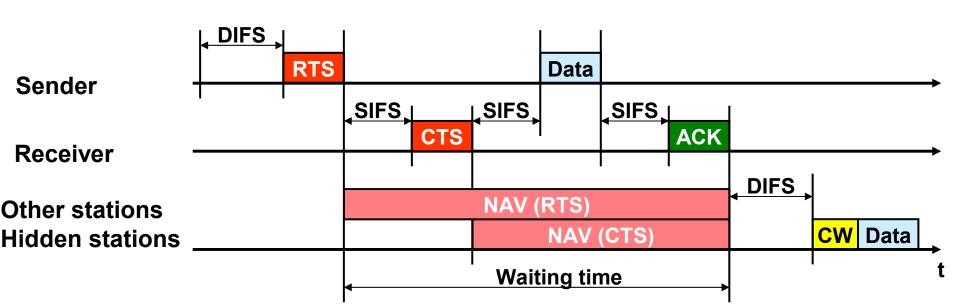
Details

- CW is multiple of Ethernet slot time
 - If medium is busy: Backoff
 - Slot time: 47 μs (9 μs)
- DCF Inter-Frame Space (DIFS)
 - Longest waiting time, 128 μs (34 μs)
 - Used for asynchronous data services
- PCF Inter-Frame Space (PIFS)
 - Used for APs to stop user communication, 78 μs (25 μs)
- Short Inter-Frame Space (SIFS)
 - Shortest waiting time, highest priority, 28 μs (16 μs)
 - Used for ACKs


Backoff Policies

- Random backoff reduces collisions
- Competition window (CW)
 - Start value of 7 slot times
 - After every collision → CW doubled
 - To a max of 255
- Post-backoff
 - After successful transmission
 - To avoid "channel-capture"
- Exception: Long silent durations
 - Station may send immediately after DIFS

CSMA/CA in Action



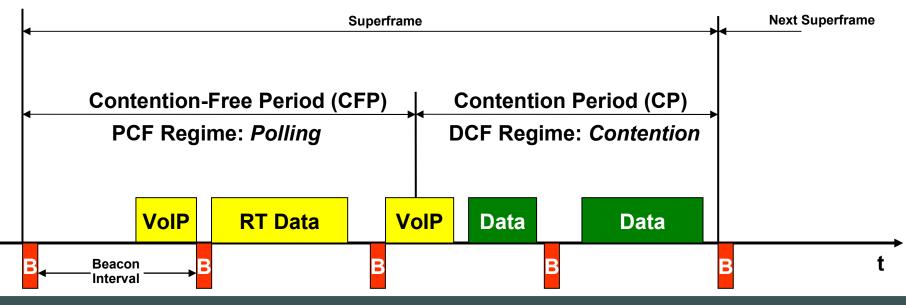
- Point-to-point communication
- Acknowledgment is send after SIFS
 - Before all other communications
 - Guaranteed collision free
- Re-transmitted frames have no higher priority over other frames

CSMA/CA with **RTS/CTS**

- Avoid the problem of invisible devices or "Hidden Stations"
 - Station receives data from two other devices
 - The two other devices didn't see each other
 - Each device thinks medium is free → Collision
- 2 special packets → RTS and CTS
 - Every station must listen to this packets

Access Method

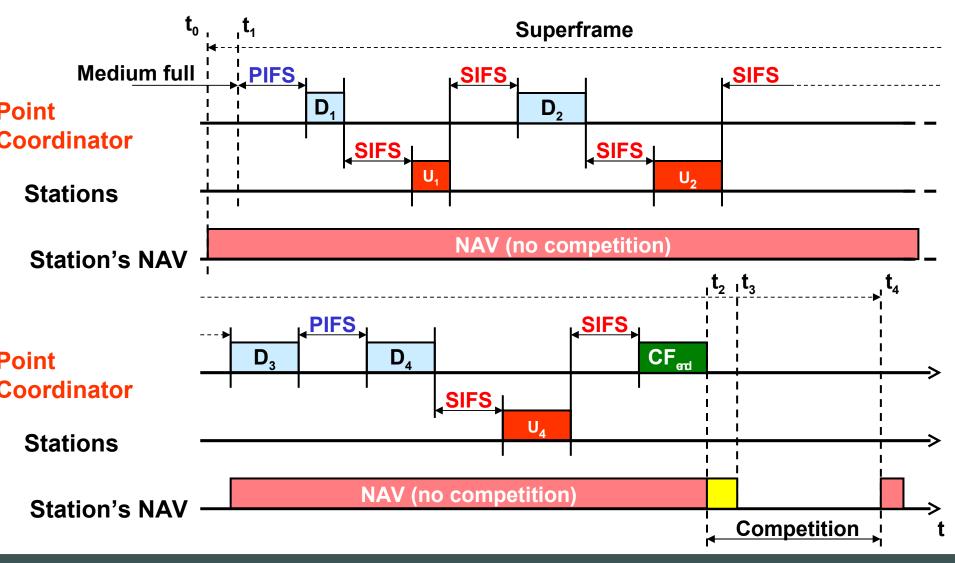
RTS/CTS => "Virtual Reservation"



- Collision can only occur at the begin or after a transmission
- Much more overhead
 - RTS/CTS packets increase the total access-delay
- Usage guidelines
 - Only when longer frames are sent on average (> 500 Bytes)
 - When hidden stations are expected

PCF – Polling Principle

- Guaranteed transmission parameters
 - Minimum data rate
 - Maximum access-delay
- AP necessary (!)
 - For medium access control
 - Polling and time-keeping
 - Acts as "point coordinator"
- Point Coordinator (PC) splits access time into a Superframe
 - Contention-free period (PCF method)
 - Contention period (DCF method)
- Target Beacon Transmission Time (TBTT) is announced in each beacon


CFP Policy

- Beacon starts CFP by announcing maximum duration of CFP
 - Can be multiple of Beacon intervals
 - Intermediate Beacons indicate the remaining CFP duration
- Between two successive CFPs there must be space to send at least on frame in the CP mode!
- The AP may finish the CFP earlier!
 - Sending the CF-End Control Frame
- CFP is optional
 - CSMA/CA-only clients must not interfere
 - CFP also relies on CSMA/CA

PCF Medium Access

PCF Algorithm

- At t₀ starts the competition free zone
- Medium gets free at t₁
- After PIFS the PC can access the medium
 - No other station can access because PIFS is smaller than DIFS
- Now PC polls first station (D1)
- Stations may answer with user data after SIFS
- Stations must Ack within PIFS
 - PIFS is shortest idle period within CFP
- All frames are sent through AP !!!
- AP maintains list of all stations that should be polled
 - Announced by association process
 - PC continuously polls listed stations
- PC can send data together with beacon (piggy-back)
- By sending a CF_{and} frame the PC starts the CP

802.11g/b Compatibility

"b" expects CCK preamble and cannot detect OFDM signals

Therefore collisions with legacy "b"

- Compatibility mode
 - g-devices only use RTS/CTS
 - Always 1 Mbit/s and BPSK
 - Newer "g" sends a CCK-based CTS before each OFDM-based data frame
 - "g" suffers from reduced throughput

8-14 Mbit/s instead of 22 Mbit/s

- "g" reaches longer distances (=>OFDM)
 - Cell design must consider b-only clients
 - Only when same power level used !

Realtime Problems with 802.11

- Available BW is shared among clients
- No traffic priorities
- Once a station gains access it may keep the medium for as long at it choses
 - Low bitrate stations (e. g. 1 Mbit/s) will significantly delay all other stations
- No service guarantees
- PCF does not support traffic classes
 - However, the PCF is typically not implemented in APs and client adapters

Specific PCF Problems

Irregular Beacon delays

- Stations may finish each transmission even if TBTT already expired
- Up to 2304 bytes (2312 bytes if encrypted, new: even 2342 bytes allowed)
- Station may even send all fragments of a L2fragmented packet
- Hidden station and interferences
- No traffic classes means: All applications have equal TX opportunity

802.11e – EDCF and HCF

- New coordinate functions relying on Traffic Classes (TCs)
- Enhanced DCF (EDCF)
 - Better CHANCES for high-priority classes
 - But NO GUARANTEES ("best effort QoS")
 - Performed within CP
- Hybrid Coordination Function (HCF)
 - Is an enhanced PCF
 - Allows precise QoS configurations on the HC:
 - BW control
 - Guaranteed throughput
 - Fairness between stations
 - Classes of traffic
 - Jitter limits
 - Performed within CFP

802.11e – HCF Details

- Stations announce their TC queue lengths
- The Hybrid Coordinator (HC=AP) does not need to follow round robin but any coordination scheme
- Stations are given a Transmit Opportunity (TXOP)
 - They may send multiple packets in a row, for a given time period
- During the CP, the HC can resume control of the access to the medium by sending CF-Poll packets to stations
- Also allows to send multiple data frames followed by single ACK

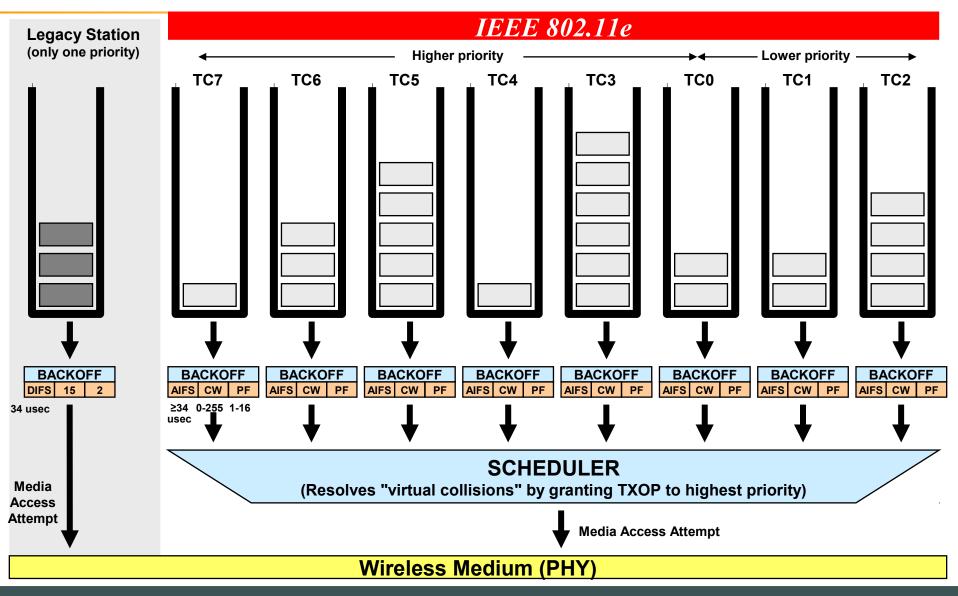
802.11e - Facts

Concept Summary

- CP allows to prioritize certain TCs instead stations
 - More important traffic classes will be preferred statistically
- CFP allows bandwidth reservation by stations and nonround-robin polling
 - Not yet implemented (Fall 2004)
- Hybrid Controller (HC) required
 - Controls all other "enhanced stations"
 - Typically implemented within AP (not necessarily)
 - "QBSS" instead of BSS
- Main driver for QoS is "Voice over Wireless IP" (VoWIP)

802.11e – Algorithm (1)

- All traffic is separated into TCs
 - Enhanced stations must maintain a separate back-off timer for each TC
- Up to 8 priority queues for each TC
 - "Virtual Stations" inside enhanced stations
- Each TC has different priority value
 - To avoid collisions if the counters of two TCs expire
- TCs compete within Arbitration Interframe Space (AIFS)
 - Different AIFS for each TC possible
 - At least one DIFS long
- Persistence factor (PF) solves collision
 - Used to calculate new back-off values
 - PF=1..16
- Legacy stations must have a CWmin=15 and PF=2


802.11e – Algorithm (2)

- Transmission Opportunity (TXOP)
 - Time slot during a station may send
- EDCF-TXOP
 - Issued by EDCF algorithm
 - Limited by system-wide TXOP-limit announced in beacon frames
- Polled-TXOP
 - Issued by HCF
 - Limited by parameter announced in poll-frame
- HCF can redefine TXOP at each time
 - And finish the CP earlier
- HC also supports controlled contention
 - Polling frames announce sending desire of other stations
 - Legacy stations must wait until end of controlled contention period

802.11e – Queuing Concept

- WMM implements a subset of 802.11e to satisfy urgent QoS needs
 - Certification start: 09/2004
- Only supports prioritized media access:
 - 4 access categories per device: voice, video, best effort, and background
 - Does not support guaranteed throughput

Legacy QoS

- Most legacy (no 802.11e) APs only support downstream QoS
 - On the AP, create QoS policies and apply them to VLANs
 - If you do not use VLANs on your network, you can apply your QoS policies to the access point's Ethernet and radio ports
- Note: APs do not classify packets!
 - Only already classified packets are prioritized (DSCP, client type, 802.1p)
 - EDCF-like queuing is performed on the Radio port; only FIFO on Ethernet egress port
 - Only 802.1Q tagging supported no ISL !!!

802.1x and WAN Congestion

- Congestion on WAN links: prioritize 802.1x packets
- Classify and mark RADIUS packets using the Cisco Modular QoS Command Line (MQC)
 - Method to determine the appropriate queue size for the 802.1x/RADIUS packets
 - And to determine how to enable queuing on router interfaces

```
ip access-list extended LEAPACL
                                                             !!! Create ACL for interesting traffic
permit udp any host 172.24.100.156 eg 1645
class-map match-any LEAPCLASS
                                                             !!! Classify
match access-group name LEAPACL
policy-map MARKLEAP
                                                             !!! This is a policy group
  class LEAPCLASS
                                                             !!! Corresponds to AF31 (Class=3, 1=low drop)
  set ip dscp 26
interface FastEthernet0/0.100
                                                             !!! Attach marker on interface
encapsulation dot10 100
 service-policy input MARKLEAP
                                                             !!! Mark inbound (input) packets only
policy-map LEAPQUEUE
  class LEAPCLASS
  bandwidth 8
                                                             !!! 8kb/s if needed (dynamical management)
interface Serial3/0:0
                                                             !!! Attach policy-map on WAN interface
 ip address 172.24.100.66 255.255.255.252
load-interval 30
 service-policy output LEAPQUEUE
```