Shortest Path First

Dijkstra's Famous Algorithm

"The question of whether computers can think is like the question of whether submarines can swim"

Edsger Wybe Dijkstra

- Famous paper "A note on two problems in connection with graphs" (1959)
- Single source SP problem in a directed graph
- Important applications include
 - Network routing protocols (OSPF, IS-IS)
 - Traveller's route planner

Terms

- Graph G(V,E) consists of vertices V and edges E
- Edges are assigned costs c
- "Length" of graph c(G) = sum of all costs
 - Assumed to be positive ("Distance Graph")
- Distance" between two vertices d(v,v') = min{c(p)}, p...path
 - Can be infinite
- p with c(p) = d(v,v') is called shortest path sp(v,v')

Definitions

- Select start vertex s
- Three sets of vertices:
 - Selected (sp already calculated)
 - Boundary (currently subject of calculation)
 - Outside (not yet examined)

The Algorithm

Initialize Vertices v.predecessor = none v.distance = ∞ v.selected = false	
Select S s.predecessor = s s.distance = 0 s.selected = true	
Add neighbors of S to boundary	
Select V with lowest distance from	m boundary
Add neighbors of V to boundary	
For these neighbors calculate dis Previous vertices might get better total dis	stance using V as predecessor

Example

Result

Performance

- Greedy algorithm
- Most critical: Implementation of boundary data structure
 - No explicit structure: O(|V|²)
 - Fibonacci heap: O(|E|+|V| log |V|)
- Alternatives
 - Bellman-Ford (RIP) algorithm
 - Floyd-Warshall algorithm
 - A* algorithm
 - Extends SPF with a estimation function to enhance performance in certain situations

About E. W. Dijkstra

- Born in 1930 in Rotterdam
- Degrees in mathematics and theoretical physics from the University of Leyden and a Ph.D. in computing science from the University of Amsterdam
 - Programmer at the Mathematisch Centrum, Amsterdam, 1952-62
 - Professor of mathematics, Eindhoven University of Technology, 1962-1984
 - Burroughs Corporation research fellow, 1973-1984
 - Schlumberger Centennial Chair in Computing Sciences at the University of Texas at Austin, 1984-1999
 - Retired as Professor Emeritus in 1999
 - 1972 recipient of the ACM Turing Award, often viewed as the Nobel Prize for computing
- Died 6 August 2002

Edsger W. Dijkstra (1930-2002)