Multiplexing Methods

Daubing the Information

"I think there is a world market for about five computers."

Thomas Watson, chairman of IBM 1943

Multiplexing Types

TDM

- Most important
- Statistical and Deterministic

SDM

FDM and (D)WDMCDM

Will be covered in other chapters

TDM (1)

SDM

- Requires framed link layer
- Saves wires
- Is slower than SDM
- Requires multiplexers and demultiplexers
- Two fundamentally different methods:
 - Deterministic TDM
 - Statistical TDM

Deterministic TDM (1)

Deterministic TDM (2)

- Trunk speed = Number of slots × User access rate
- Each user gets a constant timeslot of the trunk

Deterministic TDM – Facts

- Order is maintained
- Frames must have same size
- No addressing information required
- Inherently connection-oriented
- No buffers necessary (QoS)
- Protocol transparent
- Bad utilization of trunk

Statistical TDM (1)

Trunk speed dimensioned for average usage
Each user can send packets whenever she wants

If other users are silent, one (or a few) users can fully utilize their access rate

- Good utilization of trunk
 - Statistically dimensioned
- Frames can have different size
- Multiplexers require buffers
- Variable delays
- Address information required
- Not protocol transparent

Networking: Fully Meshed

Networking: Switching

- Only 6 links
- Switch supports either deterministic or statistical TDM

Circuit Switching

Circuit Switching – Facts

Based on deterministic TDM

- Minimal delay
- Protocol transparent
- Possibly bad utilization
- Good for isochronous traffic (voice)
- Switching table entries
 - Static (manually configured)
 - Dynamic (signaling protocol)
 - Scales with number of connections!

Typical User-Configuration

Packet Switching

User B5

- address information
- "Store and Forward"

Technology Differences

Datagram Principle

- Global and routable addresses
- Connectionless
- Routing Table
- Virtual Call Principle
 - Local addresses
 - Connectionoriented
 - Switching Table

Datagram

Datagram – Facts (1)

Addresses contain topological information

- Must be globally unique
- Routing table is configured
 - Static (manually)
 - Dynamic (routing protocols)
- Endless circling in case of routing loops
 - Important issue among routing protocols
- Requires "routable" or "routed" protocols

Datagram – Facts (2)

- No connection establishment necessary
 - Faster delivery of first data
 - No resource reservation (bad QoS)
- Sequence not guaranteed
 - Rerouting on topology change
 - Load sharing on redundant paths
 - End stations must care

Datagram – Facts (3)

Best effort service

- Router may drop packets
- Reliable data transport requires good transport layer ("Dumb network, smart hosts")
- Simple protocols
 - Easy to implement (Internet's success)
- Proactive flow control difficult
 - Since routes might change

■ IP

IPX

- Appletalk
- OSI CLNP

Virtual Call – CR

Virtual Call – CA

User B.5

Virtual Call – Data

User B.5

Connection establishment

- Through routing process (!)
- Globally unique topology-related addresses necessary
- Creates entries in switching tables
- Can reservate switching resources (QoS)
- Packet switching relies on local identifiers
 - Not topology related
 - Only unique per port

- Packet switching is much faster than packet forwarding of routers
 - Routing process is complex, typically implemented in software
 - Switching is simple, typically implemented in hardware

Virtual Call – Facts (3)

Connection can be regarded as virtual pipe

- Sequence is guaranteed
- Resources can be guaranteed
- Network failures disrupt pipe
 - Connection re-establishment necessary
 - Datagram networks are more robust

Virtual Call – Facts (4)

Virtual call multiplex

- Multiple virtual pipes per switch and interface possible
- Pipes are locally distinguished through connection identifier
- Other names for connection identifier
 - LCN (X.25)
 - DLCI (Frame Relay)
 - VPI/VCI (ATM)

Two Service Types

Switched Virtual Circuit (SVC)

- Dynamic establishment as shown
- At the end a proper disconnection procedure necessary
- Permanent Virtual Circuit (PVC)
 - No establishment and disconnection procedures necessary
 - Switching tables preconfigured by administrator

Taxonomy

- Only two worlds: circuit switching or packet switching
 - The first is good for voice the latter is good for data
 - Everybody wants to have the best of both worlds
- Datagram (CL) versus Virtual Call (CO)
 - Different address types (!)

Synchronization Revisited

- Derive Metcalfe's law. Which wellknown formula looks very similar?
- Let's improve the VC principle! What's the advantage of using more than one label per packet?
- How do hash tables work?
- How can we get the best of both worlds (circuit/packet) ?