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Introducing TCP & UDP

 Internet Transport Layers
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TCP Facts (1)

 Connection-oriented layer 4 protocol

 Carried within IP payload

 Provides a reliable end-to-end transport of 

data between computer processes of 
different end systems
 Error detection and recovery
 Sequencing and duplication detection
 Flow control

 RFC 793
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TCP Facts (2)

 Application's data is regarded as 
continuous byte stream

 TCP ensures a reliable transmission 
of segments of this byte stream

 Handover to Layer 7 at "Ports"
 OSI-Speak: Service Access Point



4(C) Herbert Haas 2005/03/11

Port Numbers

 Using port numbers TCP (and UDP) 
can multiplex different layer-7 byte 
streams

 Server processes are identified by 
Well known port numbers : 0..1023
 Controlled by IANA

 Client processes use arbitrary port 
numbers >1023
 Better >8000 because of registered ports
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Registered Ports

 For proprietary server applications
 Not controlled by IANA only listed in 

RFC 1700
 Examples

 1433 Microsoft-SQL-Server
 1439 Eicon X25/SNA Gateway
 1527 Oracle
 1986 Cisco License Manager
 1998 Cisco X.25 service (XOT)
 6000-6063  X Window System
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TCP Communications

IP (10.1.1.9)

TCP (80 / 110)

Server-Proc 1
WWW
Port 80

Server-Proc 2
POP3

Port 110

IP (10.1.1.1)

TCP (4711)

Client-Proc
Port 4711

DA:10.1.1.9
SA:10.1.1.1

DP:80
SP:4711

IP (10.1.1.2)

TCP (7312)

Client-Proc
Port 7312

DA:10.1.1.9
SA:10.1.1.2

DP:110
SP:7312

Server Host A Host B
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Sockets

 Server process multiplexes streams 
with same source port numbers 
according source IP address

 (PortNr, SA) = Socket 

 Each stream ("flow") is uniquely 
identified by a socket pair
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TCP Communications

IP (10.1.1.1)

TCP (4711)

Client-Proc
Port 4711

DA:10.1.1.9
SA:10.1.1.1

DP:80
SP:4711

IP (10.1.1.2)

TCP (7312)

Client-Proc
Port 7312

DA:10.1.1.9
SA:10.1.1.2

DP:80
SP:7312

Host A Host B

IP (10.1.1.9)

TCP (80)

Server-Proc 1
WWW
Port 80

Server
Connection 1:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.1 : 4711

Connection 2:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.9 : 7312
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TCP Communications

IP (10.1.1.9)

TCP (80)

Server-Proc 1
WWW
Port 80

Client-Proc 1
Port 4711

DA:10.1.1.9
SA:10.1.1.2

DP:80
SP:4711

IP (10.1.1.2)

TCP (4711 / 7312)

Client-Proc 2
Port 7312

DA:10.1.1.9
SA:10.1.1.2

DP:80
SP:7312

Server
Host

Connection 1:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.2 : 4711

Connection 2:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.9 : 7312

Connection 1:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.2 : 4711

Connection 2:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.9 : 7312
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TCP Header

Destination Port NumberSource Port Number

Options (variable length) Padding

PAYLOAD

 0  4  8  12  16  20  24 28 32

Sequence Number

Acknowledgement Number

Header
Length

P
S
H

R
S
T

S
Y
N

F
I
N

A
C
K

U
R
G

Reserved Window Size

TCP Checksum Urgent Pointer
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TCP Header (1)

 Source and Destination Port
 16 bit port number for source and 

destination process

 Header Length
 Multiple of 4 bytes
 Variable header length because of 

options (optionally)
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TCP Header (2)

 Sequence Number (32 Bit)
 Number of first byte of this segment
 Wraps around to 0 when reaching 232 -1)

 Acknowledge Number (32 Bit)
 Number of next byte expected by 

receiver
 Confirms correct reception of all bytes 

including byte with number AckNr-1
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TCP Header (3)

 URG-Flag
 Indicates urgent data
 If set, the 16-bit "Urgent Pointer" field is valid 

and points to the last octet of urgent data
 There is no way to indicate the beginning of 

urgent data (!)
 Applications switch into the "urgent mode"
 Used for quasi-outband signaling
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TCP Header (4)

 PSH-Flag
 TCP should push the segment 

immediately to the application without 
buffering

 To provide low-latency connections
 Often ignored
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TCP Header (5)

 SYN-Flag 
 Indicates a connection request
 Sequence number synchronization

 ACK-Flag
 Acknowledge number is valid
 Always set, except in very first segment 
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TCP Header (6)

 FIN-Flag
 Indicates that this segment is the last
 Other side must also finish the 

conversation 

 RST-Flag
 Immediately kill the conversation
 Used to refuse a connection-attempt
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TCP Header (7)

 Window (16 Bit)
 Adjusts the send-window size of the 

other side
 Used with every segment
 Receiver-based flow control
 SeqNr of last octet = AckNr + window
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TCP Header (8)

 Checksum
 Calculated over TCP header, payload 

and 12 byte pseudo IP header
 Pseudo IP header consists of source 

and destination IP address, IP protocol 
type, and IP total length; 

 Complete socket information is 
protected

 Thus TCP can also detect IP errors
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TCP Header (9)

 Urgent Pointer
 Points to the last octet of urgent data

 Options
 Only MSS (Maximum Message Size) is 

used
 Other options are defined in RFC1146, 

RFC1323 and RFC1693

 Pad
 Ensures 32 bit alignment
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TCP 3-Way-Handshake

ACK = ?
SEQ = 730 (random)

ACK = 401
SEQ = 731

ACK = 401
SEQ = 731

ACK = 731
SEQ = 400 (random)

ACK = ?
SEQ = ? (idle)

ACK = 731
SEQ = 401 

ACK=?
SEQ=730

            SYN

ACK=731 SEQ=400

        
SYN, ACK

ACK=401 SEQ=731
             ACK

SYNCHRONIZED
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Sequence Number

 RFC793 suggests to pick a random 
number at boot time (e.g. derived from 
system start up time) and increment every 
4 µs

 Every new connection will increments 
SeqNr by 1

 To avoid interference of spurious packets

 Old "half-open" connections are deleted 
with the RST flag
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TCP Data Transfer

ACK = 401
SEQ = 731 

ACK = 401
SEQ = 751

ACK = 401
SEQ = 801

ACK = 751
SEQ = 401 

ACK = 731
SEQ = 401

ACK = 801
SEQ = 401 

ACK=401 SEQ=731
         20 Bytes

ACK=751 SEQ=401

        
0 Bytes

ACK=401 SEQ=751
             50 Bytes

ACK=801 SEQ=401

        
0 Bytes
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TCP Data Transfer

 Acknowledgements are generated for all 
octets which arrived in sequence without 
errors (positive acknowledgement)

 Duplicates are also acknowledged (!)
 Receiver cannot know why duplicate has been sent; 

maybe because of a lost acknowledgement

 The acknowledge number indicates the sequence 
number of the next byte to be received

 Acknowledgements are cumulative: Ack(N) 
confirms all bytes with sequence numbers up to 
N-1 
 Therefore lost acknowledgements are no problem
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Cumulative Acknowledgement

Data(13) Seq=10

Data(15) Seq=23

Data(11) Seq=43

Data(9) Seq=54

Data(5) Seq=38

Ack = 23

Ack = 38

Ack = 43

Ack = 54

Ack = 63

Ack is lost

Cumulative Ack
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Duplicate Acknowledgement

Data(13) Seq=10

Data(15) Seq=23

Data(11) Seq=43

Data(5) Seq=38

Data(5) Seq=38

Ack = 23

Ack = 38

Ack = 38

Ack = 54

Data is lost

Duplicate AckRepair

Cumulative Ack
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TCP Retransmission Timeout

 Retransmission timeout (RTO) will 
initiate a retransmission of 
unacknowledged data 
 High timeout results in long idle times 

if an error occurs
 Low timeout results in 

unnecessary retransmissions

 TCP continuously measures RTT to 
adapt RTO
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Retransmission ambiguity problem

 If a packet has been retransmitted 
and an ACK follows: Does this ACK 
belong to the retransmission or to 
the original packet?
 Could distort RTT measurement 

dramatically

 Solution: Phil Karn's algorithm
 Ignore ACKs of a retransmission for the 

RTT measurement
 And use an exponential backoff method
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RTT Estimation (1/2)

 For TCP's performance a precise 
estimation of the current RTT is crucial
 RTT may change because of varying network 

conditions (e. g. re-routing)

 Originally a smooth RTT estimator was 
used (a low pass filter)
 M denotes the observed RTT (which is 

typically inprecise because there is no one-to-
one mapping between data and ACKs)

 R = αR+(1 − α)M with smoothing factor α=0.9
 Finally RTO = β ∙R with variance factor β=2
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RTT Estimation (2/2)

 Initial smooth RTT estimator could not 
keep up with wide fluctuations of the RTT
 Led to too many retransmissions

 Jacobson's suggested to take the RTT 
variance also into account
 Err = M − A

• The deviation from the measured RTT (M) and the 
RTT estimation (A)

 A = A + g ∙ Err   
• with gain g = 0.125

 D = D + h ( |Err| − D )
• with h = 0.25

 RTO = A + 4D
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TCP Sliding Window

 TCP flow control is done with dynamic 
windowing using the sliding window protocol

 The receiver advertises the current amount of 
octets it is able to receive
 Using the window field of the TCP header 
 Values 0 through 65535

 Sequence number of the last octet a sender may 
send = received ack-number -1 + window size
 The starting size of the window is negotiated during the 

connect phase
 The receiving process can influence the advertised 

window, hereby affecting the TCP performance
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TCP Sliding Window

HOST A
HOST B

45 46 47 48 49 50 51 ....

[SYN]  S=44  A=?  W=8 
[SYN, ACK]  S=72  A=45  W=4 

[ACK]  S=45  A=73  W=8 

[ACK] S=45  A=73  W=8 

Advertised Window
 (by the receiver)

Bytes in the send-buffer 
written by the application 
process

First byte that 
can be send

Last byte that 
can be send
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TCP Sliding Window

 During the transmission the sliding window 
moves from left to right, as the receiver 
acknowledges data

 The relative motion of the two ends of the window 
open or closes the window
 The window closes when data is sent and 

acknowledged (the left edge advances to the right)
 The window opens when the receiving process on 

the other end reads acknowledges data and frees up 
TCP buffer space (the right edge moves to the right)

 If the left edge reaches the right edge, the sender 
stops transmitting data - zero window
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TCP Persist Timer (1/2)

 Deadlock possible: 
Window is zero 
and window-
opening ACK is 
lost!
ACKs are sent 

unreliable!
Now both sides 

wait for each other!

S=3120, payload: 1000 bytes

ACK, A=4120, W=0 

ACK, A=4120, W=20000 

Waiting until
window is being 

opened

Waiting until
data is sent
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TCP Persist Timer (2/2)

 Solution: Sender may send 
window probes:
 Send one data byte beyond 

window
 If window remains closed 

then this byte is not 
acknowledged—so this 
byte keeps being 
retransmitted

 TCP sender remains in 
persist state and continues 
retransmission forever 
(until window size opens)
 Probe intervals are 

increased exponentially 
between 5 and 60 seconds

 Max interval is 60 seconds 
(forever)

S=4121, payload: 1 byte

ACK, A=4122, W=20000 

S=3120, payload: 1000 bytes

ACK, A=4120, W=0 

S=4121, payload: 1 byte

ACK, A=4120, W=0 

probe

probe

S=4121, payload: 1 byte
probe

ACK, A=4122, W=20000 
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Simultaneous Open

 If an application uses well 
known ports for both client 
and server, a "simultaneous 
open" can be done
 TCP explicitly supports this
 A single connection (not two!) is 

the result 
 Since both peers learn each 

others sequence number at 
the very beginning the 
session is established with a 
following SYN-ACK

 Hard to realize in practice
 Both SYN packets must cross 

each other in the network
 Rare situation!

SYN, S=100 SYN, S=300

SYN, S=100ACK, A=301

SYN, S=300

ACK, A=101

Established
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TCP Enhancements

 So far, only the very basic TCP procedures have 
been mentioned

 But TCP has much more magic built-in 
algorithms which are essential for operation in 
today's IP networks:
 "Slow Start" and “Congestion Avoidance”
 "Fast Retransmit" and "Fast Recovery"
 "Delayed Acknowledgements"
 "The Nagle Algorithm“
 Selective Ack (SACK), Window Scaling
 Silly windowing avoidance
 ....

 Additionally, there are different implementations 
(Reno, Vegas, …)
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Delayed ACKs

 Goal: Reduce traffic, 
support piggy-backed 
ACKs

 Normally TCP, after 
receiving data, does 
not immediately send 
an ACK

 Typically TCP waits 
(typically) 200 ms and 
hopes that layer-7 
provides data that 
can be sent along 
with the ACK

Example: 
Telnet and no Delayed ACK

Keypress "A"

ACK

Echo "A"

Example: 
Telnet with Delayed ACK

Keypress "A"

ACK + Echo "A"
Wait 100 ms 
on average 
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Nagle Algorithm

 Goal: Avoid tinygrams on expensive (and usually 
slow) WAN links

 In RFC 896 John Nagle introduced an efficient 
algorithm to improve TCP

 Idea: In case of outstanding (=unacknowledged) 
data, small segments should not be sent until the 
outstanding data is acknowledged

 In the meanwhile small amount of data (arriving 
from Layer 7) is collected and sent as a single 
segment when the acknowledgement arrives

 This simple algorithm is self-clocking
 The faster the ACKs come back, the faster data is sent

 Note: The Nagle algorithm can be disabled!
 Important for realtime services 
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TCP Keepalive Timer

 Note that absolutely no data flows during 
an idle TCP connection!
 Even for hours, days, weeks!

 Usually needed by a server that wants to 
know which clients are still alive
 To close stale TCP sessions

 Many implementations provide an optional 
TCP keepalive mechanism
 Not part of the TCP standard!
 Not recommended by RFC 1122 (hosts 

requirements)
 Minimum interval must be 2 hours
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TCP Disconnect

ACK = 178
SEQ = 732 

ACK = 178
SEQ = 733

ACK = 179
SEQ = 733

ACK = 733
SEQ = 178 

ACK = 732
SEQ = 178

ACK = 733
SEQ = 179 

ACK=732 SEQ=178
              FIN

ACK=178 SEQ=733

        
     ACK

ACK=733 SEQ=179
            ACK

ACK=178 SEQ=733

        
      F

IN

ACK = 733
SEQ = 178 
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TCP Disconnect

 A TCP session is disconnected similar 
to the three way handshake

 The FIN flag marks the sequence number to be 
the last one; the other station acknowledges and 
terminates the connection in this direction

 The exchange of FIN and ACK flags ensures, that 
both parties have received all octets

 The RST flag can be used if an error occurs 
during the disconnect phase
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TCP Congestion Control

1. Slow Start & Congestion 
Avoidance

2. Random Early Discard
3. Explicit Congestion Notification
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Once again: The Window Size

 The windows size (announced by the peer) 
indicates how many bytes I may send at 
once (=without having to wait for 
acknowledgements)
 Either using big or small packets

 Before 1988, TCP peers tend to exploit the 
whole window size which has been 
announced during the 3-way handshake
 Usually no problem for hosts 
 But led to frequent network congestions
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Goal of Slow Start

 TCP should be "ACK-clocking"
 Problem (buffer overflows) appears at 

bottleneck links
 New packets should be injected at the 

rate at which ACKs are received

Pipe modell of a network path: Big fat pipes (high data rates) outside, a 
bottleneck link in the middle. The green packets are sent at the maximum 

achievable rate so that the interpacket delay is almost zero at the bottleneck 
link; however there is a significant interpacket gap in the fat pipes.  
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Preconditions of Slow Start

 Two important parameters are 
communicated during the TCP three-
way handshake
 The maximum segment size (MSS) 
 The Window Size

 Now Slow Start introduces the 
congestion window (cwnd)
 Only locally valid and locally maintained
 Like window field stores a byte count
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Idea of Slow Start

 Upon new session, cwnd 
is initialized with MSS (= 
1 segment)

 Allowed bytes to be sent: 
Min(W, cwnd)

 Each time an ACK is 
received, cwnd is 
incremented by 1 
segment
 That is, cwnd doubles 

every RTT (!)
 Exponential increase!

cwnd=1 MSS Data

Ack

cwnd=2 MSS

cwnd=4 MSS

cwnd=4 MSS

…
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Graphical illustration (1/4)
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Graphical illustration (2/4)
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D3

D2

A3A2
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A3A2

D5 D4

D5 D4

D6 D5 D4D7

cwnd=3

cwnd=4

cwnd=4
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Graphical illustration (3/4)
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Graphical illustration (4/4)

 TCP is "self-clocking"
 The spacing between the ACKs is the same as between 

the data segments
 The number of ACKs is the same as the number of data 

segments
 In our example, cwnd=8 is the optimum

 This is the delay-bandwidth product ( 8 = RTT x BW)
 In other words: the pipe can accept 8 packets per 

round-trip-time
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t=30

t=31

D11D12

A10A9

D13D14

A8

D12D13

A11A10

D14D15

A9A8

cwnd=8 => Pipe is full (ideal situation) – 
cwnd should not be increased anymore!

cwnd=8

cwnd=8
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End of Slow Start

 Slow start leads to an exponential 
increase of the data rate until some 
network bottleneck is congested: 
Some packets get dropped!

 How does the TCP sender recognize 
network congestions?

 Answer: Upon receiving Duplicate 
Acknowledgements !!!
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Once again: Duplicate ACKs

 TCP receivers send 
duplicate ACKs if 
segments are missing
 ACKs are cumulative (each 

ACK acknowledges all data 
until specified ACK-
number)

 Duplicate ACKs should not 
be delayed

 ACK=300 means: "I am 
still waiting for packet 
with SQNR=300"

SQNR=100

SQNR=200

SQNR=300

SQNR=400

ACK=200

ACK=300

ACK=300

SQNR=300

SQNR=500

ACK=300

…

Duplicate Ack

Duplicate Ack



53(C) Herbert Haas 2005/03/11

Congestion Avoidance (1)

 Congestion Avoidance is the companion 
algorithm to Slow Start – both are usually 
implemented together !

 Idea: Upon congestion (=duplicate ACKs) reduce 
the sending rate by half and now increase the rate 
linearly until duplicate ACKs are seen again (and 
repeat this continuously)
 Introduces another variable: the Slow Start threshold 

(ssthresh)

 Note this central TCP assumption: Packets are 
dropped because of buffer overflows and NOT 
because of bit errors!
 Therefore packet loss indicates congestion somewhere 

in the network
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The combined algorithm

New Session: initialize cwnd = 1 MSS, ssthresh = 65535

Determine actual window size "AWS" = Min (W, cwnd)
              ** send AWS bytes **

Retransmission
timeout expired

Duplicate ACKs
received

Data
acknowledged

Increment cwnd
 by 1/cwnd for 

each ACK received

cwnd = 1
ssthresh = AWS/2

ssthresh = AWS/2
(but at least 2 MSS)

(cwnd > ssthresh) ?

yes no

Increment cwnd 
by one for each 
ACK received. 



55(C) Herbert Haas 2005/03/11

Slow Start and Congestion Avoidance

cwnd / MSS

t / RTT1 2 3 4 5 6 7 8 9

2

4

6

8

10

12

14

16

18

20
Duplicate ACK received

at cwnd = 32

Duplicate ACK received
at cwnd = 20

Congestion Avoidance

Congestion Avoidance

Slo
w S

ta
rt
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"Fast Retransmit"

 Note that duplicate ACKs are also 
sent upon packet reordering

 Therefore TCP waits for 3 duplicate 
ACKs before it really assumes 
congestion
 Immediate retransmission (don't wait for 

timer expiration)

 This is called the Fast Retransmit 
algorithm
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"Fast Recovery"

 After Fast Retransmit TCP continues with 
Congestion Avoidance
 Does NOT fall back to Slow Start

 Every another duplicate ACK tells us that 
a "good" packet has been received by the 
peer
 cwnd = cwnd + MSS
 => Send one additional segment

 As soon a normal ACK is received
 cwnd = ssthresh = Min(W, cwnd)/2

 This is called Fast Recovery 
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All together!

New Session: initialize cwnd = 1 MSS, ssthresh = 65535

Determine actual window size "AWS" = Min (W, cwnd)
              ** send AWS bytes **

Retransmission
timeout expired

3 duplicate ACKs
received

Data
acknowledged

Increment cwnd
 by 1/cwnd for 

each ACK received

cwnd = 1
ssthresh = AWS/2

ssthresh = AWS/2
(but at least 2 MSS),

retransmit the segment,
cwnd = ssthresh+3 MSS,

for each 3+nth duplicate ACK 
increase cwnd by 1 MSS; 

then set cwnd=ssthresh upon 
first "normal" ACK

(cwnd > ssthresh) ?

yes no

Increment cwnd 
by one for each 
ACK received. 

Slow Start, Congestion Avoidance, 
Fast Retransmit, and Fast Recovery
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Real TCP Performance

 TCP always tries to minimize the 
data delivery time

 Good and proven self-regulating 
mechanism to avoid congestion

 TCP is "hungry but fair"
 Essentially fair to other TCP 

applications 
 Unreliable traffic (e. g. UDP) is not fair to 

TCP…
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Summary: The TCP "wave"

 Tries to fill the "pipe" using
 Slow Start and 
 Congestion Avoidance

RTT 

Relative 

Through
put
Rate 
(cwnd)

ssthresh

Duplicate AckDuplicate AckDuplicate Ack Duplicate Ack

slow start congestion 
avoidance

congestion 
avoidance

congestion 
avoidance

max. achievable 
throughput
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What's happening in the network? 

 Tail-drop queuing is the standard 
dropping behavior in FIFO queues 
 If queue is full all subsequent packets 

are dropped

New arriving packets are dropped
("Tail drop")

Full queue
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Tail-drop Queuing (cont.)

 Another representation: 
Drop probability versus queue depth

100%

0%
Queue Depth

D
ro

p
 P

ro
b

ab
ili

ty
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Tail-drop Problems

 No flow differentiation

 TCP starvation upon multiple packet 
drop 

• TCP receivers may keep quiet (not even 
send Duplicate ACKs) and sender falls back 
to slow start 
– worst case!

• TCP fast retransmit and/or selective 
acknowledgement may help

 TCP synchronization
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TCP Synchronization

 Tail-drop drops many packets of different 
sessions at the same time

 All these sessions experience duplicate ACKs 
and perform synchronized congestion avoidance

RTT 

Relative 
Throughput

Rate

(Window 
size)

Duplicate AckDuplicate AckDuplicate Ack Duplicate Ack

slow start congestion 
avoidance

congestion 
avoidance

congestion 
avoidance

max. achievable 
throughput

Average link
utilization
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Random Early Detection (RED)

 Utilizes TCP specific behavior
 TCP dynamically adjusts traffic throughput to 

accommodate to minimal available bandwidth 
(bottleneck) via reduced window size

 "Missing" (dropped) TCP segments cause 
window size reduction!
 Idea: Start dropping TCP packets before queuing "tail-

drops" occur
 Make sure that "important" traffic is not dropped

 RED randomly drops packets before queue is full
 Drop probability increases linearly with queue depth
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RED

 Important RED parameters
 Minimum threshold
 Maximum threshold
 Average queue size (running average)

 RED works in three different modes
 No drop

• If average queue size is between 0 and minimum threshold
 Random drop

• If average queue size is between minimum and maximum 
threshold

 Full drop
• If average queue size is equal or above maximum 

threshold = "tail-drop"
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RED Parameters

Drop probability

Mark probability

100%

10%

min-thresh max-thresh

Average
queue size

(e.g. 20) (e.g. 40)

Tail-drop (full drop)

RED

(packets)
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Weighted RED (WRED)

 Drops less important packets more 
aggressively than more important packets

 Importance based on:
 IP precedence 0-7
 DSCP value 0-63

 Classified traffic can be dropped based on 
the following parameters
 Minimum threshold
 Maximum threshold
 Mark probability denominator 

(Drop probability at maximum threshold)
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RED Problems

 RED performs "Active Queue 
Management" (AQM) and drops 
packets before congestion occurs
 But an uncertainty remains whether 

congestion will occur at all

 RED is known as "difficult to tune"
 Goal: Self-tuning RED
 Running estimate weighted moving 

average (EWMA) of the average queue 
size
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Explicit Congestion Notification (ECN)

 Traditional TCP stacks only use packet loss as indicator to 
reduce window size
 But some applications are sensitive to packet loss and delays 

 Routers with ECN enabled mark packets when the average 
queue depth exceeds a threshold
 Instead of randomly dropping them
 Hosts may reduce window size upon receiving ECN-marked 

packets
 Least significant two bits of IP TOS used for ECN

ECT CE
IP TOS Field

DSCP ECN

Obsolete (but widely used) RFC 2481
notation of these two bits:

ECT ECN-Capable Transport
CE Congestion Experienced
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Usage of CE and ECT 

 RFC 3168 redefines the use of the two bits: ECN-supporting 
 hosts should set one of the two ECT code points
 ECT(0) or ECT(1)
 ECT(0) SHOULD be preferred

 Routers that experience congestion set the CE code point 
in packets with ECT code point set (otherwise: RED)

 If average queue depth is exceeding max-threshold: Tail-
drop

 If CE already set: forward packet normally (abuse!)

0 0

0 1

1 0

1 1

Non ECN-capable transport

ECT(1)

ECT(0)
Codepoints for ECN-capable transport

CE codepoint

ECN Field
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CWR and ECE

 RFC 3168 also introduced two new TCP flags
 ECN Echo (ECE)
 Congestion Window Reduced (CWR)

 Purpose:
 ECE used by data receiver to inform the data sender when a 

CE packet has been received
 CWR flag used by data sender to inform the data receiver that 

the congestion window has been reduced

IP TOS: ECT IP TOS: CE 

TCP: ECETCP: ECE

Congestion

IP TOS: ECT 

TCP: ECE

TCP: CWR TCP: CWRTCP: CWR

Header
Length

P
S
H

R
S
T

S
Y
N

F
I
N

A
C
K

U
R
G

Reserved Window Size
E
C
E

C
W
R

Part of TCP header:
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ECN Configuration

 Note: ECN is an extension to WRED
 Therefore WRED must be enabled first !

 ECN will be applied on that traffic that is 
identified by WRED (e. g. dscp-based)

(config-pmap-c)# random-detect 
(config-pmap-c)# random-detect ecn

# show policy-map interface s0/1  !!! shows ECN setting
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Note

 CE is only set when average queue 
depth exceeds a threshold
 End-host would react immediately
 Therefore ECN is not appropriate for 

short term bursts (similar as RED)

 Therefore ECN is different as the 
related features in Frame Relay or 
ATM which acts also on short term 
(transient) congestion
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UDP

 UDP is a connectionless layer 4 service 
(datagram service)

 Layer 3 Functions are extended by port 
addressing and a checksum to ensure integrity 

 UDP uses the same port numbers as TCP 
(if applicable)

 UDP is used, where the overhead of a connection 
oriented service is undesirable or where the 
implementation has to be small

 DNS request/reply, SNMP get/set, booting by TFTP
 Less complex than TCP, easier to implement
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UDP Header

Destination Port NumberSource Port Number

PAYLOAD

 0  4  8  12  16  20  24 28 32

UDP Length UDP Checksum
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UDP

 Source and Destination Port
 Port number for addressing the process (application)
 Well known port numbers defined in RFC1700

 UDP Length
 Length of the UDP datagram (Header plus Data)

 UDP Checksum
 Checksum includes pseudo IP header 

(IP src/dst addr., protocol field), 
UDP header and user data;
one´s complement of the sum of all one´s complements
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Other Transport Layer Protocols

SCTP

UDP Lite

DCCP
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Stream Control Transmission 
Protocol (SCTP)

 A newer improved alternative to TCP (RFC 
4960)

 Supports 
 Multi-homing
 Multi-streaming
 Heart-beats
 Resistance against SYN-Floods (via Cookies) 

and 4-way handshake)

 Seldom used today
 Base for the Reliable Server Pooling Protocol 

(RSerPool)
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UDP Lite

 Problem: Lots of applications would like to 
receive even (slightly) corrupted data
 E. g. multimedia

 UDP Lite (RFC 3828) defines a different 
usage of the UDP length field
 UDP length field indicates how many bytes of 

the datagram are really protected by the 
checksum ("checksum coverage")

 True length shall be determined by IP length 
field

 Currently only supported by Linux
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Datagram Congestion Control Protocol 
(DCCP)

 Problem: More and more 
applications use UDP instead of TCP

 But UDP does not support 
congestion control – networks might 
collapse!

 DCCP adds a congestion control 
layer to UDP
 RFC 4340
 First implementations now in FreeBSD 

and Linux
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DCCP (cont.)

 4-way handshake

 Different 
procedures 
compared to TCP 
regarding 
sequence number 
handling and 
session creation
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Summary

 TCP & UDP are Layer 4 (Transport) 
Protocols above IP

 TCP is "Connection Oriented"
 UDP is "Connection Less"
 TCP implements "Fault Tolerance" using 

"Positive Acknowledgement"
 TCP implements "Flow Control" using 

dynamic window-sizes
 The combination of IP-Address and 

TCP/UDP-Port is called a "Socket"
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