# HDLC

#### King of the Link

(C) Herbert Haas 2005/03/11



- High-Level Data Link Control
- Early link layer protocol
- Based on SDLC (Synchronous-DLC, IBM)
  - Access control on half-duplex modem-lines
  - Connectionoriented or connectionless
  - Framing
  - Frame Protection
- Mother of many LAN and WAN protocols

# **Half-Duplex Management**





# Same on Multipoint Lines (1)







# Same on Multipoint Lines (2)







# Early HDLC Example







- Synchronous Transmission
- Bit-oriented (Bit-Stuffing)
- Developed by ISO
  - ISO 3309 and ISO 4335
- Supports
  - Half- and full-duplex lines
  - Switched and non-switched channels
  - Point-to-point and multipoint lines

# HDLC Basics (2)

- Why do we use it today?
  - Framing
  - Frame protection
  - Error recovery
- Building Blocks
  - SDLC is now a subset of HDLC



# HDLC Basics (3)

- Three types of stations
  - Primary Station
  - Secondary Station
  - Combined Station
- Three modes
  - Normal Response Mode (NRM)
  - Asynchronous Response Mode (ARM)
  - Asynchronous Balanced Mode (ABM)



# HDLC Modes (1)



#### NRM

- Secondary sends only when permitted by primary
- No communication between secondaries
- Typically used in multipoint lines
- ARM
  - Only a single secondary in ARM
  - This ARM-secondary may transmit whenever it wants (hereby avoiding collisions)

# HDLC Modes (2)



### ABM

- Most important mode today !!!
- Requires combined stations
- Best mode for point-to-point lines

# **Non-operational Modes**



- Normal Disconnected Mode (NDM)
  - For unbalanced modes only
  - Secondary not able to receive
- Asynchronous Disconn. Mode (ADM)
  - For balanced mode only
  - Combined station not able to receive
- Initialization Mode (IM)
  - Parameter exchange or SW download











# **Supervisory Frames**







| 1 | 1 | Code |   | P/F | Code |   |   |  | Command | Response |
|---|---|------|---|-----|------|---|---|--|---------|----------|
|   |   | 0    | 0 | ]   | 0    | 0 | 0 |  | UI      | UI       |
|   |   | 0    | 0 |     | 0    | 0 | 1 |  | SNRM    |          |
|   |   | 0    | 0 |     | 0    | 1 | 0 |  | DISC    | RD       |
|   |   | 0    | 0 |     | 1    | 0 | 0 |  | UP      |          |
|   |   | 0    | 0 |     | 1    | 1 | 0 |  |         | UA       |
|   |   | 0    | 1 |     | 0    | 0 | 0 |  | NR0     | NR0      |
|   |   | 0    | 1 |     | 0    | 0 | 1 |  | NR1     | NR1      |
|   |   | 0    | 1 |     | 0    | 1 | 0 |  | NR2     | NR2      |
|   |   | 0    | 1 |     | 0    | 1 | 1 |  | NR3     | NR3      |
|   |   | 1    | 0 |     | 0    | 0 | 0 |  | SIM     | RIM      |
|   |   | 1    | 0 |     | 0    | 0 | 1 |  |         | FRMR     |
|   |   | 1    | 1 |     | 0    | 0 | 0 |  | SARM    | DM       |
|   |   | 1    | 1 |     | 0    | 0 | 1 |  | RSET    |          |
|   |   | 1    | 1 |     | 0    | 1 | 0 |  | SARME   |          |
|   |   | 1    | 1 |     | 0    | 1 | 1 |  | SNRME   |          |
|   |   | 1    | 1 |     | 1    | 0 | 0 |  | SABM    |          |
|   |   | 1    | 1 |     | 1    | 0 | 1 |  | XID     | XID      |
|   |   | 1    | 1 |     | 1    | 1 | 0 |  | SABME   |          |

## **XID Frames**

- Used for user data exchange
  - For upper layer protocols prior to connection establishment
- Used for address resolution
  - Used on switched lines only
- Used for parameter negotiation
  - Max send and receive frame sizes
  - Window sizes
  - Extensions, etc...



**ARQ (1)** 



- Default: GoBack N without dedicated NACK frame (!)
  - Receive-Sequence Number indicates next frame expected
- "Checkpointing"
  - Sender triggers (N)ACK information with P/F bit

**ARQ (2)** 



# Optional: Reject (REJ)

- Dedicated NACK frame
- Can be sent at any time (no checkpointing)
- Optional: Selective Reject (SREJ)
  - Requests retransmission of single frame
- Flow control with RR and RNR

# HDLC Classes





UA, DISC, DM, FRMR

UA, DISC, DM, FRMR

**UA, DISC, DM, FRMR** 

#### **Extensions:**

| 1 | Switched Circuits (XID, RD)  |
|---|------------------------------|
| 2 | Reject (REJ)                 |
| 3 | Selective Reject (SREJ)      |
| 4 | Unnumbered Information (UI)  |
| 5 | Initialization (SIM, RIM)    |
| 6 | Group Polling (UP)           |
| 7 | Extended Addressing (16 bit) |

| 8 | Delete Response I Frames |
|---|--------------------------|
|---|--------------------------|

- 9 **Delete Command I Frames**
- 10 7 bit sequence numbering
- RESET 11
- 12 **Data Link TEST**
- 13 **Request Disconnect (RD)**
- 32 Bit CRC 14

# Summary



- Access control with P/F bit
- Three modes: NRM, ARM, ABM
- Error recovery uses Checkpointing
- Mother of many LAN and WAN protocols
- Extensible through building blocks



- What is Cisco-HDLC ?
- Does Ethernet (802.3) utilize connection-oriented HDLC ?
- What is Q.921 used for ?
- Which HDLC variant can be used on erroneous links ?