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Introducing TCP & UDP

 Internet Transport Layers
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TCP Facts (1)

 Connection-oriented layer 4 protocol

 Carried within IP payload

 Provides a reliable end-to-end transport of 

data between computer processes of 
different end systems
 Error detection and recovery
 Sequencing and duplication detection
 Flow control

 RFC 793
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TCP Facts (2)

 Application's data is regarded as 
continuous byte stream

 TCP ensures a reliable transmission 
of segments of this byte stream

 Handover to Layer 7 at "Ports"
 OSI-Speak: Service Access Point
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Port Numbers

 Using port numbers TCP (and UDP) 
can multiplex different layer-7 byte 
streams

 Server processes are identified by 
Well known port numbers : 0..1023
 Controlled by IANA

 Client processes use arbitrary port 
numbers >1023
 Better >8000 because of registered ports
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Registered Ports

 For proprietary server applications
 Not controlled by IANA only listed in 

RFC 1700
 Examples

 1433 Microsoft-SQL-Server
 1439 Eicon X25/SNA Gateway
 1527 Oracle
 1986 Cisco License Manager
 1998 Cisco X.25 service (XOT)
 6000-6063  X Window System
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TCP Communications

IP (10.1.1.9)

TCP (80 / 110)

Server-Proc 1
WWW
Port 80

Server-Proc 2
POP3

Port 110

IP (10.1.1.1)

TCP (4711)

Client-Proc
Port 4711

DA:10.1.1.9
SA:10.1.1.1

DP:80
SP:4711

IP (10.1.1.2)

TCP (7312)

Client-Proc
Port 7312

DA:10.1.1.9
SA:10.1.1.2

DP:110
SP:7312

Server Host A Host B
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Sockets

 Server process multiplexes streams 
with same source port numbers 
according source IP address

 (PortNr, SA) = Socket 

 Each stream ("flow") is uniquely 
identified by a socket pair
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TCP Communications

IP (10.1.1.1)

TCP (4711)

Client-Proc
Port 4711

DA:10.1.1.9
SA:10.1.1.1

DP:80
SP:4711

IP (10.1.1.2)

TCP (7312)

Client-Proc
Port 7312

DA:10.1.1.9
SA:10.1.1.2

DP:80
SP:7312

Host A Host B

IP (10.1.1.9)

TCP (80)

Server-Proc 1
WWW
Port 80

Server
Connection 1:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.1 : 4711

Connection 2:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.9 : 7312
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TCP Communications

IP (10.1.1.9)

TCP (80)

Server-Proc 1
WWW
Port 80

Client-Proc 1
Port 4711

DA:10.1.1.9
SA:10.1.1.2

DP:80
SP:4711

IP (10.1.1.2)

TCP (4711 / 7312)

Client-Proc 2
Port 7312

DA:10.1.1.9
SA:10.1.1.2

DP:80
SP:7312

Server
Host

Connection 1:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.2 : 4711

Connection 2:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.9 : 7312

Connection 1:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.2 : 4711

Connection 2:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.9 : 7312
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TCP Header

Destination Port NumberSource Port Number

Options (variable length) Padding

PAYLOAD

 0  4  8  12  16  20  24 28 32

Sequence Number

Acknowledgement Number

Header
Length

P
S
H

R
S
T

S
Y
N

F
I
N

A
C
K

U
R
G

Reserved Window Size

TCP Checksum Urgent Pointer
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TCP Header (1)

 Source and Destination Port
 16 bit port number for source and 

destination process

 Header Length
 Multiple of 4 bytes
 Variable header length because of 

options (optionally)
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TCP Header (2)

 Sequence Number (32 Bit)
 Number of first byte of this segment
 Wraps around to 0 when reaching 232 -1)

 Acknowledge Number (32 Bit)
 Number of next byte expected by 

receiver
 Confirms correct reception of all bytes 

including byte with number AckNr-1



13(C) Herbert Haas 2005/03/11

TCP Header (3)

 URG-Flag
 Indicates urgent data
 If set, the 16-bit "Urgent Pointer" field is valid 

and points to the last octet of urgent data
 There is no way to indicate the beginning of 

urgent data (!)
 Applications switch into the "urgent mode"
 Used for quasi-outband signaling
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TCP Header (4)

 PSH-Flag
 TCP should push the segment 

immediately to the application without 
buffering

 To provide low-latency connections
 Often ignored
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TCP Header (5)

 SYN-Flag 
 Indicates a connection request
 Sequence number synchronization

 ACK-Flag
 Acknowledge number is valid
 Always set, except in very first segment 
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TCP Header (6)

 FIN-Flag
 Indicates that this segment is the last
 Other side must also finish the 

conversation 

 RST-Flag
 Immediately kill the conversation
 Used to refuse a connection-attempt
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TCP Header (7)

 Window (16 Bit)
 Adjusts the send-window size of the 

other side
 Used with every segment
 Receiver-based flow control
 SeqNr of last octet = AckNr + window
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TCP Header (8)

 Checksum
 Calculated over TCP header, payload 

and 12 byte pseudo IP header
 Pseudo IP header consists of source 

and destination IP address, IP protocol 
type, and IP total length; 

 Complete socket information is 
protected

 Thus TCP can also detect IP errors
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TCP Header (9)

 Urgent Pointer
 Points to the last octet of urgent data

 Options
 Only MSS (Maximum Message Size) is 

used
 Other options are defined in RFC1146, 

RFC1323 and RFC1693

 Pad
 Ensures 32 bit alignment
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TCP 3-Way-Handshake

ACK = ?
SEQ = 730 (random)

ACK = 401
SEQ = 731

ACK = 401
SEQ = 731

ACK = 731
SEQ = 400 (random)

ACK = ?
SEQ = ? (idle)

ACK = 731
SEQ = 401 

ACK=?
SEQ=730

            SYN

ACK=731 SEQ=400

        
SYN, ACK

ACK=401 SEQ=731
             ACK

SYNCHRONIZED
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Sequence Number

 RFC793 suggests to pick a random 
number at boot time (e.g. derived from 
system start up time) and increment every 
4 µs

 Every new connection will increments 
SeqNr by 1

 To avoid interference of spurious packets

 Old "half-open" connections are deleted 
with the RST flag
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TCP Data Transfer

ACK = 401
SEQ = 731 

ACK = 401
SEQ = 751

ACK = 401
SEQ = 801

ACK = 751
SEQ = 401 

ACK = 731
SEQ = 401

ACK = 801
SEQ = 401 

ACK=401 SEQ=731
         20 Bytes

ACK=751 SEQ=401

        
0 Bytes

ACK=401 SEQ=751
             50 Bytes

ACK=801 SEQ=401

        
0 Bytes
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TCP Data Transfer

 Acknowledgements are generated for all 
octets which arrived in sequence without 
errors (positive acknowledgement)

 Duplicates are also acknowledged (!)
 Receiver cannot know why duplicate has been sent; 

maybe because of a lost acknowledgement

 The acknowledge number indicates the sequence 
number of the next byte to be received

 Acknowledgements are cumulative: Ack(N) 
confirms all bytes with sequence numbers up to 
N-1 
 Therefore lost acknowledgements are no problem
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Cumulative Acknowledgement

Data(13) Seq=10

Data(15) Seq=23

Data(11) Seq=43

Data(9) Seq=54

Data(5) Seq=38

Ack = 23

Ack = 38

Ack = 43

Ack = 54

Ack = 63

Ack is lost

Cumulative Ack
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Duplicate Acknowledgement

Data(13) Seq=10

Data(15) Seq=23

Data(11) Seq=43

Data(5) Seq=38

Data(5) Seq=38

Ack = 23

Ack = 38

Ack = 38

Ack = 54

Data is lost

Duplicate AckRepair

Cumulative Ack
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TCP Retransmission Timeout

 Retransmission timeout (RTO) will 
initiate a retransmission of 
unacknowledged data 
 High timeout results in long idle times 

if an error occurs
 Low timeout results in 

unnecessary retransmissions

 TCP continuously measures RTT to 
adapt RTO
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Retransmission ambiguity problem

 If a packet has been retransmitted 
and an ACK follows: Does this ACK 
belong to the retransmission or to 
the original packet?
 Could distort RTT measurement 

dramatically

 Solution: Phil Karn's algorithm
 Ignore ACKs of a retransmission for the 

RTT measurement
 And use an exponential backoff method
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RTT Estimation (1/2)

 For TCP's performance a precise 
estimation of the current RTT is crucial
 RTT may change because of varying network 

conditions (e. g. re-routing)

 Originally a smooth RTT estimator was 
used (a low pass filter)
 M denotes the observed RTT (which is 

typically inprecise because there is no one-to-
one mapping between data and ACKs)

 R = αR+(1 − α)M with smoothing factor α=0.9
 Finally RTO = β ∙R with variance factor β=2
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RTT Estimation (2/2)

 Initial smooth RTT estimator could not 
keep up with wide fluctuations of the RTT
 Led to too many retransmissions

 Jacobson's suggested to take the RTT 
variance also into account
 Err = M − A

• The deviation from the measured RTT (M) and the 
RTT estimation (A)

 A = A + g ∙ Err   
• with gain g = 0.125

 D = D + h ( |Err| − D )
• with h = 0.25

 RTO = A + 4D
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TCP Sliding Window

 TCP flow control is done with dynamic 
windowing using the sliding window protocol

 The receiver advertises the current amount of 
octets it is able to receive
 Using the window field of the TCP header 
 Values 0 through 65535

 Sequence number of the last octet a sender may 
send = received ack-number -1 + window size
 The starting size of the window is negotiated during the 

connect phase
 The receiving process can influence the advertised 

window, hereby affecting the TCP performance
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TCP Sliding Window

HOST A
HOST B

45 46 47 48 49 50 51 ....

[SYN]  S=44  A=?  W=8 
[SYN, ACK]  S=72  A=45  W=4 

[ACK]  S=45  A=73  W=8 

[ACK] S=45  A=73  W=8 

Advertised Window
 (by the receiver)

Bytes in the send-buffer 
written by the application 
process

First byte that 
can be send

Last byte that 
can be send
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TCP Sliding Window

 During the transmission the sliding window 
moves from left to right, as the receiver 
acknowledges data

 The relative motion of the two ends of the window 
open or closes the window
 The window closes when data is sent and 

acknowledged (the left edge advances to the right)
 The window opens when the receiving process on 

the other end reads acknowledges data and frees up 
TCP buffer space (the right edge moves to the right)

 If the left edge reaches the right edge, the sender 
stops transmitting data - zero window
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TCP Persist Timer (1/2)

 Deadlock possible: 
Window is zero 
and window-
opening ACK is 
lost!
ACKs are sent 

unreliable!
Now both sides 

wait for each other!

S=3120, payload: 1000 bytes

ACK, A=4120, W=0 

ACK, A=4120, W=20000 

Waiting until
window is being 

opened

Waiting until
data is sent



34(C) Herbert Haas 2005/03/11

TCP Persist Timer (2/2)

 Solution: Sender may send 
window probes:
 Send one data byte beyond 

window
 If window remains closed 

then this byte is not 
acknowledged—so this 
byte keeps being 
retransmitted

 TCP sender remains in 
persist state and continues 
retransmission forever 
(until window size opens)
 Probe intervals are 

increased exponentially 
between 5 and 60 seconds

 Max interval is 60 seconds 
(forever)

S=4121, payload: 1 byte

ACK, A=4122, W=20000 

S=3120, payload: 1000 bytes

ACK, A=4120, W=0 

S=4121, payload: 1 byte

ACK, A=4120, W=0 

probe

probe

S=4121, payload: 1 byte
probe

ACK, A=4122, W=20000 
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Simultaneous Open

 If an application uses well 
known ports for both client 
and server, a "simultaneous 
open" can be done
 TCP explicitly supports this
 A single connection (not two!) is 

the result 
 Since both peers learn each 

others sequence number at 
the very beginning the 
session is established with a 
following SYN-ACK

 Hard to realize in practice
 Both SYN packets must cross 

each other in the network
 Rare situation!

SYN, S=100 SYN, S=300

SYN, S=100ACK, A=301

SYN, S=300

ACK, A=101

Established
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TCP Enhancements

 So far, only the very basic TCP procedures have 
been mentioned

 But TCP has much more magic built-in 
algorithms which are essential for operation in 
today's IP networks:
 "Slow Start" and “Congestion Avoidance”
 "Fast Retransmit" and "Fast Recovery"
 "Delayed Acknowledgements"
 "The Nagle Algorithm“
 Selective Ack (SACK), Window Scaling
 Silly windowing avoidance
 ....

 Additionally, there are different implementations 
(Reno, Vegas, …)
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Delayed ACKs

 Goal: Reduce traffic, 
support piggy-backed 
ACKs

 Normally TCP, after 
receiving data, does 
not immediately send 
an ACK

 Typically TCP waits 
(typically) 200 ms and 
hopes that layer-7 
provides data that 
can be sent along 
with the ACK

Example: 
Telnet and no Delayed ACK

Keypress "A"

ACK

Echo "A"

Example: 
Telnet with Delayed ACK

Keypress "A"

ACK + Echo "A"
Wait 100 ms 
on average 
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Nagle Algorithm

 Goal: Avoid tinygrams on expensive (and usually 
slow) WAN links

 In RFC 896 John Nagle introduced an efficient 
algorithm to improve TCP

 Idea: In case of outstanding (=unacknowledged) 
data, small segments should not be sent until the 
outstanding data is acknowledged

 In the meanwhile small amount of data (arriving 
from Layer 7) is collected and sent as a single 
segment when the acknowledgement arrives

 This simple algorithm is self-clocking
 The faster the ACKs come back, the faster data is sent

 Note: The Nagle algorithm can be disabled!
 Important for realtime services 
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TCP Keepalive Timer

 Note that absolutely no data flows during 
an idle TCP connection!
 Even for hours, days, weeks!

 Usually needed by a server that wants to 
know which clients are still alive
 To close stale TCP sessions

 Many implementations provide an optional 
TCP keepalive mechanism
 Not part of the TCP standard!
 Not recommended by RFC 1122 (hosts 

requirements)
 Minimum interval must be 2 hours
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TCP Disconnect

ACK = 178
SEQ = 732 

ACK = 178
SEQ = 733

ACK = 179
SEQ = 733

ACK = 733
SEQ = 178 

ACK = 732
SEQ = 178

ACK = 733
SEQ = 179 

ACK=732 SEQ=178
              FIN

ACK=178 SEQ=733

        
     ACK

ACK=733 SEQ=179
            ACK

ACK=178 SEQ=733

        
      F

IN

ACK = 733
SEQ = 178 
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TCP Disconnect

 A TCP session is disconnected similar 
to the three way handshake

 The FIN flag marks the sequence number to be 
the last one; the other station acknowledges and 
terminates the connection in this direction

 The exchange of FIN and ACK flags ensures, that 
both parties have received all octets

 The RST flag can be used if an error occurs 
during the disconnect phase
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TCP Congestion Control

1. Slow Start & Congestion 
Avoidance

2. Random Early Discard
3. Explicit Congestion Notification
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Once again: The Window Size

 The windows size (announced by the peer) 
indicates how many bytes I may send at 
once (=without having to wait for 
acknowledgements)
 Either using big or small packets

 Before 1988, TCP peers tend to exploit the 
whole window size which has been 
announced during the 3-way handshake
 Usually no problem for hosts 
 But led to frequent network congestions
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Goal of Slow Start

 TCP should be "ACK-clocking"
 Problem (buffer overflows) appears at 

bottleneck links
 New packets should be injected at the 

rate at which ACKs are received

Pipe modell of a network path: Big fat pipes (high data rates) outside, a 
bottleneck link in the middle. The green packets are sent at the maximum 

achievable rate so that the interpacket delay is almost zero at the bottleneck 
link; however there is a significant interpacket gap in the fat pipes.  
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Preconditions of Slow Start

 Two important parameters are 
communicated during the TCP three-
way handshake
 The maximum segment size (MSS) 
 The Window Size

 Now Slow Start introduces the 
congestion window (cwnd)
 Only locally valid and locally maintained
 Like window field stores a byte count
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Idea of Slow Start

 Upon new session, cwnd 
is initialized with MSS (= 
1 segment)

 Allowed bytes to be sent: 
Min(W, cwnd)

 Each time an ACK is 
received, cwnd is 
incremented by 1 
segment
 That is, cwnd doubles 

every RTT (!)
 Exponential increase!

cwnd=1 MSS Data

Ack

cwnd=2 MSS

cwnd=4 MSS

cwnd=4 MSS

…
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Graphical illustration (1/4)
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Graphical illustration (2/4)
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Graphical illustration (3/4)
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D12D13

cwnd=5
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Graphical illustration (4/4)

 TCP is "self-clocking"
 The spacing between the ACKs is the same as between 

the data segments
 The number of ACKs is the same as the number of data 

segments
 In our example, cwnd=8 is the optimum

 This is the delay-bandwidth product ( 8 = RTT x BW)
 In other words: the pipe can accept 8 packets per 

round-trip-time

S
en

d
er

R
ec

ei
ve

r

S
en

d
er

R
ec

ei
ve

r

t=30

t=31

D11D12

A10A9

D13D14

A8

D12D13

A11A10

D14D15

A9A8

cwnd=8 => Pipe is full (ideal situation) – 
cwnd should not be increased anymore!

cwnd=8

cwnd=8
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End of Slow Start

 Slow start leads to an exponential 
increase of the data rate until some 
network bottleneck is congested: 
Some packets get dropped!

 How does the TCP sender recognize 
network congestions?

 Answer: Upon receiving Duplicate 
Acknowledgements !!!
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Once again: Duplicate ACKs

 TCP receivers send 
duplicate ACKs if 
segments are missing
 ACKs are cumulative (each 

ACK acknowledges all data 
until specified ACK-
number)

 Duplicate ACKs should not 
be delayed

 ACK=300 means: "I am 
still waiting for packet 
with SQNR=300"

SQNR=100

SQNR=200

SQNR=300

SQNR=400

ACK=200

ACK=300

ACK=300

SQNR=300

SQNR=500

ACK=300

…

Duplicate Ack

Duplicate Ack
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Congestion Avoidance (1)

 Congestion Avoidance is the companion 
algorithm to Slow Start – both are usually 
implemented together !

 Idea: Upon congestion (=duplicate ACKs) reduce 
the sending rate by half and now increase the rate 
linearly until duplicate ACKs are seen again (and 
repeat this continuously)
 Introduces another variable: the Slow Start threshold 

(ssthresh)

 Note this central TCP assumption: Packets are 
dropped because of buffer overflows and NOT 
because of bit errors!
 Therefore packet loss indicates congestion somewhere 

in the network
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The combined algorithm

New Session: initialize cwnd = 1 MSS, ssthresh = 65535

Determine actual window size "AWS" = Min (W, cwnd)
              ** send AWS bytes **

Retransmission
timeout expired

Duplicate ACKs
received

Data
acknowledged

Increment cwnd
 by 1/cwnd for 

each ACK received

cwnd = 1
ssthresh = AWS/2

ssthresh = AWS/2
(but at least 2 MSS)

(cwnd > ssthresh) ?

yes no

Increment cwnd 
by one for each 
ACK received. 
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Slow Start and Congestion Avoidance

cwnd / MSS

t / RTT1 2 3 4 5 6 7 8 9

2

4

6

8

10

12

14

16

18

20
Duplicate ACK received

at cwnd = 32

Duplicate ACK received
at cwnd = 20

Congestion Avoidance

Congestion Avoidance

Slo
w S

ta
rt
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"Fast Retransmit"

 Note that duplicate ACKs are also 
sent upon packet reordering

 Therefore TCP waits for 3 duplicate 
ACKs before it really assumes 
congestion
 Immediate retransmission (don't wait for 

timer expiration)

 This is called the Fast Retransmit 
algorithm
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"Fast Recovery"

 After Fast Retransmit TCP continues with 
Congestion Avoidance
 Does NOT fall back to Slow Start

 Every another duplicate ACK tells us that 
a "good" packet has been received by the 
peer
 cwnd = cwnd + MSS
 => Send one additional segment

 As soon a normal ACK is received
 cwnd = ssthresh = Min(W, cwnd)/2

 This is called Fast Recovery 
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All together!

New Session: initialize cwnd = 1 MSS, ssthresh = 65535

Determine actual window size "AWS" = Min (W, cwnd)
              ** send AWS bytes **

Retransmission
timeout expired

3 duplicate ACKs
received

Data
acknowledged

Increment cwnd
 by 1/cwnd for 

each ACK received

cwnd = 1
ssthresh = AWS/2

ssthresh = AWS/2
(but at least 2 MSS),

retransmit the segment,
cwnd = ssthresh+3 MSS,

for each 3+nth duplicate ACK 
increase cwnd by 1 MSS; 

then set cwnd=ssthresh upon 
first "normal" ACK

(cwnd > ssthresh) ?

yes no

Increment cwnd 
by one for each 
ACK received. 

Slow Start, Congestion Avoidance, 
Fast Retransmit, and Fast Recovery
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Real TCP Performance

 TCP always tries to minimize the 
data delivery time

 Good and proven self-regulating 
mechanism to avoid congestion

 TCP is "hungry but fair"
 Essentially fair to other TCP 

applications 
 Unreliable traffic (e. g. UDP) is not fair to 

TCP…
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Summary: The TCP "wave"

 Tries to fill the "pipe" using
 Slow Start and 
 Congestion Avoidance

RTT 

Relative 

Through
put
Rate 
(cwnd)

ssthresh

Duplicate AckDuplicate AckDuplicate Ack Duplicate Ack

slow start congestion 
avoidance

congestion 
avoidance

congestion 
avoidance

max. achievable 
throughput
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What's happening in the network? 

 Tail-drop queuing is the standard 
dropping behavior in FIFO queues 
 If queue is full all subsequent packets 

are dropped

New arriving packets are dropped
("Tail drop")

Full queue
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Tail-drop Queuing (cont.)

 Another representation: 
Drop probability versus queue depth

100%

0%
Queue Depth

D
ro

p
 P

ro
b

ab
ili

ty
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Tail-drop Problems

 No flow differentiation

 TCP starvation upon multiple packet 
drop 

• TCP receivers may keep quiet (not even 
send Duplicate ACKs) and sender falls back 
to slow start 
– worst case!

• TCP fast retransmit and/or selective 
acknowledgement may help

 TCP synchronization
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TCP Synchronization

 Tail-drop drops many packets of different 
sessions at the same time

 All these sessions experience duplicate ACKs 
and perform synchronized congestion avoidance

RTT 

Relative 
Throughput

Rate

(Window 
size)

Duplicate AckDuplicate AckDuplicate Ack Duplicate Ack

slow start congestion 
avoidance

congestion 
avoidance

congestion 
avoidance

max. achievable 
throughput

Average link
utilization
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Random Early Detection (RED)

 Utilizes TCP specific behavior
 TCP dynamically adjusts traffic throughput to 

accommodate to minimal available bandwidth 
(bottleneck) via reduced window size

 "Missing" (dropped) TCP segments cause 
window size reduction!
 Idea: Start dropping TCP packets before queuing "tail-

drops" occur
 Make sure that "important" traffic is not dropped

 RED randomly drops packets before queue is full
 Drop probability increases linearly with queue depth
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RED

 Important RED parameters
 Minimum threshold
 Maximum threshold
 Average queue size (running average)

 RED works in three different modes
 No drop

• If average queue size is between 0 and minimum threshold
 Random drop

• If average queue size is between minimum and maximum 
threshold

 Full drop
• If average queue size is equal or above maximum 

threshold = "tail-drop"
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RED Parameters

Drop probability

Mark probability

100%

10%

min-thresh max-thresh

Average
queue size

(e.g. 20) (e.g. 40)

Tail-drop (full drop)

RED

(packets)
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Weighted RED (WRED)

 Drops less important packets more 
aggressively than more important packets

 Importance based on:
 IP precedence 0-7
 DSCP value 0-63

 Classified traffic can be dropped based on 
the following parameters
 Minimum threshold
 Maximum threshold
 Mark probability denominator 

(Drop probability at maximum threshold)
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RED Problems

 RED performs "Active Queue 
Management" (AQM) and drops 
packets before congestion occurs
 But an uncertainty remains whether 

congestion will occur at all

 RED is known as "difficult to tune"
 Goal: Self-tuning RED
 Running estimate weighted moving 

average (EWMA) of the average queue 
size
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Explicit Congestion Notification (ECN)

 Traditional TCP stacks only use packet loss as indicator to 
reduce window size
 But some applications are sensitive to packet loss and delays 

 Routers with ECN enabled mark packets when the average 
queue depth exceeds a threshold
 Instead of randomly dropping them
 Hosts may reduce window size upon receiving ECN-marked 

packets
 Least significant two bits of IP TOS used for ECN

ECT CE
IP TOS Field

DSCP ECN

Obsolete (but widely used) RFC 2481
notation of these two bits:

ECT ECN-Capable Transport
CE Congestion Experienced
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Usage of CE and ECT 

 RFC 3168 redefines the use of the two bits: ECN-supporting 
 hosts should set one of the two ECT code points
 ECT(0) or ECT(1)
 ECT(0) SHOULD be preferred

 Routers that experience congestion set the CE code point 
in packets with ECT code point set (otherwise: RED)

 If average queue depth is exceeding max-threshold: Tail-
drop

 If CE already set: forward packet normally (abuse!)

0 0

0 1

1 0

1 1

Non ECN-capable transport

ECT(1)

ECT(0)
Codepoints for ECN-capable transport

CE codepoint

ECN Field
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CWR and ECE

 RFC 3168 also introduced two new TCP flags
 ECN Echo (ECE)
 Congestion Window Reduced (CWR)

 Purpose:
 ECE used by data receiver to inform the data sender when a 

CE packet has been received
 CWR flag used by data sender to inform the data receiver that 

the congestion window has been reduced

IP TOS: ECT IP TOS: CE 

TCP: ECETCP: ECE

Congestion

IP TOS: ECT 

TCP: ECE

TCP: CWR TCP: CWRTCP: CWR

Header
Length

P
S
H

R
S
T

S
Y
N

F
I
N

A
C
K

U
R
G

Reserved Window Size
E
C
E

C
W
R

Part of TCP header:
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ECN Configuration

 Note: ECN is an extension to WRED
 Therefore WRED must be enabled first !

 ECN will be applied on that traffic that is 
identified by WRED (e. g. dscp-based)

(config-pmap-c)# random-detect 
(config-pmap-c)# random-detect ecn

# show policy-map interface s0/1  !!! shows ECN setting
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Note

 CE is only set when average queue 
depth exceeds a threshold
 End-host would react immediately
 Therefore ECN is not appropriate for 

short term bursts (similar as RED)

 Therefore ECN is different as the 
related features in Frame Relay or 
ATM which acts also on short term 
(transient) congestion
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UDP

 UDP is a connectionless layer 4 service 
(datagram service)

 Layer 3 Functions are extended by port 
addressing and a checksum to ensure integrity 

 UDP uses the same port numbers as TCP 
(if applicable)

 UDP is used, where the overhead of a connection 
oriented service is undesirable or where the 
implementation has to be small

 DNS request/reply, SNMP get/set, booting by TFTP
 Less complex than TCP, easier to implement
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UDP Header

Destination Port NumberSource Port Number

PAYLOAD

 0  4  8  12  16  20  24 28 32

UDP Length UDP Checksum
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UDP

 Source and Destination Port
 Port number for addressing the process (application)
 Well known port numbers defined in RFC1700

 UDP Length
 Length of the UDP datagram (Header plus Data)

 UDP Checksum
 Checksum includes pseudo IP header 

(IP src/dst addr., protocol field), 
UDP header and user data;
one´s complement of the sum of all one´s complements
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Other Transport Layer Protocols

SCTP

UDP Lite

DCCP
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Stream Control Transmission 
Protocol (SCTP)

 A newer improved alternative to TCP (RFC 
4960)

 Supports 
 Multi-homing
 Multi-streaming
 Heart-beats
 Resistance against SYN-Floods (via Cookies) 

and 4-way handshake)

 Seldom used today
 Base for the Reliable Server Pooling Protocol 

(RSerPool)
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UDP Lite

 Problem: Lots of applications would like to 
receive even (slightly) corrupted data
 E. g. multimedia

 UDP Lite (RFC 3828) defines a different 
usage of the UDP length field
 UDP length field indicates how many bytes of 

the datagram are really protected by the 
checksum ("checksum coverage")

 True length shall be determined by IP length 
field

 Currently only supported by Linux
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Datagram Congestion Control Protocol 
(DCCP)

 Problem: More and more 
applications use UDP instead of TCP

 But UDP does not support 
congestion control – networks might 
collapse!

 DCCP adds a congestion control 
layer to UDP
 RFC 4340
 First implementations now in FreeBSD 

and Linux
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DCCP (cont.)

 4-way handshake

 Different 
procedures 
compared to TCP 
regarding 
sequence number 
handling and 
session creation
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Summary

 TCP & UDP are Layer 4 (Transport) 
Protocols above IP

 TCP is "Connection Oriented"
 UDP is "Connection Less"
 TCP implements "Fault Tolerance" using 

"Positive Acknowledgement"
 TCP implements "Flow Control" using 

dynamic window-sizes
 The combination of IP-Address and 

TCP/UDP-Port is called a "Socket"
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