IP Multicast

Compendium

(C) Herbert Haas 2005/03/11

Introduction

New IP Applications

- Corporate Broadcasts
- Distance Learning/Training
- Video Conferencing
- Whiteboard/Collaboration
- Multicast File Transfer
- Multicast Data and File Replication
- Real-Time Data Delivery for Financial Applications
- Video-On-Demand
- Live TV and Radio Broadcast to the Desktop
- Multicast Games

Multicast Models

One-to-many

- One host is multicast source, other hosts are receivers
- Simplest and most important type
- Might only be jitter sensitive (voice/video)

Many-to-many

- Hosts are both senders and receivers
- All hosts are in same multicast group
- Might be delay sensitive (bidirectional communication forbids more than 0.5 sec delays)

Flexible variants

Many-to-one (implosion problem!)

Unicast vs. Multicast

(Unicast addresses might be unknown)

Developed in the late 1980s

First used 1992 during IETF Conference

Building block for QoS

• RSVP and RTP

UDP based

- No Congestion Avoidance!
- Packet drops occur!
- Classification based on distribution trees
 - Shortest Path Trees
 - Shared Trees

How IP Multicast Works...

- Sources don't care at all!
 - Simply send multicast packets to the first-hop router
- First-hop router
 - Forwards multicast packets into the multicast-tree
- Intermediate routers
 - Determines upstream interface (to first-hop router) and downstream interfaces (RPF check)
- Last-hop routers
 - Are leafs of this tree
 - Receive users registration via IGMP
 - Communicate group membership to upstream routers

The Mbone

World-wide multicast backbone

- Based on tunnels
- Playground for experiments
- Rich Mbone toolset
 - Session Directory (SDR)
 - Visual Audio Tool (VAT)
 - Robust Audio Tool (RAT)
 - Video Conferencing Tool (VIC)
 - Whiteboarding Tool (WB)

Realtime Protocols

- Are typically transported by RTP/RTCP
- Feedback mechanism very important
 - For maintaining multicast distribution tree (MDT)
 - For applications to switch codecs when bandwidth becomes scarce

Realtime Transmission

Real Time Transport Protocol (RTP)

- Connectionless environment
- Payload type identification and sequence numbering
- Time-stamping and delivery monitoring

RTP Control Protocol (RTCP)

- Provides feedback on current network conditions
- Helps with lip synchronization and QoS management, etc

20 Byte	8 Byte	12 Byte	
IP	UDP	RTP	Payload (20-160 Bytes)

RTP Facts

RTP does NOT provide:

- Reliable packet delivery
- QoS
- Prevent out-of-order delivery
- RTP uses mixers
 - Special relays to combine separate video streams into one video stream
 - Also care for synchronization
 - Optionally re-encode an original stream to meet link-specific bandwidth requirements

RTCP Facts

Sent by RTP receivers

- RTCP provides feedback for RTP senders and other receivers!
- Sent to same multicast group!
- RTP sender (=multicast source) uses RTCP information to
 - Log group activity
 - Measure QoS conditions
- Other RTP receivers learn total RTCP utilization
 - Try to keep total utilization below 5% of network bandwidth

RTP Compression

Simple substitution principle

- Only point-to-point !
- Not CPU intensive !
- Might be memory greedy

20 Byte	8 Byte	12 Byte						
IP	UDP	RTP	Payload (20-160 Bytes)					
4 Byte								
RTP Header Compression and UDP Checksum			Payload (20-160 Bytes)					
1 Byte								
RTP Header C and No UDP	ompress Checksu	ion m H	Payload (20-160 Bytes)					

Realtime Streaming Protocol

- RTSP = "Internet VCR remote control protocol"
- Efficient delivery of streamed multimedia over IP networks
 - Client-Server based
 - Large-scale audio/video on demand
 - VCR-style control functionality
- Also uses RTP for delivery
- RFC 2326

Multicast Addresses

Reserved Class D Addresses

IANA reserved range 224.0.0.0 to 224.0.0.255 to be *local scope:*

- 224.0.0.1 = all multicast systems on subnet
- 224.0.0.2 = all routers on subnet
- 224.0.0.4 = all DVMRP routers
- 224.0.0.5 = all OSPF routers
- 224.0.0.6 = all OSPF designated routers
- 224.0.0.9 = all RIPv2 routers
- 224.0.0.10 = all (E)IGRP routers
- 224.0.0.13 = all PIMv2 routers

Other Class D Addresses

- Global scope: 224.0.1.0 to 238.255.255.255
 - Internet-wide dynamically allocated multicast applications
 - Typically Mbone applications
- Administratively scoped: 239.0.0.0 to 239.255.255.255
 - Locally administrated multicast addresses (like RFC 1918 addresses)
 - Organization-local scope: 239.192.0.0/14
 - Site-local scope: 239.255.0.0/16

Static Group Address Assignment for Interdomain Multicast

Temporary method to allow Internet content providers to assign static multicast addresses

For inter-domain purposes

- Group range 233.x.x.0 to 233.x.x.255
 - x.x contains AS number
 - Remaining low-order octet used for group assignment within AS

- For globally known sources and source-specific distribution trees
 - Across domains
- Group range: 232.0.0/8
 - 232.0.0.0 to 232.255.255.255

Dynamic Multicast Addressing

Method of SDR (Mbone)

- Sessions announced over well-known multicast groups (e.g. 224.2.127.254)
- Address collisions detected and resolved at session creation time via lookup into an SDR cache
- Not scalable
- Multicast Address Set-Claim (MASC)
 - Hierarchical concept
 - Extremely complex garbage-collection problem
 - Under development

IGMP

Internet Group Membership Protocol

- Used (mainly) by hosts
 - To tell designated routers about desired group membership
 - Supported by nearly all operating systems
- IGMP Version 1
 - "I want to receive (*, G)"
 - Silly: Leaving group only by being silent...
 - Specified in RFC 1112 (old)
- IGMP Version 2
 - Also: "I do not want to receive this any longer"
 - Specified in RFC 2236 (current)
- IGMP Version 3
 - "I want to receive (S, G)"
 - DR can directly contact source
 - Still under development

- DR send every 60-120s Host Membership queries to 224.0.0.1
 - Telling all active groups to local receivers
- Interested hosts send IGMP "report"
 - With destination address = group address !
 - Countdown-based, TTL=1

Other Important Differences

IGMPv1

- Does not elect designated query router
 - Task for multicast routing protocol (different mechanisms implemented)
 - Often results in multiple queriers on a single multiaccess network
- Makes general queries only
 - Contain listing of all active groups
- IGMPv2 (backwards compatible with IGMPv1)
 - Router with lowest IP address becomes IGMP querier on this LAN segment
 - General queries specify "Max Response Time"
 - Maximum time within a host must respond
 - Allows for group-specific query
 - To determine membership of a single group

IGMP Protocol Details

IP Protocol Number = 2

IGMPv2

Туре	Max Response Time	Checksum					
Group Address							

- Hosts could even send a list of sources
 - Either (S, G) or [(S1, S2, ..., Sn), G]
- Advantages:
 - Leaf routers can build a source distribution tree without RPs
 - LAN switches, which would do IGMP snooping

Layer 2 Multicast

L2/L3 Address Mapping

- Switches should also perform L2 multicast for efficient multicast delivery
 - Address mapping required
- Strange solution standardized:
 - 23 low-order bits of multicast IP address is mapped into 23 low-order MAC address bits
 - MAC prefix is always "01-00-5e"
 - 5 bits of IP address are lost !!!

Address Mapping to Ethernet

32:1 Overlapping!

- Normal switches flood multicast frames through every port
 - No entries in CAM table (how to learn?)
 - Waste of LAN capacity
- Some switches allow to configure dedicated multicast ports
 - Not satisfying because users want to join and leave dynamically over any port

Multicast Switching Solutions

Cisco Group Management Protocol (CGMP)

- Simple but proprietary
- For routers and switches
- IGMP snooping
 - Complex but standardized
 - Also proprietary implementations available
 - For switches only
- GARP Multicast Registration Protocol (GMRP)
 - Standardized but not widely available
 - For switches and hosts
- Router-port Group Management Protocol (RGMP)
 - Simple but Cisco-proprietary
 - For routers and switches

CGMP

- Sent by routers to switches
 - Destination address 0100.0cdd.dddd
- Message contains
 - Type field (join or leave)
 - MAC address of IGMP client (host)
 - Multicast MAC address of group
- Now switch can create multicast table
- Low CPU overhead

0	4	8	16	31		
Version	Туре	Reserved		Count		
GDA						
GDA			USA			
USA						

CGMP – Notes (HIDDEN)

- Supported by wide range of routers and switches
- Conflicts with IGMP snooping
- How to learn about all receivers in spite of the report suppression mechanism?
 - Good question...
IGMP Snooping

Switches must decode IGMP

- Which traffic should be forwarded to which ports?
- Read IGMP membership reports and leave messages
- Either by NMP (slow) or by special ASICs
- The CAM table must allow multiple port entries per MAC address!
 - Also the CPU port (e.g. 0) must be added!
 - Upon high mc-traffic load the CPU gets overloaded!
 - Special ASICs might differentiate IGMP from data traffic to improve performance

GARP Multicast Registration Protocol

- IEEE 802.1p GARP (Generic Attribute Registration Protocol) extended for IP multicast
 - Runs on hosts and switches
- Pro-active processing:
 - Hosts must also join to switch using GMRP
 - Switch configures CAM table and notifies other switches
- Incoming mc-traffic can be efficiently switched

Switch/Router Problems

- Any switch connected to multiple routers must forward all multicast traffic to all routers!
 - Since routers don't send IGMP membership reports
 - Routers might get lots of unneeded packets!
- Using RGMP a router can tell a switch all multicast groups the router manages
 - Router-only switched topologies only!

RGMP Details

- Routers periodically send hello messages to the switch
 - Switch learns about existence of routers
- Routers send RGMP (*, G) joins for groups they belong to
- Well-known address 224.0.0.25
- Restrictions:
 - Not all routers need to support RGMP
 - No directly connected sources allowed

Session Information

Session Information

- Potential receivers must be informed about multicast sessions
 - Sessions are available before receiver launches application
 - Might be announced via well-known multicast group address
 - Or via publicly available directory services
 - Or via web-page or even E-Mail

SDR (1)

- Mbone session description protocol and transport mechanism
 - Used by sources for assigning new multicast addresses
 - Checks sdr cache to avoid conflicts
 - Creates a session and sends its description via sdr announcements (224.2.127.254)
- Anybody can announce a session
 - Source is part of the session description
- Announcement frequency
 - Ratio number of session / available BW = const
 - Typically 5-10 minutes
 - Late join latency problem avoided by caching

- RFC 2327 only specifies variables but no transport mechanism
 - Session Announcement Protocol (SAP, RFC 2974)
 - Session Initiation Protocol (SIP, RFC 2543)
 - Real Time Streaming Protocol (RTSP, RFC 2326)
 - E-mail (MIME/SDR) and also web pages

Security

Receiver identification

- Generally not needed except for security and feedback mechanisms (QoS)
- Provided by RTCP
- Applications might use unicast return messages
- Multicast flows from the sender and from receivers may be encrypted for security reasons
 - If receivers are not known to the sender, the encryption may be done only one way

Multicast Routing Basics

Multicast Routing Basics

- Opposite function than traditional unicast routing:
 - Unicast routing calculates the path to the destination of the packet
 - Multicast routing calculates the path to the origin of the packet
- Basic algorithm: Reverse Path Forwarding (RPF)
 - Prevents forwarding loops
 - Ensures shortest path from source to receivers

- Multicast routing: Which is best path to the source?
- Prevent multicast storms: Tree!
- Routers do
 - "Reverse Path Forwarding" (RPF)
 - Forwards a multicast packet only if received on the upstream interface to the source
 - Check source IP address in the packet against routing table to determine upstream interface

RPF Check

- Router forwards multicast packet only if it was received on the upstream interface to the source
 - Then this packet is already on the distribution tree
- Utilizes unicast routing table to determine the nearest interface to the source
 - RPF check fails: packet is silently discarded
 - RPF check succeeds: packet is forwarded according OIL

- RPF Check prevents duplicate forwarding
 20.0.0.1
- Look one step ahead
 - Determine if outgoing link is on upstream path for the next router
 - Avoids any duplicates

Multicast Scoping using TTL

- Packet's TTL is decremented by 1 when packet arrives at incoming interface
- Then the packet is forwarded according OIL which also contains TTL thresholds per interface
 - May be configured to limit the forwarding of multicast packets with TTL>threshold
 - Default threshold = 0 (no threshold)

- Scoping via TTL thresholds relies on the TTL configurations
 - Might be unknown or unpredictable
- Administrative boundaries can be created using address scoping
 - Traffic which does not match the ACL cannot pass this interface
 - In both directions!

Administrative Boundaries

Shortest Path Tree (1)

Also called "Source Distribution Tree" or "Source (-based) Tree"

(S, G) = (20.0.0.2, 224.1.1.1)

Shortest Path Tree (2)

Also called "Source Distribution Tree" or "Source (-based) Tree"

(S, G) = (30.0.03, 224.2.2.2)

Shared Tree

(*, G) = (*, 224.1.1.1) and (*, 224.2.2.2)

Multicast Routing Protocols

Multicast Protocol Types

Dense Mode: Push method

- Initial traffic is flooded through whole network
- Branches without receivers are pruned (for a limited time period only)
- Sparse Mode: Pull method
 - Explicit join messages
 - Last-hop routers pull the traffic from the RP or directly from the source

Multicast Protocols Overview

- DVMRP
- MOSPF
- PIM-DM
- PIM-SM
- CBT

Distance Vector Multicast Routing Protocol Multicast OSPF Protocol Independent Multicast – Dense Mode Protocol Independent Multicast – Sparse Mode Core Based Trees

...and others...

What is what?

- Dense mode protocol (Prune and Graft)
- Distance Vector announcements of networks
 - Similar to RIP but classless
 - Infinity = 32 hops
- Creates Truncated Broadcast Trees (TBTs)
 - Each source network in the DVMRP cloud produces its own TBT
 - Source Tree principle

DVMRP – Flood

DVMRP – Source Tree

DVMRP – Prune

DVMRP – TBT

DVMRP Facts

Significant scaling problems

- Slow Convergence (RIP-like)
- Significant amount of multicast routing state information stored in routers
- No support for shared trees
- Maximum number of hops < 32
- Used in the MBONE
 - Today worldwide available and accessible
 - Virtual network through IP tunnels

MOSPF

- Useful only in OSPF domains
- Include multicast information in OSPF link states
 - Group Membership LSAs flooded throughout OSPF routing domain
 - Each router knows complete network topology!
 - MOSPF Area Border Routers (MABR) would improve performance
- Significant scaling problems
 - Dijkstra algorithm run for EVERY multicast (SNet, G) pair!
 - Only a few (S,G) should be active
 - No shared tree support
- Not used

PIM-DM

Protocol Independent

- Utilizes any underlying unicast routing protocol
- Similar to DVMRP but
 - No TBT because no dedicated multicast protocol in use
 - Instead: RPF, flood and prune is performed

For small networks only

- Every router maintains (S, G) states
- Initial flooding causes duplicate packets on some links

Easy to configure

- Two command lines
- Useful for small trial networks

PIM-DM: Initial Flooding

PIM-DM: Pruning

PIM-DM: Assert Mechanism

- Each router receives the same (S, G) packet through an interface listed in the oilist
 - Only one router should continue sending
- Both routers send "PIM assert" messages
 - To compare administrative distance and metric to source
- If assert values are equal, the highest IP address wins
Core Based Trees (CBT)

Let's go directly to PIM-SM...

PIM-SM

- Protocol Independent
 - Utilizes any underlying unicast routing protocol
- Supports both source and shared trees
- Uses a Rendezvous Point (RP)
 - Sources are registered at RP by their first-hop router
 - Groups are joined by their local designated router (DR) to the shared tree, which is rooted at the RP

Best solution today

 Optimal solution regardless of size and membership density

Variants

- Bidirectional mode (PIM-bidir)
- Source Specific Multicast (SSM)

PIM-SM / User becomes active

PIM-SM / Create Shared Tree

PIM-SM / Register Source

PIM-SM / Create Source Tree

PIM-SM / Create Source Tree

PIM-SM / Switchover

PIM-SM / Pruning

PIM-SM Summary

Now we learned:

- PIM-SM can also create SPT (S, G) trees
- But in a much more economical way than PIM-DM (fewer forwarding states)

PIM-SM is:

- Efficient, even for large scale multicast domains
- Independent of underlying unicast routing protocols
- Basis for inter-domain multicast routing used with MBGP and MSDP

Addendum: Bidir-PIM

Less routers states

- Only one (*, G) for multiple sources
- No (S, G)
- Same tree for traffic from sources toward RP and from RP to receivers
- Trees may scale to an arbitrary number of sources
- Now bidirectional groups
 - Coexist with traditional unidirectional groups
 - All routers must recognize them (via PIMv2 flags)
 - Dedicated bidir RP required
- Designated Forwarder (DF) required
 - No register packets anymore
 - Knows best unicast route to RP
 - DF needed on any link between participant and RP

Addendum: PIM-SS

Source-Specific Multicast (SSM)

- Much simpler when sources are well known
- Immediate shortcut receiver to source
 - No need to create shared tree
 - DR sends (S, G) join directly to source
 - No MSDP needed for finding sources
- IGMPv3 needed!
 - Or IGMPv3 lite
 - Or URL Rendezvous Directory (URD)

SSM – Notes

- Take care that no shared tree uses the same group address
 - SSM protocols cannot avoid address collisions
 - Register/Join packets to 232/8 should be filtered

Inter-domain Multicast Routing

Nep@dante.org.uk Operations@dante.org.uk 07/12/2001

BGP Mcast Extensions

- Border Gateway Multicast Protocol (BGMP)
 - Supports global, scalable inter-domain multicast
 - Only disadvantage: Far from completion!
- MBGP/MSDP as intermediate solution
 - MBGP communicates multicast RPF information between AS's
 - MSDP distributes active source information between PIM-SM domains

- ISPs often want to use a separate multicast topology
 - But PIM relies on underlying unicast routing protocol
 - Reverse path might be different
- MBGP creates multicast database
 - Filled with multicast NLRIs=(S, G)
- PIM-SM supposes one (closed) administrative multicast domain
 - MSDP sessions between RPs to interconnect multiple domains
 - Similar to eBGP (TCP)

MSDP peering from source RP to

- Border routers
- Other AS's RP
- If MSDP peer is a RP and has a (*, G) entry
 - This means there exists some interested receiver
 - Then a (S, G) entry is created an a shortcut to the source is made
 - Furthermore the receiver itself might switchover to the source

MBGP/MSDP (1)

ASs establish multicast peering using MBGP

- Via special Multicast RPF NLRI types
- Used by PIM-SM to send (S, G) joins
- MSDP tells all RPs about active sources
 - Using Source Active (SA) messages
 - Containing (S, G) information

MBGP/MSDP (2)

Receiver joined local RP

Via (*, G) message

Local RP joins source directly

Via (S, G) message

MBGP/MSDP (3)

- Multicast traffic flows directly from the source to the receiver
 - Along a SPT downstream (to perhaps multiple receivers)
- Note: DRs and intermediate routers are omitted for simplicity!

Reliable Multicast

What is this? Who needs it?

- Reliable transmission means: no single bit gets lost over MDT !!!
- Traditional multicast can't guarantee that—and doesn't need to!
 - Audio and video does not bother
- But important for data-based applications
 - Whiteboarding
 - Efficient Usenet updates
 - Database synchronization
 - etc...
- Also real-time demands
 - Financial data delivery

Reliable Multicast (1)

Remember: IP multicast is UDP based!

- No guaranteed packet delivery!
- No congestion control
- Not intended for data transactions!

RTP/RTCP only cares for

- Duplicates
- Sequence
- Reliable multicast requires UDP-based acknowledgements
 - TCP cannot do multicast by nature (too much overhead, state variables, buffers, timers, ...)
- Security issues for financial data delivery etc.!!!

Reliable Multicast (2)

- Guaranteed data delivery is provided by reliable multicast protocols
- Still UDP based of course
 - But ACKs are additionally implemented: Feedback loop
 - Data recovery mechanisms
 - Congestion control mechanisms

Feedback Loop

Either performed by the source

- End-to-end feedback loop (latency!)
- Intermediate devices don't need to be multicast aware
- Receivers send NACKs back to source
- Or locally
 - Hop-by-hop feedback loop
 - Intermediate "repair servers" cache packets for retransmissions
 - Nearest upstream server performs retransmission upon NACK
 - If not possible, NACK is sent to next upstream server

Optimizing Recovery

- One lost packet typically leads to a "NACK storm"
 - Sender must collapse all associated NACKs and retransmit only once
 - On a LAN only one receiver needs to send a NACK
 - (NACK suppression algorithm)
- Congestion-controlled retransmissions
 - Congestion is often cause of missing packets
 - Sender should retransmit when congestion is over
- Unidirectional links (e. g. satellite)
 - FEC against interferences
 - Redundant transmission against buffer overflows
 - Congestion control CRITICAL

Reliable Multicast Protocol (RMP)

- Token rotating scheme
- Reliable Multicast Transfer Protocol 2 (RMTP-2)
 - Relies upon "Top Node"
- Multicast File Transfer Protocol (MFTP)
 - Repair cycles
- Scalable Reliable Multicast (SRM)
 - Straight and simple
- Pragmatic General Multicast (PGM)
 - "Receivers self-help association"

- Useful for real-time, collaborative applications
- NACKs are sent to multicast address
 - Assures NACK suppression
 - Allows any member to perform retransmission
- Token rotation scheme
 - Owner of token may send ACK referring to recently received packets
 - Allows late joined members to inform about missing packets
- Retransmission to multicast group

- Local retransmission and late joins possible
- Caching mechanisms in Designated Receivers

101

- Useful for bulk data distribution
- Hierarchically structured

up to the Sender

- Periodic status messages:
 - Sent by leaf receivers to their designated receivers (DR)

Relayed via higher layer Designated Receivers

MFTP – 1. What is it?

- Useful for non-realtime bulk data distribution only
 - Developed by StarBurst Communications and Cisco Systems
 - Internet-draft February 1997
- Also includes diagnostic tools
 - Multicast ping (senders learn group population)
- Good scalability (thousands...)
- Flexible transport
 - Unicast, multicast, or broadcast dependent on number of receivers and medium

MFTP – 2. How does it?

Server announces transmission and waits for receiver registration

- Hereby learning population
- Announcement contains filename and size
- Well-known multicast group address for announcements
- Registration suppression on LANs
- Then data is sent and NACKs collected
 - NACKs are collapsed, retransmission afterwards
 - Several retransmissions if necessary (slow but reliable)

MFTP – 3. Protocol Details

File is sent in blocks

- Some 1000 packets per block
- Consists of Data Transmission Units (DTUs)
- Source sends status request message after each block
- NACKs are sent after each block
 - Containing bit-map indicating bad DTUs
 - Unicast
- ACKs could be sent but are typically turned off to reduce traffic

Only one ACK at the session end is required

MFTP – 4. Three Group Models

Closed groups

- Members are known by source
- Only those members may register
- Open limited groups
 - Unknown members
 - Source expects registration
- Unlimited groups
 - No registration expected

- For whiteboarding (wb) in Mbone and general data distribution
 - Does not care for ordered packet delivery
 - NACKs are sent to group
 - Both NACK and retransmission suppression
 - Two models: ALF and LWS
- Application Level Framing (ALF)
 - Data is uniquely identified by Source-ID and Page-ID
 - Time stamp, Sequence Number
 - Application must re-sequence
- Light-Weight Sessions (LWS)
 - Additional session messages as feedback loop
 - Ideal for conferencing applications

- Best known solution (Cisco)
 - Duplicate-free, ordered delivery
 - Several application-friendly features
 - Multiple senders and receivers
 - Independent of layer 3
 - Internet-Draft, January 1998
- Routers support *local* feedback loops
 "PGM Assist features"

PGM – Basic Principle (1)

- Source sends ordered data (ODATA) containing
 - Transport session identifier (TSI)
 - Sequence number (SQN)
- Source sends also Source Path Messages (SPM)
 - Interleaved with ordered multicast data
 - Provides an upstream path
 - Not shown in the picture

(C) Herbert Haas 2005/03/11

109

PGM – Basic Principle (2)

- Upon failure: NACK is sent to upstream PGM router
 - Unicast to the address indicated in SPM
- Upstream PGM router sends NACK Confirmation (NCF)
 - To multicast group downstream
 - Enables NACK suppression
- Upstream PGM router creates TSI/SQN retransmission state and forwards NACK upstream to source

PGM – Options

Late joining

- Sources indicate whether lately joined receivers may request all missing data
- Time stamps
 - Receivers tell urgency of retransmissions
- Reception quality reports
 - Sent by receivers for congestion control
- Fragmentation
 - To confirm to MTU
- FEC
 - To reduce selective retransmissions

Summary

- Multicast routing requires creation of spanning trees
 - Avoid multiple packets
 - Avoid multicast storms
- Source-based and Shared trees
- Push and Pull methods
- IGMP to announce group membership
- Current favourite: PIM-SM
- Also reliable multicast solutions available
 - PGM is most important