BootP and DHCP

Flexible and Scalable Host Configuration

Shortcomings of RARP

- Reverse Address Resolution Protocol
- Only IP Address distribution
- No subnet mask
- Using hardware address for identification
- New methods needed: BOOTP, DHCP

Bootstrap Protocol (BOOTP)

A static solution with many parameters

- Clients request IP address and other parameters from server
 - Subnet mask, configuration filename, ...
- IP addresses are predefined in a list
 - Fixed mapping MAC address -> IP address
- Defined in RFC 951 and RFC 1048

Bootstrap

Bootstrap

Principles

- Separation of the boot task into a BOOTP-part and a TFTP-part
- BOOTP server only needs to maintain a small database !
- Image- and configuration-files can be stored on another machine
- BOOTP client is responsible for error detection

BOOTP - Message Format

- Operation Code (OP)
 - Message Type
- Hardware Address Type (HTYPE)
- Hardware Address Length (HLEN)
- Hops
 - Broadcast loop/storm avoidance
 - Increased/checked by routers

BootP - Message Fields

Transaction ID

Used for identification (random number)

Seconds

- Seconds elapsed since client started trying to boot
- Client IP-address
 - Filled in by client in boot request if known
- Your IP-address
 - Filled by server if client doesn't know its own address

BootP - Message Fields

Server IP-address

- Returned in boot reply by server
- Router IP-address
 - Server is part of another Subnet
 - IP-address of the BootP relay
- Client Hardware-address
 - MAC-address of client

BootP - Message Fields

Server Host Name

- Optional server host name
- Bootfilename
 - Contains directory path and filename of the bootfile
- Vendor Specific Area
 - Optionally contain vendor information of the BootP server
 - RFC 1048: also possible to mention the subnet mask, hostname, domain name, DNS, etc

Dynamic Host Configuration Protocol (DHCP)

A dynamic solution with even more parameters

Principles

Nearly identical to BOOTP

- Slightly extended messages only
- More parameters
- Uses UDP communication
 - Client-Side: Port 67
 - Server-Side: Port 68
- Based on a leasing idea!
 - Dynamic configuration
- RFC 2131 and RFC 2132

- Automatic: Host gets permanent address
- Dynamic: Address has expiration date/time (leasing) !
- Manual: Fixed mapping MAC → IP

Parameters

- IP address
- Subnet mask
- DNS Server
- NetBIOS Name Server
- List of default gateways
- Ethernet Encapsulation
- Router Discovery (RFC 1256)
- Path MTU Discovery (RFC 1191)
- etc...

How Does It Work - 1

How Does It Work - 1

How Does It Work - 2

- DHCPACK (success) is send by the server who's offer was accepted
- Client receives the DHCPACK
- Client enters the BOUND state
- TCP/IP is completely initialized

DHCPNACK (no success) will be send if

- Client tries to lease the previous IP address, but this address is no longer available
- Client's IP address is invalid
- Client may have been moved to an other subnet

DHCP - Message Format

DHCP-specific Message Fields

DHCPDICOVER

Client broadcast to find DHCP server

DHCPOFFER

- Response to a DHCPDISCOVER
- Offering an IP address

DHCPREQUEST

Request the parameters offered by one server

DHCPINFORM

Client ask for more information

DHCP-specific Message Fields

DHCPACK

- Acknowledgement from server to client
- DHCPNACK
 - Negative ACK from server to client
- DHCPDECLINE
 - Message from server to client indicating an error
- DHCPRELEASE
 - Message from server to client canceling a lease and relinquishing network address

- After DHCPACK → beginning of the lease period is registered
- Located in the DHCPACK message
 - Lease Time
 - T1 (renewal attempt)
 - T2 (sub renewal attempt)
- T1 and T2 are configured at the DHCP server
 - T1 = 0,5 x lease time
 - T2 = 0,875 x lease time

- T1 and T2 start when client is bound
- Client RENEW the lease when T1 expired
 - Client enters RENEWING state and sends a DHCPREQUEST to the server
 - If server accept, a DHCPACK contains a new lease time

Timer

- If the lease could not be RENEWED after T1, the client makes another try after T2
 - Client try to connect other DHCP server
- DHCP server can answer with
 - DHCPACK and RENEWING the lease
 - DHCPNACK to force the client to reinitialize

Subnets

- DHCP is related to BootP
- DHCP messages are broadcast based
 - Not forwarded by routers
 - Or routers are configured as BOOTP Relay Agent