Telco Scalable Backbones

PDH, SONET/SDH

"Everything that can be invented has been invented"

Charles H. Duell, commissioner of the US Office of Patents 1899

Agenda

Basics

- Shannon
- Jitter
- Compounding laws
- Digital Hierarchies
- PDH
- SONET/SDH

Long History

- Origins in late 19th century
- Voice was/is the yardstick
 - Same terms
 - Same signaling principles
 - Even today, although data traffic increases dramatically
 - Led to technological constraints and demands

General Goals

Interoperability

- Over decades
- Over different vendors
- World-wide!
- Availability
 - Protection lines in case of failures
 - High non-blocking probability

Sampling of Voice

Shannon's Theorem

- Any analogue signal with limited bandwidth f_B can be sampled and reconstructed properly when the sampling frequency is 2f_B
- Speech signal has most of its power and information between 0 and 4000 Hz

- Data rate end-to-end must be constant
- Delay variation (jitter) is critical
 - To enable echo suppression
 - To reconstruct sampled analog signals without otherwise distortion

- Requires guaranteed bounded delay "only"
- Example:
 - Telephony (< 1s RTT)
 - Interactive traffic (remote operations)
 - Remote control
 - Telemetry

Solutions

Isochronous network

- Common clock for all components
- Aka "Synchronous" network
- Plesiochronous network
 - With end-to-end synchronization somehow
- Totally asynchronous network
 Using buffers (playback) and QoS techniques

Improving SNR

- SNR improvement of speech signals
 - Quantize loud signals much coarser than quiet signals
- Expansion and compression specified by nonlinear function
 - USA: μ-law (Bell)

Plesiochronous Digital Hierarchy

- Created in the 1960s as successor of analog telephony infrastructure
- Smooth migration
 - Adaptation of analog signaling methods
- Based on Synchronous TDM
- Still important today
 - Telephony access level
 - ISDN PRI
 - Leased line

Why Plesiochronous?

- 1960s technology: No buffering of frames at high speeds possible
- Goal: Fast delivery, very short delays (voice!)
 - Immediate forwarding of bits
 - Pulse stuffing instead of buffering
- Plesiochronous = "nearly synchronous"
 - Network is not synchronized but fast
 - Sufficient to synchronize sender and receiver

Why Hierarchy?

- Only a hierarchical digital multiplexing infrastructure
 - Can connect millions of (low speed) customers across the city/country/world
- Local infrastructure: Simple star
- Wide area infrastructure: Point-to-point trunks or ring topologies
 - Grooming required

Digital Hierarchy of Multiplexers

Differentiate:

- Signal (Framing layer)
- Carrier (Physical Layer)
- North America (ANSI)
 - DS-n = Digital Signal level n
 - Carrier system: T1, T2, ...
- Europe (CEPT)
 - CEPT-n = ITU-T digital signal level n
 - Carrier system: E1, E2, ...

Worldwide Digital Signal Levels

North America

Signal	Carrier	Channels	Mbit/s
DS0		1	0.064
DS1	T1	24	1.544
DS1C	T1C	48	3.152
DS2	T2	96	6.312
DS3	Т3	672	44.736
DS4	T4	4032	274.176

Europe

Signal	Carrier	Channels	Mbit/s
DS0	"E0"	1	0.064
CEPT-1	E1	32	2.048
CEPT-2	E2	128	8.448
CEPT-3	E3	512	34.368
CEPT-4	E4	2048	139.264
CEPT-5	E5	8192	565.148

- Incompatible MUX rates
- Different signalling schemes
- Different overhead
- μ-law versus A-law

Frame Duration

- Each samples (byte) must arrive within 125 μs
 - To receive 8000 samples (bytes) per second
 - Higher order frames must ensure the same byte-rate per user(!)

Plesiochronous Multiplexing

Bit interleaving at higher MUX levels

- Simpler with slow circuits (Bit stuffing!)
- Complex frame structures and multiplexers (e.g. M12, M13, M14)
- DS1/E1 signals can only be accessed by demultiplexing
- Add-drop multiplexing not possible
 - All channels must be demultiplexed and then recombined
 - No ring structures, only point-to-point

Synchronization

End-to-End Synchronization

CB Channel Bank M14+LT ... MUX and Line Termination

E1 Basics

- CEPT standardized E1 as part of European channelized framing structure for PCM transmission (PDH)
 - E1 (2 Mbit/s)
 - E2 (8 Mbit/s)
 - E3 (34Mbit/s)
 - E4 (139Mbit/s)
 - Relevant standards
 - G.703: Interfacing and encoding
 - G.704: Framing
 - G.732: Multiplex issues

E1 Frame Structure

E1 Signaling: Timeslot 16

To connect PBXs via E1

- Timeslot 16 can be used as standard out-band signaling method
- Common Channel Signaling (CCS)
 - Dedicated 64 kbit/s channel for signaling protocols such as DPNSS, CorNet, QSIG, or SS7

Channel Associated Signaling (CAS)

- 4 bit signaling information per timeslot (=user) every 16th frame
- 30 independent signaling channels (2kbit/s per channel)

Multiframe Structure

T1 Basics

- T1 is the North American PDH variant
 - DS0 is basic element
- 24 timeslots per T1 frame = 1.544 Mbit/s frames per second

T1 Basics

- Combinations of frames to superframes
 - 12 T1 frames (DS4)
 - 24 T1 frames (Extended Super Frame, ESF)
- Modern alternative: Common Channel Signaling

PDH Limitations

 PDH overhead increases dramatically with high bitrates

Why SONET/SDH?

- Many incompatible PDH implementations
- PDH does not scale to very high bitrates
 - Increasing overhead
 - Complex multiplexing procedures
- Demand for a true synchronous network
 - No pulse stuffing between higher MUX levels
 - Better compensate phase shifts by floating playload and pointer technique
- Demand for add-drop MUXes and ring topologies

History Take 1: USA

Many companies after divestiture of AT&T

- Many proprietary solutions for PDH successor technology
- In 1984 ECSA (Exchange Carriers Standards Association) started on SONET
 - Goal: one common standard
 - A standard that almost wasn't: over 400 proposals!
- SONET became an ANSI standard
 - Designed to carry US PDH payloads

In 1986 CCITT became interested in SONET

Created SDH as a superset

 Designed to carry European PDH payloads including E4 (140 Mbit/s)

Originally designed for fiber optics

Network Structure

Layers and Overhead

SONET (SDH) consists of 4 layers

- Physical Layer
- Section (Regenerator Section) Layer
- Line (Multiplex Section) Layer
- Path Layer
- All layers (except the physical) insert information into the so-called overhead of each frame
- Note:
 - SONET and SDH are technically consistent, only the terms might be different
 - In this chapter, each SONET term is named first, followed by the associated SDH term written in brackets

SONET Signals

Electrical signal: STS-n

- Synchronous Transport Signal level n
- Optical signal: OC-n
 - Optical Carrier level n
 - OC-nc means concatenated
 - No multiplexed signal
 - Administrative overhead optimized compared to multiplexed signal
- Frame format is independent from electrical or optical signals

SDH Signals

Electrical signal: STM-n

- Synchronous Transport Module level n
- STM-nc means concatenated
 - No multiplexed signal
 - Administrative overhead optimized compared to real multiplexed signal
- Optical signal: STM-nO
- Frame format is independent from electrical or optical signals
 - Typically only the term STM-n is used

				_
SONET	SONET	Line Rates	SDH	
Optical Levels	Electrical Level	Mbit/s	Levels	
OC-1	STS-1	51.84	STM-0	
OC-3	STS-3	155.52	STM-1	
OC-9	STS-9	466.56	STM-3	
OC-12	STS-12	622.08	STM-4	
OC-18	STS-18	933.12	STM-6	Defined but later
OC-24	STS-24	1244.16	STM-8	removed, and only the multiples by four
OC-36	STS-36	1866.24	STM-12	were left!
OC-48	STS-48	2488.32	STM-16	
OC-96	STS-96	4976.64	STM-32	
OC-192	STS-192	9953.28	STM-64	
OC-768	STS-768	39813.12	STM-256	(Coming soon)

Two-dimensional Frame Model

- Similar to PDH every frame has 125 µs time length
 - To support 8 kHz sampled voice applications
- Bytes organized into rows and columns
 - Administrative channels are rate decoupled for easier processing
- Basic SONET frame is STS-1
 - 9 rows and 90 columns = 810 bytes total
 - 810 bytes × 8 bits × 8000/s = 51.8 Mbit/s
- Basic SDH frame is STM-1
 - 9 rows and 270 (3×90) columns = 2430 bytes total
 - 2430 bytes × 8 bits × 8000/s = 155.52 Mbit/s

STS-1 (STM-0) Frame Structure

	4	90 columns		
	3 columns Transport Overhead	87 columns Payload Envelope Capacity (Virtual Container Capacity)		
SWC	Section Overhead			
9 rc	Line Overhead	Pe Synchronous Payload Envelope (SPE) O Had O		

Floating Payload

Uni- and Bi-directional Routing

- Only working traffic is shown
- Path or line switching for protection

Add-drop Provisioning

- Transport connections over a SONET infrastructure are created by add-drop provisioning
 - A path is built up hop-by-hop by specifying which channels should be added to a ring and which channels should be dropped from the ring
- Add-drop provisioning is typically done by the network management system
 - There is no signaling protocol !!!

Add and Drop Example

- Example: OC-12 ring
 - Consists of 4 x
 OC-3c channels
 - Uni-directional routing
- 2 channels occupied

Uni- and Bi-directional Routing

Uni-directional routing

Bi-directional routing

Operations

Protection

Circuit recovery in milliseconds

Restoration

- Circuit recovery in seconds or minutes
- Provisioning
 - Allocation of capacity to preferred routes

Consolidation

 Moving traffic from unfilled bearers onto fewer bearers to reduce waste trunk capacity

Grooming

 Sorting of different traffic types from mixed payloads into separate destinations for each type of traffic

SONET/SDH and the OSI Model

SONET/SDH covers

- Physical, Data Link, and Network layers
- However, in data networking it is used mostly as a transparent bit stream pipe
- Therefore SONET/SDH is regarded as a Physical layer, although it is more
- Functions might be repeated many times in the overall protocol stack
 - Worst case: IP over LANE over ATM over SONET

Summary

- Telecommunication backbones must be very reliable and backward compatible
- PDH is still an important backbone technology
- Recently moving to optical backbones using SONET/SDH
- Traffic volume of voice services will decrease relative to general IP traffic