Routing Introduction

Direct vs. Indirect Delivery Static vs. Dynamic Routing Distance Vector vs. Link State

"The most simple way to accelerate a Router is at 9.8 m/sec/sec."

Seen on Usenet

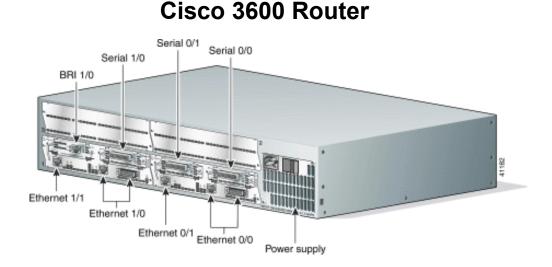
Routing Introduction

- Direct Delivery
- Indirect Delivery
- Static Routing
- Default Routing
- Dynamic Routing
 - Distance Vector Routing
 - Link State Routing

- Finding a path to a destination address
- Direct delivery performed by host
 - Destination network = local network
- Indirect delivery performed by router
 - Destination network ≠ local network
 - Packet is forwarded to default gateway

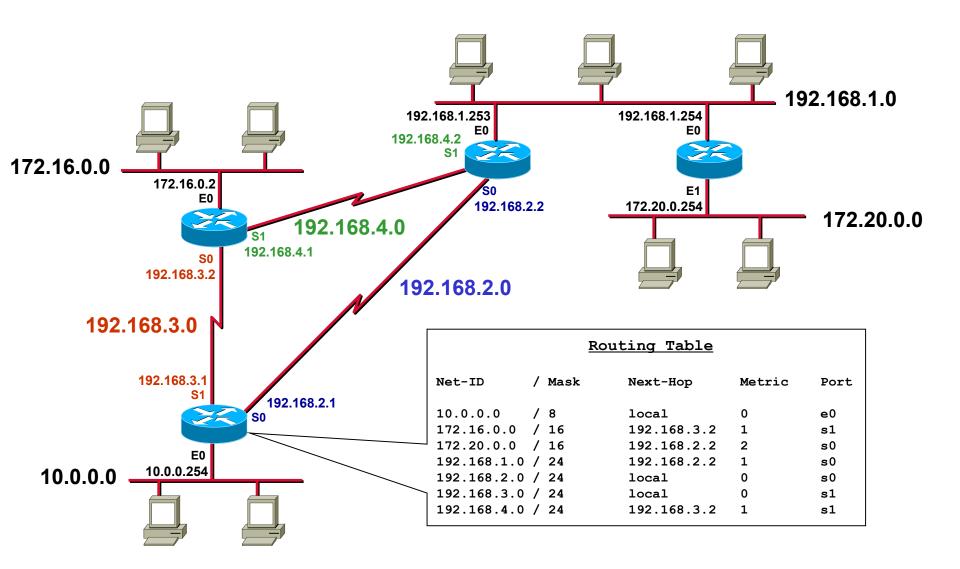
- IP host checks if packet's destination network is identical with local network
 - By applying the configured subnet mask of the host's interface
- If destination network = local network then the L2 address of the destination is discovered using ARP
 - Not necessary on point-to-point connections

- Also IP hosts have routing tables !
 - But typically only a static route to the default gateway is entered
- ARP cache aging timer: 20 minutes



- Default gateway delivers packet in behalf of its host using a routing table
- Routing table components
 - Destination network (+ subnet mask)
 - Next hop (+ outgoing interface)
 - Metric (+ Administrative Distance)

Initially Unix workstations with several network interface cards Today specialized hardware



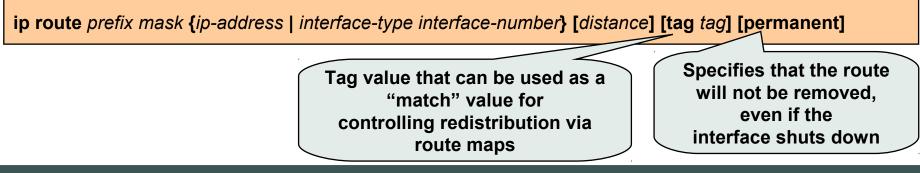
Gate	way of last resort is 175.18.1.2 to network 0.0.0.0
	10.0.0.0 255.255.0.0 is subnetted, 4 subnets
С	10.1.0.0 is directly connected, Ethernet1
R	10.2.0.0 [120/1] via 10.4.0.1, 00:00:05, Ethernet0
R	10.3.0.0 [120/5] via 10.4.0.1, 00:00:05, Ethernet0
C	10.4.0.0 is directly connected, Ethernet0
R	192.168.12.0 [120/3] via 10.1.0.5, 00:00:08, Ethernet1
S	194.30.222.0 [1/0] via 10.4.0.1
S	194.30.223.0 [1/0] via 10.1.0.5
C	175.18.1.0 255.255.255.0 is directly connected, Serial0
S*	0.0.0.0 0.0.0.0 [1/0] via 175.18.1.2

IP Routing Basics

Static or Dynamic

- Static routing entries are configured manually
 - Override routes learned via dynamic routing
 - Can be set as permanent (will not be removed if interface goes down)
 - Only way for certain technologies (DDR)
- Dynamic routing entries are learned by routing protocols
 - Adapts to topology changes
 - But additional routing-traffic overhead

Reasons for Static Routing



- Very low bandwidth links (e. g. dialup links)
- Administrator needs control over the link
- Backup links

2005/03/11

(C) Herbert Haas

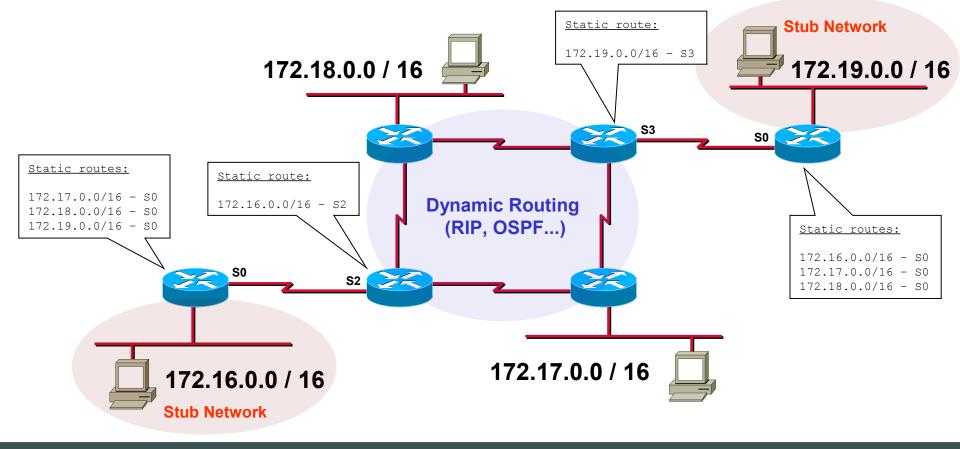
- Link is the only path to a stub network
- Router has very limited resources and cannot run a routing protocol

Routing Paradigm

Destination Based Routing

 Source address is not taken into account for the forward decision

Hop by Hop Routing

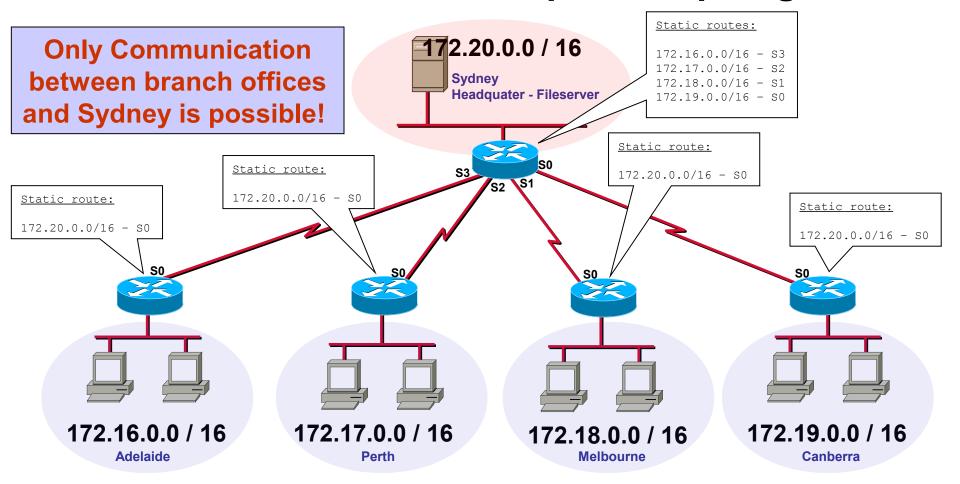

- IP datagram's follow the signposts given by routing table entries
- Network's routing state must be loop-free and consistent

Least Cost Routing

 Typically only the best path is entered into routing table

Static Routing (1)

Static routes to and from stub networks

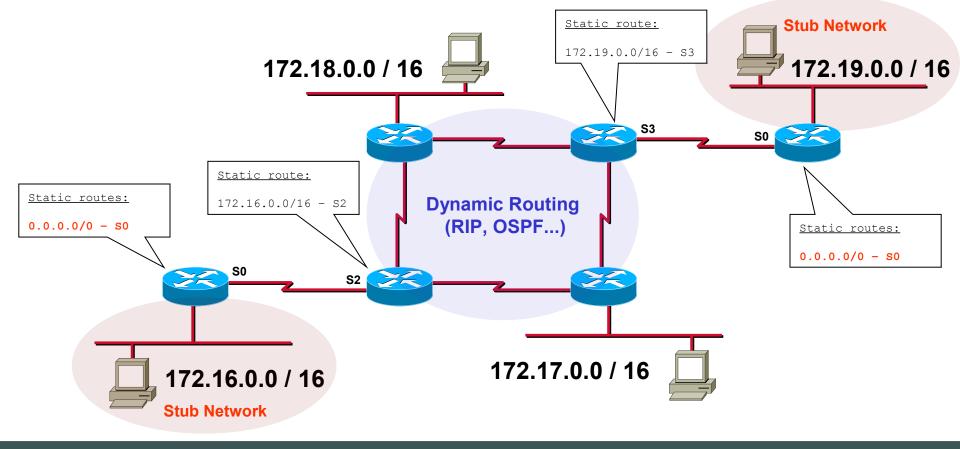


(C) Herbert Haas 2005/03/11

Static Routing (2)

Static routes in "Hub and Spoke" topologies

Special static route

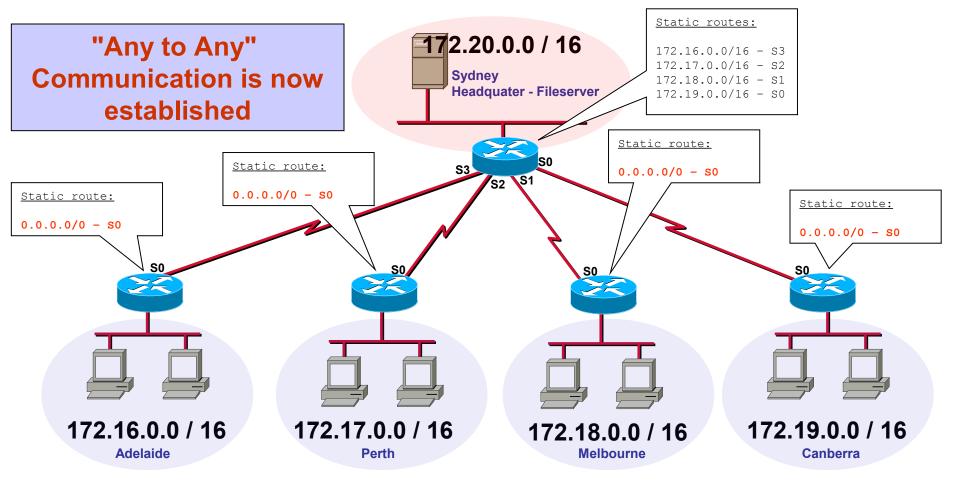

 Traffic to unknown destinations are forwarded to default router ("Gateway of Last Resort")

- Routing table entry "0.0.0.0 0.0.0.0"
- Hopefully, default gateway knows more destination networks
- Advantage: Smaller routing tables!

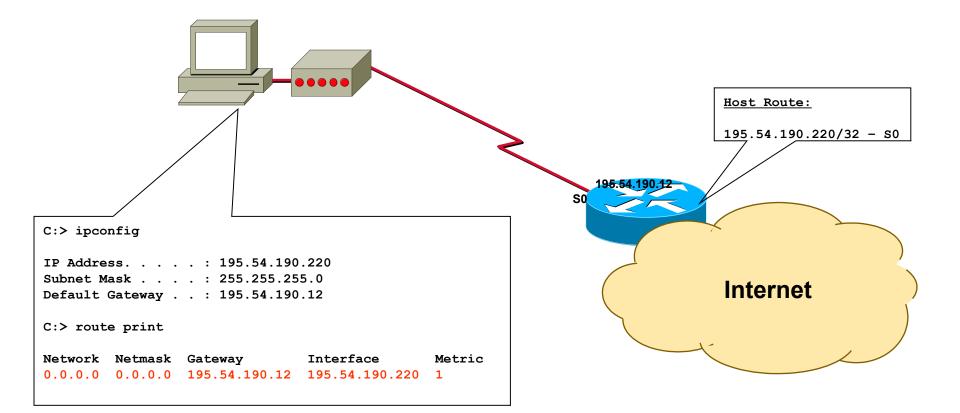
(C) Herbert Haas 2005/03/11

Default Routing (1)

Default Routes from stub networks



Default Routing (2)


Default routes in "Hub and Spoke" topologies

Default Routing (3)

Default Routes to the Internet

On Demand Routing (ODR)

- Efficient for hub-and-spoke topologies
 - Same configuration at each router
- Uses CDP to send the prefixes of attached networks from the spokes, or stub networks, to the hub or core router
 - CDP does this automatically (!)
- The hub router sends its interface address of the shared link as the default route for the stub router
- Note:
 - Don't enable routing protocols on spoke routers
 - CDP must be enabled (don't forget e. g. ATM interfaces)
 - Every 60 sec a CDP message is sent per default (change with "cdp timer" command)

(config)# router odr

! Only on hub router

- Each router can run one or more routing protocols
- Routing protocols are information sources to create routing table
- Routing protocols differ in convergence time, loop avoidance, network size, complexity

Routing Protocol Comparison

Routing Protocol	Complexity	Max. Size	Convergence Time	Reliability	Protocol Traffic
RIP	very simple	16 Hops	Up to 480 secs	Not absolutely loop-safe	High
RIPv2	very simple	16 Hops	Up to 480 secs	Not absolutely loop-safe	High
IGRP	simple	x	x	medium	medium
EIGRP	complex	x	x	x	x
OSPF	very complex	Thousands of Routers	Fast	High	low/ depends
IS-IS	complex	Thousands of Routers	Fast	High	x
BGP-4	complex	more than 100,000 networks	Fast	Very High	x

- Routing protocols typically find out more than one route to the destination
- Metrics help to decide which path to use
 - Hop count
 - Cost (reciprocal value of bandwidth)
 - Load, Reliability, Delay, MTU

Administrative Distance

Several routing protocols independently find out different routes to same destination

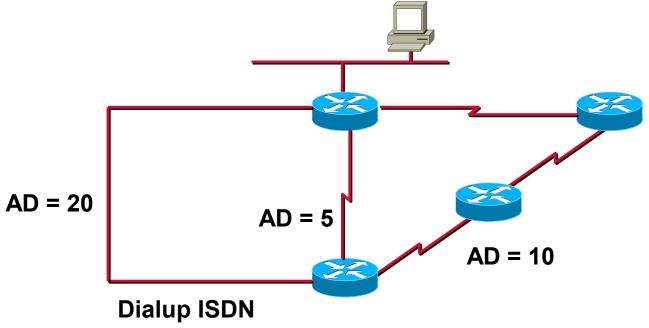
• Which one to choose?

- Administrative Distance" is a trustiness-value associated to each routing protocol
 - The lower the better
 - Can be changed

Administrative Distances Chart

Unknown	255
I-BGP	200
E-EIGRP	170
EGP	140
RIP	120
IS-IS	115
OSPF	110
IGRP	100
I-EIGRP	90
E-BGP	20
EIGRP Summary Route	5
Static route to next hop	1
Static route through interface	0
Directly Connected	0

Remember



- 1) Using the METRIC *one* routing protocol determines the best path to a destination.
- 2) A router running multiple routing protocols might be told about multiple possible paths to one destination.
- 3) Here the METRIC cannot help for decisions because *different type of METRICS* cannot be compared with each other.
- 4) A router chooses the route which is proposed by the routing protocol with the *lowest* ADMINISTRATIVE DISTANCE

AD with Static Routes

- Each static route can be given a different administrative distance
- This way fall-back routes can be configured

Classification

Depending on age:

- Classful (no subnet masks)
- Classless (VLSM/CIDR supported)
- Depending on scope:
 - IGP (Inside an Autonomous System)
 - EGP (Between Autonomous Systems)
- Depending on algorithm:
 - Distance Vector (Signpost principle)
 - Link State (Roadmap principle)

Classful route match (1/2)

- 1) If the classful network number is NOT listed in the routing table, use the default route if available (otherwise discard the packet)
- 2) If the classful network number is listed in the routing table:
 - If the listed network number is NOT subnetted and matches the IPpacket's destination address then use this route
 - If this network is subnetted, then lookup the corresponding subnet; if no subnet matches then *discard the packet* (even if a default route exists!)

Example:

IP Packet DA = 10.35.72.26 SA = ...

Routing Table:				
10.0.0.0/8 is subnetted, 4 subnets: 10.22.0.0/16 via 172.17.7.19				
10.31.0.0/16 via 172.17.8.31				
10.34.0.0/16 via 172.18.1.254 <u>10.35.0.0/16</u> via 192.186.176.254				
0.0.0/0 via 172.19.41.254				

Classful route match (2/2)

- 1) If the classful network number is NOT listed in the routing table, use the default route if available (otherwise discard the packet)
- 2) If the classful network number is listed in the routing table:
 - If the listed network number is NOT subnetted and matches the IPpacket's destination address then use this route
 - If this network is subnetted, then lookup the corresponding subnet; if no subnet matches then *discard the packet* (even if a default route exists!)

Example:

IP Packet DA = 10.35.72.26 SA = ...

Routing Table:

10.0.0.0/8 is	subnetted, 4 subnets:
10.22.0.0/16	via 172.17.7.19
10.31.0.0/16	via 172.17.8.31
10.34.0.0/16	via 172.18.1.254
0.0.0.0/0	via 172.19.41.254

DISCARD THE PACKET (!)

Classless routing: Longest match

- The subnet mask of each route entry tells how many bits must be compared with the IP-packet's destination address
- The router takes the route with the longest match

Example:

IP Packet DA = 10.35.72.26 SA = ...

Routing Table:				
10.0.0/8	via 172.16.1.1			
10.22.0.0/16	via 172.17.7.19			
10.31.0.0/16	via 172.17.8.31			
10.34.0.0/16	via 172.18.1.254			
10.35.0.0/16	via 192.186.176.254			
<u>10.35.64.0/19</u>	<u>via 192.186.177.254</u>			
10.35.192.0/19	via 172.19.54.1			

Distance Vector (1)

- After powering-up each router only knows about directly attached networks
- Routing table is sent periodically to all neighbor-routers
- Received updates are examined, changes are adopted in own routing table
- Metric information (originally) is number of hops
- Bellman-Ford" algorithm

Distance Vector (2)

Next hop is always originating router

- Topology behind next hop unknown
- Signpost principle
- Loops can occur! Additional mechanisms needed:
 - Maximum hop count
 - Split horizon (with poison reverse)
 - Triggered update
 - Hold down

Examples: RIP, RIPv2, IGRP (Cisco)

- Each two neighbored routers establish adjacency
- Routers learn real topology information
 - Through "Link State Advertisements"
 - Stored in database (Roadmap principle)
- Updates only upon topology changes
 - Propagated by *flooding* (very fast convergence)

Link State (2)

Routing table entries are calculated by applying the Shortest Path First (SPF) algorithm on the database

Loop-safe

- Alternative paths immediately known
- CPU and memory greedy
- Large networks can be split into areas
- Examples: OSPF, Integrated IS-IS

Summary

- Routing is the "art" of finding the best way to a given destination
- Can be static or dynamic
 - Static means: YOU are defining the way packets are going
 - Dynamic means: A routing protocol is "trying" to find the best way to a given destination
- In today's routers the route with the longest match is used
- Routing protocols either implement the principle Distance Vector or Link State