

 1

2005/03/11(C) Herbert Haas

Introducing TCP & UDP

 Internet Transport Layers

 2

2(C) Herbert Haas 2005/03/11

TCP Facts (1)

� Connection-oriented layer 4 protocol

� Carried within IP payload

� Provides a reliable end-to-end transport of

data between computer processes of

different end systems

� Error detection and recovery

� Sequencing and duplication detection

� Flow control

� RFC 793

In this Chapter we talk about TCP. TCP is a connection-oriented layer 4 protocol

and only works between the hosts. It synchronizes (connects) the hosts with each

other via the �3-Way-Handshake� before the real transmission begins. After this

a reliable end-to-end transmission is established. TCP was standardized in

September 1981 in RFC 793. (Remember: IP was standardized in September

1981 too, RFC 791). TCP is always used with IP and it also protects the IP

packet as its checksum spans over (almost) the whole IP packet.

TCP provides error recovery, flow control and sequencing. The most important

thing with TCP is the Port-Number, we will discus later.

 3

3(C) Herbert Haas 2005/03/11

TCP Facts (2)

� Application's data is regarded as

continuous byte stream

� TCP ensures a reliable transmission

of segments of this byte stream

� Handover to Layer 7 at "Ports"

�OSI-Speak: Service Access Point

Every IP packet which is sent along with TCP will be acknowledgment (error

recovery). From the TCP perspective we call each packet a segment.

TCP hides the details of the network layer from the higher layers and frees them

from the tasks of transmitting data through a specific network. TCP provides its

service to higher layer through ports (OSI: Service Access Points).

 4

4(C) Herbert Haas 2005/03/11

Port Numbers

� Using port numbers TCP (and UDP)
can multiplex different layer-7 byte
streams

� Server processes are identified by
Well known port numbers : 0..1023
�Controlled by IANA

� Client processes use arbitrary port
numbers >1023
�Better >8000 because of registered ports

Each communicating computer process is assigned a locally unique port number.

Using port numbers TCP can service multiple processes such as a web browser or

an E-Mail client simultaneously through a single IP address. In summary TCP

works like a stream multiplexer and demultiplexer.

 5

5(C) Herbert Haas 2005/03/11

Registered Ports

� For proprietary server applications

� Not controlled by IANA only listed in
RFC 1700

� Examples
� 1433 Microsoft-SQL-Server

� 1439 Eicon X25/SNA Gateway

� 1527 Oracle

� 1986 Cisco License Manager

� 1998 Cisco X.25 service (XOT)

� 6000-6063 X Window System

Only the well known ports are reserved for common applications and services,

such as Telnet, WWW, FTP etc. They are in the range from 0 to 1023. These are

controlled by the Internet Assigned Numbers Authority (IANA).

There are also many registered ports which start at 1024 (e.g. Lotus Notes,

Cisco XOT, Oracle, license managers etc.). They are not controlled by the IANA,

only listed in RFC1700.

 7

7(C) Herbert Haas 2005/03/11

Sockets

� Server process multiplexes streams

with same source port numbers

according source IP address

� (PortNr, SA) = Socket

� Each stream ("flow") is uniquely

identified by a socket pair

In a client-server environment a communicating server-process has to maintain

several sessions (and also connections) to different targets at the same time.

Therefore, a single port has to multiplex several virtual connections. These

connections are distinguished through sockets. The combination IP address and

port number is called a "socket�.

For example: 10.1.1.2:80 [IP-Address : Port-Number]

 11

11(C) Herbert Haas 2005/03/11

TCP Header (1)

� Source and Destination Port

� 16 bit port number for source and

destination process

� Header Length

�Multiple of 4 bytes

�Variable header length because of

options (optionally)

The Source and Destination Port fields are 16 bits and used by the application.

The Header Length indicates where the data begins. The TCP header (even one

including options) is an integral number of 32 bits long.

 12

12(C) Herbert Haas 2005/03/11

TCP Header (2)

� Sequence Number (32 Bit)

�Number of first byte of this segment

�Wraps around to 0 when reaching 232 -1)

� Acknowledge Number (32 Bit)

�Number of next byte expected by

receiver

�Confirms correct reception of all bytes

including byte with number AckNr-1

Sequence Number: 32 bit. Number of the first byte of this segment. If SYN is

present the sequence number is the initial sequence number (ISN) and the first

data octet is ISN+1.

Acknowledge Number: 32 bit. If the ACK control bit is set this field contains

the value of the next sequence number the sender of the segment is expecting to

receive. Once a connection is established this is always sent.

 13

13(C) Herbert Haas 2005/03/11

TCP Header (3)

� URG-Flag

� Indicates urgent data

� If set, the 16-bit "Urgent Pointer" field is valid

and points to the last octet of urgent data

� There is no way to indicate the beginning of

urgent data (!)

� Applications switch into the "urgent mode"

� Used for quasi-outband signaling

URG-Flag: 1 Bit. Control Bit.

Sequence number of last urgent octet = actual segment sequence number + urgent

pointer

RFC 793 and several implementations assume the urgent pointer to point to the

first octet after urgent data. However, the "Host Requirements" RFC 1122 states

this as a mistake! When a TCP receives a segment with the URG flag set, it

notifies the application which switch into the "urgent mode" until the last octet of

urgent data is received. Examples for use: Interrupt key in Telnet, Rlogin, or FTP.

 14

14(C) Herbert Haas 2005/03/11

TCP Header (4)

� PSH-Flag

� TCP should push the segment

immediately to the application without

buffering

� To provide low-latency connections

�Often ignored

PSH-Flag: 1 Bit. Control Bit.

A TCP instance can decide on its own, when to send data to the next instance.

One strategy could be, to collect data in a buffer and forward the data when the

buffer exceeds a certain size. To provide a low-latency connection sometimes the

PSH Flag is set to 1. Then TCP should push the segment immediately to the

application without buffing. But typically the PSH-Flag is ignored.

 15

15(C) Herbert Haas 2005/03/11

TCP Header (5)

� SYN-Flag

� Indicates a connection request

�Sequence number synchronization

� ACK-Flag

�Acknowledge number is valid

�Always set, except in very first segment

SYN-Flag: 1 Bit. Control Bit.

If the SYN bit is set to 1, the application knows that the host want to established a

connection with him. Also used to synchronization the sequence numbers. Most

Firewalls through away packets with SYN=1 if the host want to established a

connection to a application which the is server not allowed (security reasons).

ACK-Flag: 1 bit. Control Bit.

Acknowledgment Bit.

 16

16(C) Herbert Haas 2005/03/11

TCP Header (6)

� FIN-Flag

� Indicates that this segment is the last

�Other side must also finish the

conversation

� RST-Flag

� Immediately kill the conversation

�Used to refuse a connection-attempt

FIN-Flag: 1 bit. Control Bit.

The FIN-Flag is used in the �disconnect process�. It indicates that this segment is

the last one. After the other side has also sent a segment with FIN=1, the

connection is closed.

RST-Flag: 1 bit. Control Bit.

Resets the connection immediately.

 17

17(C) Herbert Haas 2005/03/11

TCP Header (7)

� Window (16 Bit)

�Adjusts the send-window size of the

other side

�Used with every segment

�Receiver-based flow control

�SeqNr of last octet = AckNr + window

Window Size: 16 bit. The number of data octets beginning with the one indicated

in the acknowledgment field which the sender of this segment is willing to

accept. See Slide 27.

 18

18(C) Herbert Haas 2005/03/11

TCP Header (8)

� Checksum

�Calculated over TCP header, payload

and 12 byte pseudo IP header

�Pseudo IP header consists of source

and destination IP address, IP protocol

type, and IP total length;

�Complete socket information is

protected

� Thus TCP can also detect IP errors

TCP Checksum: 16 bit. The checksum includes the TCP header and data area

plus a 12 byte pseudo IP header (one's complement of the sum of all one's

complements of all 16 bit words). The pseudo IP header contains the source and

destination IP address, the IP protocol type and IP segment length (total length).

This guarantees, that not only the port but the complete socket is included in the

checksum.

 19

19(C) Herbert Haas 2005/03/11

TCP Header (9)

� Urgent Pointer
�Points to the last octet of urgent data

� Options
�Only MSS (Maximum Message Size) is

used

�Other options are defined in RFC1146,
RFC1323 and RFC1693

� Pad
�Ensures 32 bit alignment

Urgent Pointer: 16 bits. The urgent pointer points to the sequence number of the

octet following the urgent data. This field is only be interpreted in segments with

the URG control bit set.

Options: Variable length. Options may occupy space at the end of the TCP

header and are a multiple of 8 bits in length. Only the Maximum Message Size

(MSS) is used. All options are included in the checksum.

Padding: Variable length. The TCP header padding is used to ensure that the

TCP header ends and data begins on a 32 bit boundary. The padding is composed

of zeros.

 21

21(C) Herbert Haas 2005/03/11

Sequence Number

� RFC793 suggests to pick a random

number at boot time (e.g. derived from

system start up time) and increment every

4 µs

� Every new connection will increments

SeqNr by 1

� To avoid interference of spurious packets

� Old "half-open" connections are deleted

with the RST flag

RFC 793 suggests to pick a random starting sequence numbers and an explicit

negotiation of starting sequence numbers to make a TCP connect immune against

spurious packets.

Also disturbing segments (e.g. delayed TCP segments from old sessions etc.) and

old "half-open" connections are deleted with the RST flag.

 23

23(C) Herbert Haas 2005/03/11

TCP Data Transfer

� Acknowledgements are generated for all
octets which arrived in sequence without
errors (positive acknowledgement)

� Duplicates are also acknowledged (!)
� Receiver cannot know why duplicate has been sent;

maybe because of a lost acknowledgement

� The acknowledge number indicates the sequence
number of the next byte to be received

� Acknowledgements are cumulative: Ack(N)
confirms all bytes with sequence numbers up to
N-1
� Therefore lost acknowledgements are no problem

The acknowledge number is equal to the sequence number of the next octet to be

received.

 26

26(C) Herbert Haas 2005/03/11

TCP Retransmission Timeout

� Retransmission timeout (RTO) will

initiate a retransmission of

unacknowledged data

�High timeout results in long idle times

if an error occurs

� Low timeout results in

unnecessary retransmissions

� TCP continuously measures RTT to

adapt RTO

 27

27(C) Herbert Haas 2005/03/11

Retransmission ambiguity problem

� If a packet has been retransmitted
and an ACK follows: Does this ACK
belong to the retransmission or to
the original packet?
�Could distort RTT measurement

dramatically

� Solution: Phil Karn's algorithm
� Ignore ACKs of a retransmission for the

RTT measurement

�And use an exponential backoff method

The exponential backoff algorithm means that the retransmission timeout is

doubled every time the timer expires and the particular data segment was still not

acknowledged. However, the backoff is truncated usually at 64 seconds.

28(C) Herbert Haas 2005/03/11

RTT Estimation (1/2)

� For TCP's performance a precise

estimation of the current RTT is crucial

� RTT may change because of varying network

conditions (e. g. re-routing)

� Originally a smooth RTT estimator was

used (a low pass filter)

� M denotes the observed RTT (which is

typically inprecise because there is no one-to-

one mapping between data and ACKs)

� R = �R+(1 � �)M with smoothing factor �=0.9

� Finally RTO = � R with variance factor � �=2

29(C) Herbert Haas 2005/03/11

RTT Estimation (2/2)

� Initial smooth RTT estimator could not
keep up with wide fluctuations of the RTT
� Led to too many retransmissions

� Jacobson's suggested to take the RTT
variance also into account
� Err = M � A

� The deviation from the measured RTT (M) and the
RTT estimation (A)

� A = A + g Err �
� with gain g = 0.125

� D = D + h (|Err| � D)
� with h = 0.25

� RTO = A + 4D

 30

30(C) Herbert Haas 2005/03/11

TCP Sliding Window

� TCP flow control is done with dynamic
windowing using the sliding window protocol

� The receiver advertises the current amount of
octets it is able to receive
� Using the window field of the TCP header
� Values 0 through 65535

� Sequence number of the last octet a sender may
send = received ack-number -1 + window size
� The starting size of the window is negotiated during the

connect phase
� The receiving process can influence the advertised

window, hereby affecting the TCP performance

 31

31(C) Herbert Haas 2005/03/11

TCP Sliding Window

HOST A
HOST B

45 46 47 48 49 50 51

[SYN] S=44 A=? W=8

[SYN, ACK] S=72 A=45 W=4

[ACK] S=45 A=73 W=8

[ACK] S=45 A=73 W=8

Advertised Window
 (by the receiver)

Bytes in the send-buffer

written by the application

process

First byte that

can be send

Last byte that

can be send

 32

32(C) Herbert Haas 2005/03/11

TCP Sliding Window

� During the transmission the sliding window
moves from left to right, as the receiver
acknowledges data

� The relative motion of the two ends of the window
open or closes the window
� The window closes when data is sent and

acknowledged (the left edge advances to the right)

� The window opens when the receiving process on
the other end reads acknowledges data and frees up
TCP buffer space (the right edge moves to the right)

� If the left edge reaches the right edge, the sender
stops transmitting data - zero window

 33

33(C) Herbert Haas 2005/03/11

TCP Persist Timer (1/2)

� Deadlock possible:
Window is zero
and window-
opening ACK is
lost!
� ACKs are sent

unreliable!

� Now both sides
wait for each other!

S=3120, payload: 1000 bytes

ACK, A=4120, W=0

ACK, A=4120, W=20000

Waiting until

window is being

opened

Waiting until

data is sent

Only if the ACK also contains data then the peer would retransmit it after timer

expiration.

Window probes may be used to query receiver if window has been opened

already.

 34

34(C) Herbert Haas 2005/03/11

TCP Persist Timer (2/2)

� Solution: Sender may send
window probes:
� Send one data byte beyond

window
� If window remains closed

then this byte is not
acknowledged�so this
byte keeps being
retransmitted

� TCP sender remains in
persist state and continues
retransmission forever
(until window size opens)
� Probe intervals are

increased exponentially
between 5 and 60 seconds

� Max interval is 60 seconds
(forever)

S=4121, payload: 1 byte

ACK, A=4122, W=20000

S=3120, payload: 1000 bytes

ACK, A=4120, W=0

S=4121, payload: 1 byte

ACK, A=4120, W=0

probe

probe

S=4121, payload: 1 byte
probe

ACK, A=4122, W=20000

Since sender really has data to send the sender can use single bytes of the

bytestream to be send for ACK probes. The window probing interval is increased

similar as the normal retransmission interval following a truncated exponential

backoff, but is always bounded between 5 and 60 seconds. If the peer does not

open the window again the sender will transmit a window probe every 60

seconds.

 35

35(C) Herbert Haas 2005/03/11

Simultaneous Open

� If an application uses well
known ports for both client
and server, a "simultaneous
open" can be done
� TCP explicitly supports this
� A single connection (not two!) is

the result

� Since both peers learn each
others sequence number at
the very beginning the
session is established with a
following SYN-ACK

� Hard to realize in practice
� Both SYN packets must cross

each other in the network
� Rare situation!

SYN, S=100 SYN, S=300

SYN, S=100ACK, A=301

SYN, S=300

ACK, A=101

Established

True OSI protocols would establish two separate connections but TCP would

result in a single connection.

Note the different SQNR handling in the handshake!

 36

36(C) Herbert Haas 2005/03/11

TCP Enhancements

� So far, only the very basic TCP procedures have
been mentioned

� But TCP has much more magic built-in
algorithms which are essential for operation in
today's IP networks:
� "Slow Start" and �Congestion Avoidance�
� "Fast Retransmit" and "Fast Recovery"
� "Delayed Acknowledgements"
� "The Nagle Algorithm�
� Selective Ack (SACK), Window Scaling
� Silly windowing avoidance
�

� Additionally, there are different implementations
(Reno, Vegas, �)

�Slow Start� and �Congestion avoidance� are mechanisms that control the

segment rate (per RTT).

�Fast Retransmit� and �Fast Recovery� are mechanisms to avoid waiting for the

timeout in case of retransmission and to avoid slow start after a fast

retransmission.

Delayed Acknowledgements is typically used with applications like Telnet: Here

each client-keystroke triggers a single packet with one byte payload and the server

must response with both an echo plus a TCP acknowledgement. Note that also

this server-echo must be acknowledged by the client. Therefore, layer-4 delays

the acknowledgements because perhaps layer-7 might want to send some bytes

also.

The Nagle algorithm tries to make WAN connections more efficient. We simply

delay the segment transmission in order to collect more bytes from layer-7.

Selective Acks enhance the traditional positive-ack-mechanism and allows to

selectively acknowledge some correctly received segments within a larger

corrupted block.

Window Scaling deals with the problem of a jumping window in case the RTT-

BW-product is greater than 65535 (the classical max window size). This TCP

option allows to left-shift the window value (each bit-shift is like multiply by

two).

 37

37(C) Herbert Haas 2005/03/11

Delayed ACKs

� Goal: Reduce traffic,
support piggy-backed
ACKs

� Normally TCP, after
receiving data, does
not immediately send
an ACK

� Typically TCP waits
(typically) 200 ms and
hopes that layer-7
provides data that
can be sent along
with the ACK

Example:

Telnet and no Delayed ACK

Keypress "A"

ACK

Echo "A"

Example:
Telnet with Delayed ACK

Keypress "A"

ACK + Echo "A"

Wait 100 ms

on average

Actually the kernel maintains a 200 msec timer and every TCP session waits until

this central timer expires before sending an ACK. If we are lucky the application

has given us also some data to send, otherwise the ACK is sent without any

payload. This is the reason, why we usually do not observe exact 200 msec delay

between reception of a TCP packet and transmission of an ACK, rather the delay

is something between 1 and 200 msec.

The Hosts Requirement RFC (1122) states that TCP should be implemented with

Delayed ACK and that the delay must be less than 500 ms.

 38

38(C) Herbert Haas 2005/03/11

Nagle Algorithm

� Goal: Avoid tinygrams on expensive (and usually
slow) WAN links

� In RFC 896 John Nagle introduced an efficient
algorithm to improve TCP

� Idea: In case of outstanding (=unacknowledged)
data, small segments should not be sent until the
outstanding data is acknowledged

� In the meanwhile small amount of data (arriving
from Layer 7) is collected and sent as a single
segment when the acknowledgement arrives

� This simple algorithm is self-clocking
� The faster the ACKs come back, the faster data is sent

� Note: The Nagle algorithm can be disabled!
� Important for realtime services

A tinygram is a very small packet, for example with a single byte payload. The

total packet size would be 20 bytes IP, 20 bytes TCP plus 1 byte data (plus 18

bytes Ethernet). No problem on a LAN but lots of tinygrams may congest the

(typically much) slower WAN links.

In this context, "small" means less than the segment size.

Note that the Nagle Algorithm can be disabled, which is important for certain

realtime services. For example the X Window protocol disables the Nagle

Algorithm so that e. g. realtime feedback of mouse movements can be

communicated without delay.

The socket API provides the symbol TCP_NODELAY.

 39

39(C) Herbert Haas 2005/03/11

TCP Keepalive Timer

� Note that absolutely no data flows during
an idle TCP connection!
� Even for hours, days, weeks!

� Usually needed by a server that wants to
know which clients are still alive
� To close stale TCP sessions

� Many implementations provide an optional
TCP keepalive mechanism
� Not part of the TCP standard!
� Not recommended by RFC 1122 (hosts

requirements)
� Minimum interval must be 2 hours

Sessions may remain up even for month without any data being sent.

The Host Requirements RFC mentions three disadvantages: 1) Keepalives can

cause perfectly good connections to be dropped during transient failures, 2) they

consume unnecessary bandwidth, and 3) they cost money when the ISP charge at

a per packet base. Furthermore many people think that keepalive mechnisms

should be implemented at the application layer.

 41

41(C) Herbert Haas 2005/03/11

TCP Disconnect

� A TCP session is disconnected similar
to the three way handshake

� The FIN flag marks the sequence number to be
the last one; the other station acknowledges and
terminates the connection in this direction

� The exchange of FIN and ACK flags ensures, that
both parties have received all octets

� The RST flag can be used if an error occurs
during the disconnect phase

2005/03/11(C) Herbert Haas

TCP Congestion Control

1. Slow Start & Congestion
Avoidance

2. Random Early Discard

3. Explicit Congestion Notification

 43

43(C) Herbert Haas 2005/03/11

Once again: The Window Size

� The windows size (announced by the peer)

indicates how many bytes I may send at

once (=without having to wait for

acknowledgements)

� Either using big or small packets

� Before 1988, TCP peers tend to exploit the

whole window size which has been

announced during the 3-way handshake

� Usually no problem for hosts

� But led to frequent network congestions

Note that hosts only need to deal with a single or a few TCP connections while

network nodes such as routers and switches must transfer thousands, sometimes

even millions of connections. Those nodes must queue packets and schedule them

on outgoing interfaces (which might be slower than the inbound rates). If all TCP

senders transmit at "maximum speed" � i. e. what is announced by the window �

then network nodes may experience buffer overflows.

 44

44(C) Herbert Haas 2005/03/11

Goal of Slow Start

� TCP should be "ACK-clocking"

�Problem (buffer overflows) appears at

bottleneck links

�New packets should be injected at the

rate at which ACKs are received

Pipe modell of a network path: Big fat pipes (high data rates) outside, a

bottleneck link in the middle. The green packets are sent at the maximum

achievable rate so that the interpacket delay is almost zero at the bottleneck

link; however there is a significant interpacket gap in the fat pipes.

Using TCP the depths of the queues are controlled by the ACK frequency,

therefore TCP is called to be ACK-clocked. Only when an ACK is received the

next segment is sent. Therefore TCP is self-regulating and the queue-depth is

determined by the bottleneck: Every node runs exactly at the bottleneck link rate.

If a higher rate would be used, then ACKs stay out and TCP would throttle its

sending rate.

 45

45(C) Herbert Haas 2005/03/11

Preconditions of Slow Start

� Two important parameters are

communicated during the TCP three-

way handshake

� The maximum segment size (MSS)

� The Window Size

� Now Slow Start introduces the

congestion window (cwnd)

�Only locally valid and locally maintained

� Like window field stores a byte count

The MSS is typically around 1024 bytes or more but does NOT count the TCP/IP

header overhead, so the true packet is 20+20 bytes larger. The MSS is not

negotiated, rather each peer can announce ist acceptable MSS size and the other

peer must obey. If no MSS option is communicated then the default of 536 bytes

(i. e. 576 in total with IP and TCP header) is assumed.

Note: The MSS is only communicated in SYN-packets.

 46

46(C) Herbert Haas 2005/03/11

Idea of Slow Start

� Upon new session, cwnd
is initialized with MSS (=
1 segment)

� Allowed bytes to be sent:
Min(W, cwnd)

� Each time an ACK is
received, cwnd is
incremented by 1
segment
� That is, cwnd doubles

every RTT (!)

� Exponential increase!

cwnd=1 MSS Data

Ack

cwnd=2 MSS

cwnd=4 MSS

cwnd=4 MSS

�

Note that the sender may transmit up to the minimum of the congestion window

(cwnd) and the advertized window (W).

The cwnd implements sender-imposed flow control, the advertized window

allows for receiver-imposed flow control. But how does this mechanism deal with

network congestion? Continue reading!

 47

47(C) Herbert Haas 2005/03/11

Graphical illustration (1/4)

S
e
n

d
e
r

R
e
c

e
iv

e
r

D1
S

e
n

d
e
r

R
e
c

e
iv

e
r

D1

S
e
n

d
e
r

R
e
c

e
iv

e
r

D1

S
e
n

d
e
r

R
e
c

e
iv

e
r

D1

S
e
n

d
e
r

R
e
c

e
iv

e
r

A1

S
e
n

d
e
r

R
e

c
e

iv
e

r

A1

S
e
n

d
e
r

R
e

c
e

iv
e

r

A1

S
e
n

d
e
r

R
e

c
e

iv
e

r

A1

S
e
n

d
e
r

D2

R
e

c
e

iv
e

r

S
e
n

d
e
r

D3

R
e

c
e

iv
e

r

D2

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

cwnd=1

cwnd=2

cwnd=1

cwnd=1

cwnd=1

cwnd=1

cwnd=1

cwnd=1

cwnd=1

cwnd=2

The picture shows the two unidirectional channels between sender and receiver as

pipe representation.

Observe how the cwnd is increased upon reception of ACKs.

 48

48(C) Herbert Haas 2005/03/11

Graphical illustration (2/4)

S
e
n

d
e
r

R
e
c

e
iv

e
r

D2
S

e
n

d
e
r

R
e
c

e
iv

e
r

D3

S
e
n

d
e
r

R
e
c

e
iv

e
r

D3

S
e
n

d
e
r

R
e
c

e
iv

e
r

S
e
n

d
e
r

R
e
c

e
iv

e
r

A2

S
e
n

d
e
r

R
e

c
e

iv
e

r

S
e
n

d
e
r

R
e

c
e

iv
e

r

A3

S
e
n

d
e
r

R
e

c
e

iv
e

r

S
e
n

d
e
r

D6

R
e

c
e

iv
e

r

S
e
n

d
e
r

D4

R
e

c
e

iv
e

r

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19

D3

D2

A3A2

A3A2

A3A2

D5 D4

D5 D4

D6 D5 D4D7

cwnd=3

cwnd=4

cwnd=4

cwnd=2

cwnd=2

cwnd=2

cwnd=2

cwnd=2

cwnd=4

cwnd=2

Observe the exponential growth of the data rate.

 49

49(C) Herbert Haas 2005/03/11

Graphical illustration (3/4)

S
e
n

d
e
r

R
e
c

e
iv

e
r

D6
S

e
n

d
e
r

R
e
c

e
iv

e
r

S
e
n

d
e
r

R
e
c

e
iv

e
r

S
e
n

d
e
r

R
e
c

e
iv

e
r

S
e
n

d
e
r

R
e
c

e
iv

e
r

A4 S
e
n

d
e
r

R
e

c
e

iv
e

r

S
e
n

d
e
r

R
e

c
e

iv
e

r

S
e
n

d
e
r

R
e

c
e

iv
e

r

S
e
n

d
e
r

R
e

c
e

iv
e

r

S
e
n

d
e
r

R
e

c
e

iv
e

r

t=20

t=21

t=22

t=23

t=24

t=25

t=26

t=27

t=28

t=29

D5

D6

A6

A5A4

A5A4 A6

A5A4 A6

A5 A6

D8

D9 D8

D10 D9 D8

D10 D9 D8D11

D10 D9D11

A8

D10D11

A9A8

D7

D7

D7

A7

A7

A7

A7

D12

D12D13

cwnd=5

cwnd=6

cwnd=7

cwnd=8

cwnd=4

cwnd=4

cwnd=4

cwnd=4

cwnd=8

cwnd=8

We are approaching the limit soon�

 50

50(C) Herbert Haas 2005/03/11

Graphical illustration (4/4)

� TCP is "self-clocking"
� The spacing between the ACKs is the same as between

the data segments
� The number of ACKs is the same as the number of data

segments

� In our example, cwnd=8 is the optimum
� This is the delay-bandwidth product (8 = RTT x BW)
� In other words: the pipe can accept 8 packets per

round-trip-time

S
e
n

d
e
r

R
e
c

e
iv

e
r

S
e
n

d
e
r

R
e
c

e
iv

e
r

t=30

t=31

D11D12

A10A9

D13D14

A8

D12D13

A11A10

D14D15

A9A8

cwnd=8 => Pipe is full (ideal situation) �

cwnd should not be increased anymore!

cwnd=8

cwnd=8

At t=31, the pipe is ideally filled with packets; each time an ACK is received,

another data packet is injected for transmission.

In our example cwnd=8 is the optimimum, corresponding to 8 packets that can be

sent before waiting for an acknowledgement. This optimum is expressed via the

famous delay-bandwidth product, i. e.

pipe capacity = RTT x BW ,

where the capacity is measured in bits, RTT in seconds, and the BW in bits/sec.

Our problem now is how to stop TCP from further increasing the cwnd�

(continue reading).

(BTW: Of course this illustration is not completely realistic because the spacing

between the packets is distorted by many packet buffers along the path.)

 51

51(C) Herbert Haas 2005/03/11

End of Slow Start

� Slow start leads to an exponential

increase of the data rate until some

network bottleneck is congested:

Some packets get dropped!

� How does the TCP sender recognize

network congestions?

� Answer: Upon receiving Duplicate

Acknowledgements !!!

Slow start ends its exponential increase until duplicate acknowledgements are

received.

 52

52(C) Herbert Haas 2005/03/11

Once again: Duplicate ACKs

� TCP receivers send
duplicate ACKs if
segments are missing
� ACKs are cumulative (each

ACK acknowledges all data
until specified ACK-
number)

� Duplicate ACKs should not
be delayed

� ACK=300 means: "I am
still waiting for packet
with SQNR=300"

SQNR=100

SQNR=200

SQNR=300

SQNR=400

ACK=200

ACK=300

ACK=300

SQNR=300

SQNR=500

ACK=300

�

Duplicate Ack

Duplicate Ack

Duplicate ACKs should be sent immediately that is it should not be delayed.

 53

53(C) Herbert Haas 2005/03/11

Congestion Avoidance (1)

� Congestion Avoidance is the companion
algorithm to Slow Start � both are usually
implemented together !

� Idea: Upon congestion (=duplicate ACKs) reduce
the sending rate by half and now increase the rate
linearly until duplicate ACKs are seen again (and
repeat this continuously)
� Introduces another variable: the Slow Start threshold

(ssthresh)

� Note this central TCP assumption: Packets are
dropped because of buffer overflows and NOT
because of bit errors!
� Therefore packet loss indicates congestion somewhere

in the network

 54

54(C) Herbert Haas 2005/03/11

The combined algorithm

New Session: initialize cwnd = 1 MSS, ssthresh = 65535

Determine actual window size "AWS" = Min (W, cwnd)

 ** send AWS bytes **

Retransmission

timeout expired

Duplicate ACKs

received

Data

acknowledged

Increment cwnd

 by 1/cwnd for

each ACK received

cwnd = 1

ssthresh = AWS/2

ssthresh = AWS/2

(but at least 2 MSS)

(cwnd > ssthresh) ?

yes no

Increment cwnd

by one for each

ACK received.

Note that when slow start's exponential increase is only performed as long as

cwnd is less or equal ssthresh. In this range, cwnd is increased by one with every

received ACK. But if cwnd is greater than ssthresh, then cwnd is increased by

1/cwnd every received ACK. This means, cwnd is effectively increased by one

every RTT.

Note that is not the complete algorithm. We must additionally discuss Fast

Retransmit and Fast Recovetry�see next slides.

55(C) Herbert Haas 2005/03/11

Slow Start and Congestion Avoidance

cwnd / MSS

t / RTT1 2 3 4 5 6 7 8 9

2

4

6

8

10

12

14

16

18

20
Duplicate ACK received

at cwnd = 32

Duplicate ACK received

at cwnd = 20

Congestion Avoidance

Congestion Avoidance

S
lo

w
 S

ta
rt

 56

56(C) Herbert Haas 2005/03/11

"Fast Retransmit"

� Note that duplicate ACKs are also

sent upon packet reordering

� Therefore TCP waits for 3 duplicate

ACKs before it really assumes

congestion

� Immediate retransmission (don't wait for

timer expiration)

� This is called the Fast Retransmit

algorithm

Observations have shown that if three or more duplicate acks are sent then this is

a strong indication for a lost packet. In this case Fast Retransmission is done, i. e.

TCP does not wait until a packet's retransmission timer expires.

57(C) Herbert Haas 2005/03/11

"Fast Recovery"

� After Fast Retransmit TCP continues with
Congestion Avoidance
� Does NOT fall back to Slow Start

� Every another duplicate ACK tells us that
a "good" packet has been received by the
peer
� cwnd = cwnd + MSS

� => Send one additional segment

� As soon a normal ACK is received
� cwnd = ssthresh = Min(W, cwnd)/2

� This is called Fast Recovery

 58

58(C) Herbert Haas 2005/03/11

All together!

New Session: initialize cwnd = 1 MSS, ssthresh = 65535

Determine actual window size "AWS" = Min (W, cwnd)

 ** send AWS bytes **

Retransmission

timeout expired

3 duplicate ACKs

received

Data

acknowledged

Increment cwnd

 by 1/cwnd for

each ACK received

cwnd = 1

ssthresh = AWS/2

ssthresh = AWS/2

(but at least 2 MSS),

retransmit the segment,

cwnd = ssthresh+3 MSS,

for each 3+nth duplicate ACK

increase cwnd by 1 MSS;

then set cwnd=ssthresh upon

first "normal" ACK

(cwnd > ssthresh) ?

yes no

Increment cwnd

by one for each

ACK received.

Slow Start, Congestion Avoidance,

Fast Retransmit, and Fast Recovery

When one or two duplicate ACKs are received, TCP does not react because

packet reorder is probable. Upon the third duplicate ACK TCP assumes that the

segment (for which the duplicate ACK is meant) is really lost. TCP now

immediately retransmit the packet (i. e. it does not wait for any timer expiration),

sets ssthresh to min{W, cwnd}/2 and then cwnd three segment sizes greater than

this ssthresh value. If TCP still receives duplicate ACKs then obviously good

packets still arrive at the peer; and therefore TCP continous sending new

segements�hereby incrementing cwnd by one segment size for every another

duplicate ACK (this actually allows the transmission of another new segment).

As soon as a normal (=not duplicate) ACK is received (=it acknowledges the

retransmitted segment) cwnd is set to ssthresh (=continue with normal congestion

avoidance).

 59

59(C) Herbert Haas 2005/03/11

Real TCP Performance

� TCP always tries to minimize the

data delivery time

� Good and proven self-regulating

mechanism to avoid congestion

� TCP is "hungry but fair"

�Essentially fair to other TCP

applications

�Unreliable traffic (e. g. UDP) is not fair to

TCP�

TCP has been designed for data traffic only. Error recovery does not make sense

for voice and video streams. TCP checks the current maximum bandwidth and

tries to utilize all of it. In case of congestion situations TCP will reduce the

sending rate dramatically and explores again the network's capabilities. Because

of this behavior TCP is called "hungry but fair".

The problem with this behavior is the consequence for all other types of traffic:

TCP might grasp all it can get and nothing is left for the rest.

 60

60(C) Herbert Haas 2005/03/11

Summary: The TCP "wave"

� Tries to fill the "pipe" using

�Slow Start and

�Congestion Avoidance

RTT

Relative

Through
put
Rate
(cwnd)

ssthresh

Duplicate AckDuplicate AckDuplicate Ack Duplicate Ack

slow start congestion
avoidance

congestion
avoidance

congestion
avoidance

max. achievable
throughput

The diagram above shows the typical TCP behavior of one flow. There are two

important algorithms involved with TCP congestion control: "Slow Start"

increases the sending rate exponentially beginning with a very low sending rate

(typically 1-2 segments per RTT). When the limit of the network is reached, that

is, when duplicate acknowledgement occur, then "Congestion Avoidance"

reduces the sending rate by 50 percent and then it is increased only linearly.

The rule is: On receiving a duplicate ACK, congestion avoidance is performed.

On receiving no ACK at all, slow start is performed again, beginning at zero

sending rate.

Note that this is only a quick and rough explanation of the two algorithms�the

details are a bit more complicated. Furthermore, different TCP implementations

utilize these algorithm differently.

 61

61(C) Herbert Haas 2005/03/11

What's happening in the network?

� Tail-drop queuing is the standard
dropping behavior in FIFO queues
� If queue is full all subsequent packets

are dropped

New arriving packets are dropped

("Tail drop")

Full queue

 62

62(C) Herbert Haas 2005/03/11

Tail-drop Queuing (cont.)

� Another representation:

Drop probability versus queue depth

100%

0%
Queue Depth

D
ro

p
 P

ro
b

a
b

il
it

y

The "queue depth" denotes the amount of packets waiting in the queue for being

forwarded. (It is NOT the size of the whole queue.)

 63

63(C) Herbert Haas 2005/03/11

Tail-drop Problems

� No flow differentiation

� TCP starvation upon multiple packet

drop
� TCP receivers may keep quiet (not even

send Duplicate ACKs) and sender falls back

to slow start

� worst case!

� TCP fast retransmit and/or selective

acknowledgement may help

� TCP synchronization

 64

64(C) Herbert Haas 2005/03/11

TCP Synchronization

� Tail-drop drops many packets of different
sessions at the same time

� All these sessions experience duplicate ACKs
and perform synchronized congestion avoidance

RTT

Relative
Throughput

Rate

(Window
size)

Duplicate AckDuplicate AckDuplicate Ack Duplicate Ack

slow start congestion
avoidance

congestion
avoidance

congestion
avoidance

max. achievable
throughput

Average link

utilization

 65

65(C) Herbert Haas 2005/03/11

Random Early Detection (RED)

� Utilizes TCP specific behavior
� TCP dynamically adjusts traffic throughput to

accommodate to minimal available bandwidth
(bottleneck) via reduced window size

� "Missing" (dropped) TCP segments cause
window size reduction!
� Idea: Start dropping TCP packets before queuing "tail-

drops" occur

� Make sure that "important" traffic is not dropped

� RED randomly drops packets before queue is full
� Drop probability increases linearly with queue depth

 66

66(C) Herbert Haas 2005/03/11

RED

� Important RED parameters
� Minimum threshold

� Maximum threshold

� Average queue size (running average)

� RED works in three different modes
� No drop

� If average queue size is between 0 and minimum threshold

� Random drop
� If average queue size is between minimum and maximum

threshold

� Full drop
� If average queue size is equal or above maximum

threshold = "tail-drop"

 67

67(C) Herbert Haas 2005/03/11

RED Parameters

Drop probability

Mark probability

100%

10%

min-thresh max-thresh

Average

queue size

(e.g. 20) (e.g. 40)

Tail-drop (full drop)

RED

(packets)

 68

68(C) Herbert Haas 2005/03/11

Weighted RED (WRED)

� Drops less important packets more
aggressively than more important packets

� Importance based on:
� IP precedence 0-7

� DSCP value 0-63

� Classified traffic can be dropped based on
the following parameters
� Minimum threshold

� Maximum threshold

� Mark probability denominator
(Drop probability at maximum threshold)

 69

69(C) Herbert Haas 2005/03/11

RED Problems

� RED performs "Active Queue
Management" (AQM) and drops
packets before congestion occurs
�But an uncertainty remains whether

congestion will occur at all

� RED is known as "difficult to tune"
�Goal: Self-tuning RED

�Running estimate weighted moving
average (EWMA) of the average queue
size

Many TCP streams in a network tend to synchronize each other in terms of

intensity. That is, all TCP users recognize congestion simultaneously and would

restart the slow-start process (sending at a very low rate). At this moment the

network is not utilized. After a short time, all users would reach the maximum

sending rate and network congestion occurs. At this time all buffers are full.

Again all TCP users will stop and nearly stop sending again. This cycle continues

infinitely and is called the TCP wave effect. The main disadvantage is the

relatively low utilization of the network.

Random Early Discard (RED) is a method to de-synchronize the TCP streams by

simply drop packets of a queue randomly. RED starts when a given queue depth

is reached and is applied more aggressively when the queue depth increases.

RED causes the TCP receivers to send duplicate ACKs which in turn causes the

TCP senders to perform congestion avoidance. The trick is that this happens

randomly, so not all TCP applications are affected equally at the same time.

Although the principle of RED is fairly simply it is known to be difficult to tune.

A lot of research has been done to find out optimal rules for RED tuning.

 70

70(C) Herbert Haas 2005/03/11

Explicit Congestion Notification (ECN)

� Traditional TCP stacks only use packet loss as indicator to
reduce window size
� But some applications are sensitive to packet loss and delays

� Routers with ECN enabled mark packets when the average
queue depth exceeds a threshold
� Instead of randomly dropping them
� Hosts may reduce window size upon receiving ECN-marked

packets

� Least significant two bits of IP TOS used for ECN

ECT CE
IP TOS Field

DSCP ECN

Obsolete (but widely used) RFC 2481

notation of these two bits:

ECT ECN-Capable Transport

CE Congestion Experienced

RFC 3168 - The Addition of Explicit Congestion Notification (ECN) to IP

The RFC 2481 originally identified the two bits: "The ECN-Capable Transport

(ECT) bit would be set by the data sender to indicate that the end-points of the

transport protocol are ECN-capable. The CE bit would be set by the router to

indicate congestion to the end nodes. Routers that have a packet arriving at a

full queue would drop the packet, just as they do now."

 71

71(C) Herbert Haas 2005/03/11

Usage of CE and ECT

� RFC 3168 redefines the use of the two bits: ECN-supporting
 hosts should set one of the two ECT code points
� ECT(0) or ECT(1)
� ECT(0) SHOULD be preferred

� Routers that experience congestion set the CE code point
in packets with ECT code point set (otherwise: RED)

� If average queue depth is exceeding max-threshold: Tail-
drop

� If CE already set: forward packet normally (abuse!)

0 0

0 1

1 0

1 1

Non ECN-capable transport

ECT(1)

ECT(0)
Codepoints for ECN-capable transport

CE codepoint

ECN Field

Why are two ECT codepoints used? As short answer: This has several reasons

and supports multiple implementations, e. g. to differentiate between different

sets of hosts etc.

But the most important reason is to provide a mechanism so that a host (or a

router) can check whether the network (or the host, respectively) indeed supports

ECN. ECN has been introduced in the mid-1990s and the inventors wanted to

increase the pressure for hists and routers to migrate. On the other hand non-ECN

hosts could simply set the ECT-bit (see previous slide) and claimed to support

ECN: Upon congestion the router would not drop the packet but only mark it.

While ECN-capable host would reduce their TCP window, ECN-faking hosts

would still remain at their transmission rate. Now the two ECT Codepoints could

be used as Cookie which allows a host to detect whether a router erases the ECT

or ECN bit. Also it can be tested whether the other side uses ECN.

If you do not fully understand this please read the RFCs and search in the WWW

� there a lots of debates about that.

By the way: The bit combination 01 indeed stands for ECT(1) and not ECN(0).

This is no typo.

 73

73(C) Herbert Haas 2005/03/11

ECN Configuration

� Note: ECN is an extension to WRED
� Therefore WRED must be enabled first !

� ECN will be applied on that traffic that is
identified by WRED (e. g. dscp-based)

(config-pmap-c)# random-detect

(config-pmap-c)# random-detect ecn

show policy-map interface s0/1 !!! shows ECN setting

If ECN is enabled, ECN can be used whether Weighted Random Early Detection

(WRED) is based on the IP precedence value or the differentiated services code

point (DSCP) value.

 74

74(C) Herbert Haas 2005/03/11

Note

� CE is only set when average queue

depth exceeds a threshold

�End-host would react immediately

� Therefore ECN is not appropriate for

short term bursts (similar as RED)

� Therefore ECN is different as the

related features in Frame Relay or

ATM which acts also on short term

(transient) congestion

 75

75(C) Herbert Haas 2005/03/11

UDP

� UDP is a connectionless layer 4 service
(datagram service)

� Layer 3 Functions are extended by port
addressing and a checksum to ensure integrity

� UDP uses the same port numbers as TCP
(if applicable)

� UDP is used, where the overhead of a connection
oriented service is undesirable or where the
implementation has to be small

� DNS request/reply, SNMP get/set, booting by TFTP

� Less complex than TCP, easier to implement

UDP is connectionless and supports no error recovery or flow control. Therefore

an UDP-stack is extremely lightweight compared to TCP.

Typically applications that do not require error recovery but rely on speed use

UDP, such as multimedia protocols.

 76

76(C) Herbert Haas 2005/03/11

UDP Header

Destination Port NumberSource Port Number

PAYLOAD

 0 4 8 12 16 20 24 28 32

UDP Length UDP Checksum

The picture above shows the 8 byte UDP header. Note that the Checksum is often

not calculated, so UDP basically carries only the port numbers.

I personally think that the length field is just for fun (or to align with 4 octets).

The IP header already contains the total packet length.

 77

77(C) Herbert Haas 2005/03/11

UDP

� Source and Destination Port
� Port number for addressing the process (application)

� Well known port numbers defined in RFC1700

� UDP Length
� Length of the UDP datagram (Header plus Data)

� UDP Checksum
� Checksum includes pseudo IP header

(IP src/dst addr., protocol field),
UDP header and user data;
one´s complement of the sum of all one´s complements

Compared to the TCP Header, the UDP is very small (8 byte to 20 byte) because

UDP makes no error recovery or flow control.

 78

2005/03/11(C) Herbert Haas

Other Transport Layer Protocols

SCTP

UDP Lite

DCCP

 79

79(C) Herbert Haas 2005/03/11

Stream Control Transmission

Protocol (SCTP)

� A newer improved alternative to TCP (RFC
4960)

� Supports
� Multi-homing

� Multi-streaming

� Heart-beats

� Resistance against SYN-Floods (via Cookies)
and 4-way handshake)

� Seldom used today
� Base for the Reliable Server Pooling Protocol

(RSerPool)

Invented around 2000 it has not found wide acceptance today although there is a

growing community behind it.

Multi-homing means that endpoints may consist of more than one IP address, i. e.

a session may involve multiple interfaces per host.

 80

80(C) Herbert Haas 2005/03/11

UDP Lite

� Problem: Lots of applications would like to
receive even (slightly) corrupted data
� E. g. multimedia

� UDP Lite (RFC 3828) defines a different
usage of the UDP length field
� UDP length field indicates how many bytes of

the datagram are really protected by the
checksum ("checksum coverage")

� True length shall be determined by IP length
field

� Currently only supported by Linux

Why rejecting big UDP datagrams when 99% of the payload is still useful?

As stated in RFC 3828:

This new protocol is based on three observations: First, there is a class of applications that

benefit from having damaged data delivered rather than discarded by the network. A number of

codecs for voice and video fall into this class (e.g., the AMR speech codec [RFC-3267], the

Internet Low Bit Rate Codec [ILBRC], and error resilient H.263+ [ITU-H.263], H.264 [ITU-

H.264; H.264], and MPEG-4 [ISO-14496] video codecs). These codecs may be designed to cope

better with errors in the payload than with loss of entire packets.

Second, all links that support IP transmission should use a strong link layer integrity check (e.g.,

CRC-32 [RFC-3819]), and this MUST be used by default for IP traffic. When the under-lying link

supports it, certain types of traffic (e.g., UDP-Lite) may benefit from a different link behavior that

permits partially damaged IP packets to be forwarded when requested [RFC-3819]. Several

radio technologies (e.g., [3GPP]) support this link behavior when operating at a point where cost

and delay are sufficiently low. If error-prone links are aware of the error sensitive portion of a

packet, it is also possible for the physical link to provide greater protection to reduce the

probability of corruption of these error sensitive bytes (e.g., the use of unequal Forward Error

Correction).

A length field of zero means the whole UDP datagram is covered by the

checksum. At least the header must be protected, that is the length field is either 0

or at least 8. It is required that the IP-pseudoheader is always part of the

checksum computation.

UDP Lite is supported by Linux since kernel 2.6.20.

 81

81(C) Herbert Haas 2005/03/11

Datagram Congestion Control Protocol

(DCCP)

� Problem: More and more
applications use UDP instead of TCP

� But UDP does not support
congestion control � networks might
collapse!

� DCCP adds a congestion control
layer to UDP
�RFC 4340

� First implementations now in FreeBSD
and Linux

82(C) Herbert Haas 2005/03/11

DCCP (cont.)

� 4-way handshake

� Different

procedures

compared to TCP

regarding

sequence number

handling and

session creation

 83

83(C) Herbert Haas 2005/03/11

Summary

� TCP & UDP are Layer 4 (Transport)
Protocols above IP

� TCP is "Connection Oriented"

� UDP is "Connection Less"

� TCP implements "Fault Tolerance" using
"Positive Acknowledgement"

� TCP implements "Flow Control" using
dynamic window-sizes

� The combination of IP-Address and
TCP/UDP-Port is called a "Socket"

