
2005/03/11(C) Herbert Haas

Introducing TCP & UDP

 Internet Transport Layers

2(C) Herbert Haas 2005/03/11

TCP Facts (1)

 Connection-oriented layer 4 protocol

 Carried within IP payload

 Provides a reliable end-to-end transport of

data between computer processes of
different end systems
 Error detection and recovery
 Sequencing and duplication detection
 Flow control

 RFC 793

3(C) Herbert Haas 2005/03/11

TCP Facts (2)

 Application's data is regarded as
continuous byte stream

 TCP ensures a reliable transmission
of segments of this byte stream

 Handover to Layer 7 at "Ports"
 OSI-Speak: Service Access Point

4(C) Herbert Haas 2005/03/11

Port Numbers

 Using port numbers TCP (and UDP)
can multiplex different layer-7 byte
streams

 Server processes are identified by
Well known port numbers : 0..1023
 Controlled by IANA

 Client processes use arbitrary port
numbers >1023
 Better >8000 because of registered ports

5(C) Herbert Haas 2005/03/11

Registered Ports

 For proprietary server applications
 Not controlled by IANA only listed in

RFC 1700
 Examples

 1433 Microsoft-SQL-Server
 1439 Eicon X25/SNA Gateway
 1527 Oracle
 1986 Cisco License Manager
 1998 Cisco X.25 service (XOT)
 6000-6063 X Window System

6(C) Herbert Haas 2005/03/11

TCP Communications

IP (10.1.1.9)

TCP (80 / 110)

Server-Proc 1
WWW
Port 80

Server-Proc 2
POP3

Port 110

IP (10.1.1.1)

TCP (4711)

Client-Proc
Port 4711

DA:10.1.1.9
SA:10.1.1.1

DP:80
SP:4711

IP (10.1.1.2)

TCP (7312)

Client-Proc
Port 7312

DA:10.1.1.9
SA:10.1.1.2

DP:110
SP:7312

Server Host A Host B

7(C) Herbert Haas 2005/03/11

Sockets

 Server process multiplexes streams
with same source port numbers
according source IP address

 (PortNr, SA) = Socket

 Each stream ("flow") is uniquely
identified by a socket pair

8(C) Herbert Haas 2005/03/11

TCP Communications

IP (10.1.1.1)

TCP (4711)

Client-Proc
Port 4711

DA:10.1.1.9
SA:10.1.1.1

DP:80
SP:4711

IP (10.1.1.2)

TCP (7312)

Client-Proc
Port 7312

DA:10.1.1.9
SA:10.1.1.2

DP:80
SP:7312

Host A Host B

IP (10.1.1.9)

TCP (80)

Server-Proc 1
WWW
Port 80

Server
Connection 1:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.1 : 4711

Connection 2:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.9 : 7312

9(C) Herbert Haas 2005/03/11

TCP Communications

IP (10.1.1.9)

TCP (80)

Server-Proc 1
WWW
Port 80

Client-Proc 1
Port 4711

DA:10.1.1.9
SA:10.1.1.2

DP:80
SP:4711

IP (10.1.1.2)

TCP (4711 / 7312)

Client-Proc 2
Port 7312

DA:10.1.1.9
SA:10.1.1.2

DP:80
SP:7312

Server
Host

Connection 1:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.2 : 4711

Connection 2:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.9 : 7312

Connection 1:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.2 : 4711

Connection 2:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.9 : 7312

10(C) Herbert Haas 2005/03/11

TCP Header

Destination Port NumberSource Port Number

Options (variable length) Padding

PAYLOAD

 0 4 8 12 16 20 24 28 32

Sequence Number

Acknowledgement Number

Header
Length

P
S
H

R
S
T

S
Y
N

F
I
N

A
C
K

U
R
G

Reserved Window Size

TCP Checksum Urgent Pointer

11(C) Herbert Haas 2005/03/11

TCP Header (1)

 Source and Destination Port
 16 bit port number for source and

destination process

 Header Length
 Multiple of 4 bytes
 Variable header length because of

options (optionally)

12(C) Herbert Haas 2005/03/11

TCP Header (2)

 Sequence Number (32 Bit)
 Number of first byte of this segment
 Wraps around to 0 when reaching 232 -1)

 Acknowledge Number (32 Bit)
 Number of next byte expected by

receiver
 Confirms correct reception of all bytes

including byte with number AckNr-1

13(C) Herbert Haas 2005/03/11

TCP Header (3)

 URG-Flag
 Indicates urgent data
 If set, the 16-bit "Urgent Pointer" field is valid

and points to the last octet of urgent data
 There is no way to indicate the beginning of

urgent data (!)
 Applications switch into the "urgent mode"
 Used for quasi-outband signaling

14(C) Herbert Haas 2005/03/11

TCP Header (4)

 PSH-Flag
 TCP should push the segment

immediately to the application without
buffering

 To provide low-latency connections
 Often ignored

15(C) Herbert Haas 2005/03/11

TCP Header (5)

 SYN-Flag
 Indicates a connection request
 Sequence number synchronization

 ACK-Flag
 Acknowledge number is valid
 Always set, except in very first segment

16(C) Herbert Haas 2005/03/11

TCP Header (6)

 FIN-Flag
 Indicates that this segment is the last
 Other side must also finish the

conversation

 RST-Flag
 Immediately kill the conversation
 Used to refuse a connection-attempt

17(C) Herbert Haas 2005/03/11

TCP Header (7)

 Window (16 Bit)
 Adjusts the send-window size of the

other side
 Used with every segment
 Receiver-based flow control
 SeqNr of last octet = AckNr + window

18(C) Herbert Haas 2005/03/11

TCP Header (8)

 Checksum
 Calculated over TCP header, payload

and 12 byte pseudo IP header
 Pseudo IP header consists of source

and destination IP address, IP protocol
type, and IP total length;

 Complete socket information is
protected

 Thus TCP can also detect IP errors

19(C) Herbert Haas 2005/03/11

TCP Header (9)

 Urgent Pointer
 Points to the last octet of urgent data

 Options
 Only MSS (Maximum Message Size) is

used
 Other options are defined in RFC1146,

RFC1323 and RFC1693

 Pad
 Ensures 32 bit alignment

20(C) Herbert Haas 2005/03/11

TCP 3-Way-Handshake

ACK = ?
SEQ = 730 (random)

ACK = 401
SEQ = 731

ACK = 401
SEQ = 731

ACK = 731
SEQ = 400 (random)

ACK = ?
SEQ = ? (idle)

ACK = 731
SEQ = 401

ACK=?
SEQ=730

 SYN

ACK=731 SEQ=400

SYN, ACK

ACK=401 SEQ=731
 ACK

SYNCHRONIZED

21(C) Herbert Haas 2005/03/11

Sequence Number

 RFC793 suggests to pick a random
number at boot time (e.g. derived from
system start up time) and increment every
4 µs

 Every new connection will increments
SeqNr by 1

 To avoid interference of spurious packets

 Old "half-open" connections are deleted
with the RST flag

22(C) Herbert Haas 2005/03/11

TCP Data Transfer

ACK = 401
SEQ = 731

ACK = 401
SEQ = 751

ACK = 401
SEQ = 801

ACK = 751
SEQ = 401

ACK = 731
SEQ = 401

ACK = 801
SEQ = 401

ACK=401 SEQ=731
 20 Bytes

ACK=751 SEQ=401

0 Bytes

ACK=401 SEQ=751
 50 Bytes

ACK=801 SEQ=401

0 Bytes

23(C) Herbert Haas 2005/03/11

TCP Data Transfer

 Acknowledgements are generated for all
octets which arrived in sequence without
errors (positive acknowledgement)

 Duplicates are also acknowledged (!)
 Receiver cannot know why duplicate has been sent;

maybe because of a lost acknowledgement

 The acknowledge number indicates the sequence
number of the next byte to be received

 Acknowledgements are cumulative: Ack(N)
confirms all bytes with sequence numbers up to
N-1
 Therefore lost acknowledgements are no problem

24(C) Herbert Haas 2005/03/11

Cumulative Acknowledgement

Data(13) Seq=10

Data(15) Seq=23

Data(11) Seq=43

Data(9) Seq=54

Data(5) Seq=38

Ack = 23

Ack = 38

Ack = 43

Ack = 54

Ack = 63

Ack is lost

Cumulative Ack

25(C) Herbert Haas 2005/03/11

Duplicate Acknowledgement

Data(13) Seq=10

Data(15) Seq=23

Data(11) Seq=43

Data(5) Seq=38

Data(5) Seq=38

Ack = 23

Ack = 38

Ack = 38

Ack = 54

Data is lost

Duplicate AckRepair

Cumulative Ack

26(C) Herbert Haas 2005/03/11

TCP Retransmission Timeout

 Retransmission timeout (RTO) will
initiate a retransmission of
unacknowledged data
 High timeout results in long idle times

if an error occurs
 Low timeout results in

unnecessary retransmissions

 TCP continuously measures RTT to
adapt RTO

27(C) Herbert Haas 2005/03/11

Retransmission ambiguity problem

 If a packet has been retransmitted
and an ACK follows: Does this ACK
belong to the retransmission or to
the original packet?
 Could distort RTT measurement

dramatically

 Solution: Phil Karn's algorithm
 Ignore ACKs of a retransmission for the

RTT measurement
 And use an exponential backoff method

28(C) Herbert Haas 2005/03/11

RTT Estimation (1/2)

 For TCP's performance a precise
estimation of the current RTT is crucial
 RTT may change because of varying network

conditions (e. g. re-routing)

 Originally a smooth RTT estimator was
used (a low pass filter)
 M denotes the observed RTT (which is

typically inprecise because there is no one-to-
one mapping between data and ACKs)

 R = αR+(1 − α)M with smoothing factor α=0.9
 Finally RTO = β ∙R with variance factor β=2

29(C) Herbert Haas 2005/03/11

RTT Estimation (2/2)

 Initial smooth RTT estimator could not
keep up with wide fluctuations of the RTT
 Led to too many retransmissions

 Jacobson's suggested to take the RTT
variance also into account
 Err = M − A

• The deviation from the measured RTT (M) and the
RTT estimation (A)

 A = A + g ∙ Err
• with gain g = 0.125

 D = D + h (|Err| − D)
• with h = 0.25

 RTO = A + 4D

30(C) Herbert Haas 2005/03/11

TCP Sliding Window

 TCP flow control is done with dynamic
windowing using the sliding window protocol

 The receiver advertises the current amount of
octets it is able to receive
 Using the window field of the TCP header
 Values 0 through 65535

 Sequence number of the last octet a sender may
send = received ack-number -1 + window size
 The starting size of the window is negotiated during the

connect phase
 The receiving process can influence the advertised

window, hereby affecting the TCP performance

31(C) Herbert Haas 2005/03/11

TCP Sliding Window

HOST A
HOST B

45 46 47 48 49 50 51

[SYN] S=44 A=? W=8
[SYN, ACK] S=72 A=45 W=4

[ACK] S=45 A=73 W=8

[ACK] S=45 A=73 W=8

Advertised Window
 (by the receiver)

Bytes in the send-buffer
written by the application
process

First byte that
can be send

Last byte that
can be send

32(C) Herbert Haas 2005/03/11

TCP Sliding Window

 During the transmission the sliding window
moves from left to right, as the receiver
acknowledges data

 The relative motion of the two ends of the window
open or closes the window
 The window closes when data is sent and

acknowledged (the left edge advances to the right)
 The window opens when the receiving process on

the other end reads acknowledges data and frees up
TCP buffer space (the right edge moves to the right)

 If the left edge reaches the right edge, the sender
stops transmitting data - zero window

33(C) Herbert Haas 2005/03/11

TCP Persist Timer (1/2)

 Deadlock possible:
Window is zero
and window-
opening ACK is
lost!
ACKs are sent

unreliable!
Now both sides

wait for each other!

S=3120, payload: 1000 bytes

ACK, A=4120, W=0

ACK, A=4120, W=20000

Waiting until
window is being

opened

Waiting until
data is sent

34(C) Herbert Haas 2005/03/11

TCP Persist Timer (2/2)

 Solution: Sender may send
window probes:
 Send one data byte beyond

window
 If window remains closed

then this byte is not
acknowledged—so this
byte keeps being
retransmitted

 TCP sender remains in
persist state and continues
retransmission forever
(until window size opens)
 Probe intervals are

increased exponentially
between 5 and 60 seconds

 Max interval is 60 seconds
(forever)

S=4121, payload: 1 byte

ACK, A=4122, W=20000

S=3120, payload: 1000 bytes

ACK, A=4120, W=0

S=4121, payload: 1 byte

ACK, A=4120, W=0

probe

probe

S=4121, payload: 1 byte
probe

ACK, A=4122, W=20000

35(C) Herbert Haas 2005/03/11

Simultaneous Open

 If an application uses well
known ports for both client
and server, a "simultaneous
open" can be done
 TCP explicitly supports this
 A single connection (not two!) is

the result
 Since both peers learn each

others sequence number at
the very beginning the
session is established with a
following SYN-ACK

 Hard to realize in practice
 Both SYN packets must cross

each other in the network
 Rare situation!

SYN, S=100 SYN, S=300

SYN, S=100ACK, A=301

SYN, S=300

ACK, A=101

Established

36(C) Herbert Haas 2005/03/11

TCP Enhancements

 So far, only the very basic TCP procedures have
been mentioned

 But TCP has much more magic built-in
algorithms which are essential for operation in
today's IP networks:
 "Slow Start" and “Congestion Avoidance”
 "Fast Retransmit" and "Fast Recovery"
 "Delayed Acknowledgements"
 "The Nagle Algorithm“
 Selective Ack (SACK), Window Scaling
 Silly windowing avoidance

 Additionally, there are different implementations
(Reno, Vegas, …)

37(C) Herbert Haas 2005/03/11

Delayed ACKs

 Goal: Reduce traffic,
support piggy-backed
ACKs

 Normally TCP, after
receiving data, does
not immediately send
an ACK

 Typically TCP waits
(typically) 200 ms and
hopes that layer-7
provides data that
can be sent along
with the ACK

Example:
Telnet and no Delayed ACK

Keypress "A"

ACK

Echo "A"

Example:
Telnet with Delayed ACK

Keypress "A"

ACK + Echo "A"
Wait 100 ms
on average

38(C) Herbert Haas 2005/03/11

Nagle Algorithm

 Goal: Avoid tinygrams on expensive (and usually
slow) WAN links

 In RFC 896 John Nagle introduced an efficient
algorithm to improve TCP

 Idea: In case of outstanding (=unacknowledged)
data, small segments should not be sent until the
outstanding data is acknowledged

 In the meanwhile small amount of data (arriving
from Layer 7) is collected and sent as a single
segment when the acknowledgement arrives

 This simple algorithm is self-clocking
 The faster the ACKs come back, the faster data is sent

 Note: The Nagle algorithm can be disabled!
 Important for realtime services

39(C) Herbert Haas 2005/03/11

TCP Keepalive Timer

 Note that absolutely no data flows during
an idle TCP connection!
 Even for hours, days, weeks!

 Usually needed by a server that wants to
know which clients are still alive
 To close stale TCP sessions

 Many implementations provide an optional
TCP keepalive mechanism
 Not part of the TCP standard!
 Not recommended by RFC 1122 (hosts

requirements)
 Minimum interval must be 2 hours

40(C) Herbert Haas 2005/03/11

TCP Disconnect

ACK = 178
SEQ = 732

ACK = 178
SEQ = 733

ACK = 179
SEQ = 733

ACK = 733
SEQ = 178

ACK = 732
SEQ = 178

ACK = 733
SEQ = 179

ACK=732 SEQ=178
 FIN

ACK=178 SEQ=733

 ACK

ACK=733 SEQ=179
 ACK

ACK=178 SEQ=733

 F

IN

ACK = 733
SEQ = 178

41(C) Herbert Haas 2005/03/11

TCP Disconnect

 A TCP session is disconnected similar
to the three way handshake

 The FIN flag marks the sequence number to be
the last one; the other station acknowledges and
terminates the connection in this direction

 The exchange of FIN and ACK flags ensures, that
both parties have received all octets

 The RST flag can be used if an error occurs
during the disconnect phase

2005/03/11(C) Herbert Haas

TCP Congestion Control

1. Slow Start & Congestion
Avoidance

2. Random Early Discard
3. Explicit Congestion Notification

43(C) Herbert Haas 2005/03/11

Once again: The Window Size

 The windows size (announced by the peer)
indicates how many bytes I may send at
once (=without having to wait for
acknowledgements)
 Either using big or small packets

 Before 1988, TCP peers tend to exploit the
whole window size which has been
announced during the 3-way handshake
 Usually no problem for hosts
 But led to frequent network congestions

44(C) Herbert Haas 2005/03/11

Goal of Slow Start

 TCP should be "ACK-clocking"
 Problem (buffer overflows) appears at

bottleneck links
 New packets should be injected at the

rate at which ACKs are received

Pipe modell of a network path: Big fat pipes (high data rates) outside, a
bottleneck link in the middle. The green packets are sent at the maximum

achievable rate so that the interpacket delay is almost zero at the bottleneck
link; however there is a significant interpacket gap in the fat pipes.

45(C) Herbert Haas 2005/03/11

Preconditions of Slow Start

 Two important parameters are
communicated during the TCP three-
way handshake
 The maximum segment size (MSS)
 The Window Size

 Now Slow Start introduces the
congestion window (cwnd)
 Only locally valid and locally maintained
 Like window field stores a byte count

46(C) Herbert Haas 2005/03/11

Idea of Slow Start

 Upon new session, cwnd
is initialized with MSS (=
1 segment)

 Allowed bytes to be sent:
Min(W, cwnd)

 Each time an ACK is
received, cwnd is
incremented by 1
segment
 That is, cwnd doubles

every RTT (!)
 Exponential increase!

cwnd=1 MSS Data

Ack

cwnd=2 MSS

cwnd=4 MSS

cwnd=4 MSS

…

47(C) Herbert Haas 2005/03/11

Graphical illustration (1/4)
S

en
d

er

R
ec

ei
ve

r

D1

S
en

d
er

R
ec

ei
ve

r

D1

S
en

d
er

R
ec

ei
ve

r

D1

S
en

d
er

R
ec

ei
ve

r

D1

S
en

d
er

R
ec

ei
ve

r

A1

S
en

d
er

R
ec

ei
ve

r

A1

S
en

d
er

R
ec

ei
ve

r

A1

S
en

d
er

R
ec

ei
ve

r

A1

S
en

d
er D2

R
ec

ei
ve

r

S
en

d
er D3

R
ec

ei
ve

r

D2

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

cwnd=1

cwnd=2

cwnd=1

cwnd=1

cwnd=1

cwnd=1

cwnd=1

cwnd=1

cwnd=1

cwnd=2

48(C) Herbert Haas 2005/03/11

Graphical illustration (2/4)
S

en
d

er

R
ec

ei
ve

r

D2

S
en

d
er

R
ec

ei
ve

r

D3

S
en

d
er

R
ec

ei
ve

r

D3

S
en

d
er

R
ec

ei
ve

r

S
en

d
er

R
ec

ei
ve

r
A2

S
en

d
er

R
ec

ei
ve

r

S
en

d
er

R
ec

ei
ve

r

A3

S
en

d
er

R
ec

ei
ve

r

S
en

d
er D6

R
ec

ei
ve

r

S
en

d
er

D4

R
ec

ei
ve

r

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19

D3

D2

A3A2

A3A2

A3A2

D5 D4

D5 D4

D6 D5 D4D7

cwnd=3

cwnd=4

cwnd=4

cwnd=2

cwnd=2

cwnd=2

cwnd=2

cwnd=2

cwnd=4

cwnd=2

49(C) Herbert Haas 2005/03/11

Graphical illustration (3/4)
S

en
d

er

R
ec

ei
ve

r

D6

S
en

d
er

R
ec

ei
ve

r

S
en

d
er

R
ec

ei
ve

r

S
en

d
er

R
ec

ei
ve

r

S
en

d
er

R
ec

ei
ve

r

A4 S
en

d
er

R
ec

ei
ve

r

S
en

d
er

R
ec

ei
ve

r

S
en

d
er

R
ec

ei
ve

r

S
en

d
er

R
ec

ei
ve

r

S
en

d
er

R
ec

ei
ve

r

t=20

t=21

t=22

t=23

t=24

t=25

t=26

t=27

t=28

t=29

D5

D6

A6

A5A4

A5A4 A6

A5A4 A6

A5 A6

D8

D9 D8

D10 D9 D8

D10 D9 D8D11

D10 D9D11

A8

D10D11

A9A8

D7

D7

D7

A7

A7

A7

A7

D12

D12D13

cwnd=5

cwnd=6

cwnd=7

cwnd=8

cwnd=4

cwnd=4

cwnd=4

cwnd=4

cwnd=8

cwnd=8

50(C) Herbert Haas 2005/03/11

Graphical illustration (4/4)

 TCP is "self-clocking"
 The spacing between the ACKs is the same as between

the data segments
 The number of ACKs is the same as the number of data

segments
 In our example, cwnd=8 is the optimum

 This is the delay-bandwidth product (8 = RTT x BW)
 In other words: the pipe can accept 8 packets per

round-trip-time

S
en

d
er

R
ec

ei
ve

r

S
en

d
er

R
ec

ei
ve

r

t=30

t=31

D11D12

A10A9

D13D14

A8

D12D13

A11A10

D14D15

A9A8

cwnd=8 => Pipe is full (ideal situation) –
cwnd should not be increased anymore!

cwnd=8

cwnd=8

51(C) Herbert Haas 2005/03/11

End of Slow Start

 Slow start leads to an exponential
increase of the data rate until some
network bottleneck is congested:
Some packets get dropped!

 How does the TCP sender recognize
network congestions?

 Answer: Upon receiving Duplicate
Acknowledgements !!!

52(C) Herbert Haas 2005/03/11

Once again: Duplicate ACKs

 TCP receivers send
duplicate ACKs if
segments are missing
 ACKs are cumulative (each

ACK acknowledges all data
until specified ACK-
number)

 Duplicate ACKs should not
be delayed

 ACK=300 means: "I am
still waiting for packet
with SQNR=300"

SQNR=100

SQNR=200

SQNR=300

SQNR=400

ACK=200

ACK=300

ACK=300

SQNR=300

SQNR=500

ACK=300

…

Duplicate Ack

Duplicate Ack

53(C) Herbert Haas 2005/03/11

Congestion Avoidance (1)

 Congestion Avoidance is the companion
algorithm to Slow Start – both are usually
implemented together !

 Idea: Upon congestion (=duplicate ACKs) reduce
the sending rate by half and now increase the rate
linearly until duplicate ACKs are seen again (and
repeat this continuously)
 Introduces another variable: the Slow Start threshold

(ssthresh)

 Note this central TCP assumption: Packets are
dropped because of buffer overflows and NOT
because of bit errors!
 Therefore packet loss indicates congestion somewhere

in the network

54(C) Herbert Haas 2005/03/11

The combined algorithm

New Session: initialize cwnd = 1 MSS, ssthresh = 65535

Determine actual window size "AWS" = Min (W, cwnd)
 ** send AWS bytes **

Retransmission
timeout expired

Duplicate ACKs
received

Data
acknowledged

Increment cwnd
 by 1/cwnd for

each ACK received

cwnd = 1
ssthresh = AWS/2

ssthresh = AWS/2
(but at least 2 MSS)

(cwnd > ssthresh) ?

yes no

Increment cwnd
by one for each
ACK received.

55(C) Herbert Haas 2005/03/11

Slow Start and Congestion Avoidance

cwnd / MSS

t / RTT1 2 3 4 5 6 7 8 9

2

4

6

8

10

12

14

16

18

20
Duplicate ACK received

at cwnd = 32

Duplicate ACK received
at cwnd = 20

Congestion Avoidance

Congestion Avoidance

Slo
w S

ta
rt

56(C) Herbert Haas 2005/03/11

"Fast Retransmit"

 Note that duplicate ACKs are also
sent upon packet reordering

 Therefore TCP waits for 3 duplicate
ACKs before it really assumes
congestion
 Immediate retransmission (don't wait for

timer expiration)

 This is called the Fast Retransmit
algorithm

57(C) Herbert Haas 2005/03/11

"Fast Recovery"

 After Fast Retransmit TCP continues with
Congestion Avoidance
 Does NOT fall back to Slow Start

 Every another duplicate ACK tells us that
a "good" packet has been received by the
peer
 cwnd = cwnd + MSS
 => Send one additional segment

 As soon a normal ACK is received
 cwnd = ssthresh = Min(W, cwnd)/2

 This is called Fast Recovery

58(C) Herbert Haas 2005/03/11

All together!

New Session: initialize cwnd = 1 MSS, ssthresh = 65535

Determine actual window size "AWS" = Min (W, cwnd)
 ** send AWS bytes **

Retransmission
timeout expired

3 duplicate ACKs
received

Data
acknowledged

Increment cwnd
 by 1/cwnd for

each ACK received

cwnd = 1
ssthresh = AWS/2

ssthresh = AWS/2
(but at least 2 MSS),

retransmit the segment,
cwnd = ssthresh+3 MSS,

for each 3+nth duplicate ACK
increase cwnd by 1 MSS;

then set cwnd=ssthresh upon
first "normal" ACK

(cwnd > ssthresh) ?

yes no

Increment cwnd
by one for each
ACK received.

Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery

59(C) Herbert Haas 2005/03/11

Real TCP Performance

 TCP always tries to minimize the
data delivery time

 Good and proven self-regulating
mechanism to avoid congestion

 TCP is "hungry but fair"
 Essentially fair to other TCP

applications
 Unreliable traffic (e. g. UDP) is not fair to

TCP…

60(C) Herbert Haas 2005/03/11

Summary: The TCP "wave"

 Tries to fill the "pipe" using
 Slow Start and
 Congestion Avoidance

RTT

Relative

Through
put
Rate
(cwnd)

ssthresh

Duplicate AckDuplicate AckDuplicate Ack Duplicate Ack

slow start congestion
avoidance

congestion
avoidance

congestion
avoidance

max. achievable
throughput

61(C) Herbert Haas 2005/03/11

What's happening in the network?

 Tail-drop queuing is the standard
dropping behavior in FIFO queues
 If queue is full all subsequent packets

are dropped

New arriving packets are dropped
("Tail drop")

Full queue

62(C) Herbert Haas 2005/03/11

Tail-drop Queuing (cont.)

 Another representation:
Drop probability versus queue depth

100%

0%
Queue Depth

D
ro

p
 P

ro
b

ab
ili

ty

63(C) Herbert Haas 2005/03/11

Tail-drop Problems

 No flow differentiation

 TCP starvation upon multiple packet
drop

• TCP receivers may keep quiet (not even
send Duplicate ACKs) and sender falls back
to slow start
– worst case!

• TCP fast retransmit and/or selective
acknowledgement may help

 TCP synchronization

64(C) Herbert Haas 2005/03/11

TCP Synchronization

 Tail-drop drops many packets of different
sessions at the same time

 All these sessions experience duplicate ACKs
and perform synchronized congestion avoidance

RTT

Relative
Throughput

Rate

(Window
size)

Duplicate AckDuplicate AckDuplicate Ack Duplicate Ack

slow start congestion
avoidance

congestion
avoidance

congestion
avoidance

max. achievable
throughput

Average link
utilization

65(C) Herbert Haas 2005/03/11

Random Early Detection (RED)

 Utilizes TCP specific behavior
 TCP dynamically adjusts traffic throughput to

accommodate to minimal available bandwidth
(bottleneck) via reduced window size

 "Missing" (dropped) TCP segments cause
window size reduction!
 Idea: Start dropping TCP packets before queuing "tail-

drops" occur
 Make sure that "important" traffic is not dropped

 RED randomly drops packets before queue is full
 Drop probability increases linearly with queue depth

66(C) Herbert Haas 2005/03/11

RED

 Important RED parameters
 Minimum threshold
 Maximum threshold
 Average queue size (running average)

 RED works in three different modes
 No drop

• If average queue size is between 0 and minimum threshold
 Random drop

• If average queue size is between minimum and maximum
threshold

 Full drop
• If average queue size is equal or above maximum

threshold = "tail-drop"

67(C) Herbert Haas 2005/03/11

RED Parameters

Drop probability

Mark probability

100%

10%

min-thresh max-thresh

Average
queue size

(e.g. 20) (e.g. 40)

Tail-drop (full drop)

RED

(packets)

68(C) Herbert Haas 2005/03/11

Weighted RED (WRED)

 Drops less important packets more
aggressively than more important packets

 Importance based on:
 IP precedence 0-7
 DSCP value 0-63

 Classified traffic can be dropped based on
the following parameters
 Minimum threshold
 Maximum threshold
 Mark probability denominator

(Drop probability at maximum threshold)

69(C) Herbert Haas 2005/03/11

RED Problems

 RED performs "Active Queue
Management" (AQM) and drops
packets before congestion occurs
 But an uncertainty remains whether

congestion will occur at all

 RED is known as "difficult to tune"
 Goal: Self-tuning RED
 Running estimate weighted moving

average (EWMA) of the average queue
size

70(C) Herbert Haas 2005/03/11

Explicit Congestion Notification (ECN)

 Traditional TCP stacks only use packet loss as indicator to
reduce window size
 But some applications are sensitive to packet loss and delays

 Routers with ECN enabled mark packets when the average
queue depth exceeds a threshold
 Instead of randomly dropping them
 Hosts may reduce window size upon receiving ECN-marked

packets
 Least significant two bits of IP TOS used for ECN

ECT CE
IP TOS Field

DSCP ECN

Obsolete (but widely used) RFC 2481
notation of these two bits:

ECT ECN-Capable Transport
CE Congestion Experienced

71(C) Herbert Haas 2005/03/11

Usage of CE and ECT

 RFC 3168 redefines the use of the two bits: ECN-supporting
 hosts should set one of the two ECT code points
 ECT(0) or ECT(1)
 ECT(0) SHOULD be preferred

 Routers that experience congestion set the CE code point
in packets with ECT code point set (otherwise: RED)

 If average queue depth is exceeding max-threshold: Tail-
drop

 If CE already set: forward packet normally (abuse!)

0 0

0 1

1 0

1 1

Non ECN-capable transport

ECT(1)

ECT(0)
Codepoints for ECN-capable transport

CE codepoint

ECN Field

72(C) Herbert Haas 2005/03/11

CWR and ECE

 RFC 3168 also introduced two new TCP flags
 ECN Echo (ECE)
 Congestion Window Reduced (CWR)

 Purpose:
 ECE used by data receiver to inform the data sender when a

CE packet has been received
 CWR flag used by data sender to inform the data receiver that

the congestion window has been reduced

IP TOS: ECT IP TOS: CE

TCP: ECETCP: ECE

Congestion

IP TOS: ECT

TCP: ECE

TCP: CWR TCP: CWRTCP: CWR

Header
Length

P
S
H

R
S
T

S
Y
N

F
I
N

A
C
K

U
R
G

Reserved Window Size
E
C
E

C
W
R

Part of TCP header:

73(C) Herbert Haas 2005/03/11

ECN Configuration

 Note: ECN is an extension to WRED
 Therefore WRED must be enabled first !

 ECN will be applied on that traffic that is
identified by WRED (e. g. dscp-based)

(config-pmap-c)# random-detect
(config-pmap-c)# random-detect ecn

show policy-map interface s0/1 !!! shows ECN setting

74(C) Herbert Haas 2005/03/11

Note

 CE is only set when average queue
depth exceeds a threshold
 End-host would react immediately
 Therefore ECN is not appropriate for

short term bursts (similar as RED)

 Therefore ECN is different as the
related features in Frame Relay or
ATM which acts also on short term
(transient) congestion

75(C) Herbert Haas 2005/03/11

UDP

 UDP is a connectionless layer 4 service
(datagram service)

 Layer 3 Functions are extended by port
addressing and a checksum to ensure integrity

 UDP uses the same port numbers as TCP
(if applicable)

 UDP is used, where the overhead of a connection
oriented service is undesirable or where the
implementation has to be small

 DNS request/reply, SNMP get/set, booting by TFTP
 Less complex than TCP, easier to implement

76(C) Herbert Haas 2005/03/11

UDP Header

Destination Port NumberSource Port Number

PAYLOAD

 0 4 8 12 16 20 24 28 32

UDP Length UDP Checksum

77(C) Herbert Haas 2005/03/11

UDP

 Source and Destination Port
 Port number for addressing the process (application)
 Well known port numbers defined in RFC1700

 UDP Length
 Length of the UDP datagram (Header plus Data)

 UDP Checksum
 Checksum includes pseudo IP header

(IP src/dst addr., protocol field),
UDP header and user data;
one´s complement of the sum of all one´s complements

2005/03/11(C) Herbert Haas

Other Transport Layer Protocols

SCTP

UDP Lite

DCCP

79(C) Herbert Haas 2005/03/11

Stream Control Transmission
Protocol (SCTP)

 A newer improved alternative to TCP (RFC
4960)

 Supports
 Multi-homing
 Multi-streaming
 Heart-beats
 Resistance against SYN-Floods (via Cookies)

and 4-way handshake)

 Seldom used today
 Base for the Reliable Server Pooling Protocol

(RSerPool)

80(C) Herbert Haas 2005/03/11

UDP Lite

 Problem: Lots of applications would like to
receive even (slightly) corrupted data
 E. g. multimedia

 UDP Lite (RFC 3828) defines a different
usage of the UDP length field
 UDP length field indicates how many bytes of

the datagram are really protected by the
checksum ("checksum coverage")

 True length shall be determined by IP length
field

 Currently only supported by Linux

81(C) Herbert Haas 2005/03/11

Datagram Congestion Control Protocol
(DCCP)

 Problem: More and more
applications use UDP instead of TCP

 But UDP does not support
congestion control – networks might
collapse!

 DCCP adds a congestion control
layer to UDP
 RFC 4340
 First implementations now in FreeBSD

and Linux

82(C) Herbert Haas 2005/03/11

DCCP (cont.)

 4-way handshake

 Different
procedures
compared to TCP
regarding
sequence number
handling and
session creation

83(C) Herbert Haas 2005/03/11

Summary

 TCP & UDP are Layer 4 (Transport)
Protocols above IP

 TCP is "Connection Oriented"
 UDP is "Connection Less"
 TCP implements "Fault Tolerance" using

"Positive Acknowledgement"
 TCP implements "Flow Control" using

dynamic window-sizes
 The combination of IP-Address and

TCP/UDP-Port is called a "Socket"

	Introducing TCP & UDP
	TCP Facts (1)
	TCP Facts (2)
	Port Numbers
	Registered Ports
	TCP Communications
	Sockets
	Folie 8
	Folie 9
	TCP Header
	TCP Header (1)
	TCP Header (2)
	TCP Header (3)
	TCP Header (4)
	TCP Header (5)
	TCP Header (6)
	TCP Header (7)
	TCP Header (8)
	TCP Header (9)
	TCP 3-Way-Handshake
	Sequence Number
	TCP Data Transfer
	Folie 23
	Cumulative Acknowledgement
	Duplicate Acknowledgement
	TCP Retransmission Timeout
	Retransmission ambiguity problem
	RTT Estimation (1/2)
	RTT Estimation (2/2)
	TCP Sliding Window
	Folie 31
	Folie 32
	TCP Persist Timer (1/2)
	TCP Persist Timer (2/2)
	Simultaneous Open
	TCP Enhancements
	Delayed ACKs
	Nagle Algorithm
	TCP Keepalive Timer
	TCP Disconnect
	Folie 41
	TCP Congestion Control
	Once again: The Window Size
	Goal of Slow Start
	Preconditions of Slow Start
	Idea of Slow Start
	Graphical illustration (1/4)
	Graphical illustration (2/4)
	Graphical illustration (3/4)
	Graphical illustration (4/4)
	End of Slow Start
	Once again: Duplicate ACKs
	Congestion Avoidance (1)
	The combined algorithm
	Slow Start and Congestion Avoidance
	"Fast Retransmit"
	"Fast Recovery"
	All together!
	Real TCP Performance
	Summary: The TCP "wave"
	What's happening in the network?
	Tail-drop Queuing (cont.)
	Tail-drop Problems
	TCP Synchronization
	Random Early Detection (RED)
	RED
	RED Parameters
	Weighted RED (WRED)
	RED Problems
	Explicit Congestion Notification (ECN)
	Usage of CE and ECT
	CWR and ECE
	ECN Configuration
	Note
	UDP
	UDP Header
	Folie 77
	Other Transport Layer Protocols
	Stream Control Transmission Protocol (SCTP)
	UDP Lite
	Datagram Congestion Control Protocol (DCCP)
	DCCP (cont.)
	Summary

