
L93 - Secret-Key Cryptography

Secret-Key Cryptography

DES, 3DES, IDEA, AES

Institute of Computer Technology - Vienna University of Technology

L93 - Secret-Key Cryptography

Secret-Key Techniques

Encrypting large messages

Electronic Code Block (ECB)
 Cipher Block Chaining (CBC)
 Output Feedback Mode (OFB)
 Cipher Feedback Mode (CFB)

- Data Encryption Standard (DES, 56bit)

- Multiple Encryption DES (3DES, 112bit)

- International Data Encryption Algorithm (IDEA, 128bit)

- Advanced Encryption Standard (AES, 128/168/256 bit))

• Examples

- RC4, RC5

© 2005, D.I. Manfred Lindner

Agenda

- Introduction
- DES
- 3DES
- DES-Modes
- IDEA
- RC4
- AES

2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

Secret-Key

© 2005, D.I. Manfred Lindner

Secret-Key

L93 - Secret-Key Cryptography

Agenda

- Introduction
- <u>DES</u>
- 3DES
- DES-Modes
- IDEA
- RC4
- AES

2005, D.I. Manfred Lindner

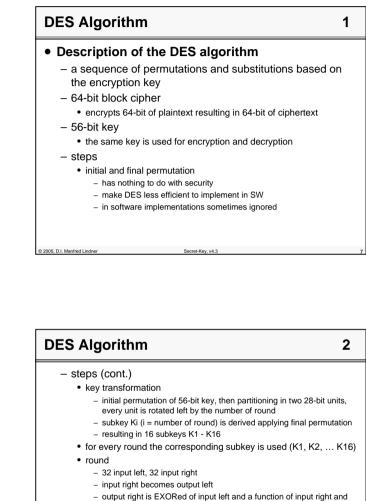
DES

• History

2005, D.I. Manfred Lindner

- designed and developed by IBM
- published 1977 by NIST (National Institute of Standards and Technology) as official standard for unclassified information

Secret-Key, v4.3


- lot of US government regulations refer to DES
- widely adopted by the industry for use in security products

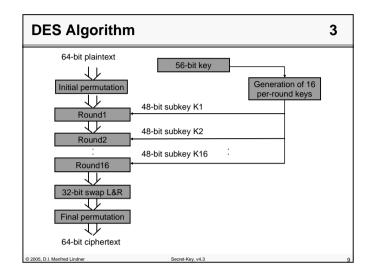
Scrutinized by cryptanalysts

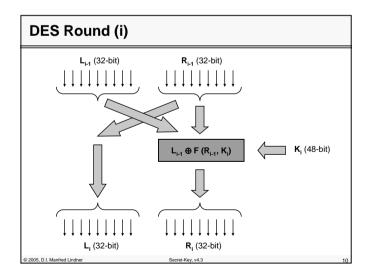
- for 25 years with no significant flaw found
- Simple logical operations
 - can be easily implemented in hardware
 - very high speed, up to gigabit/s (!) with special chips

Secret-Key, v4.3

L93 - Secret-Key Cryptography

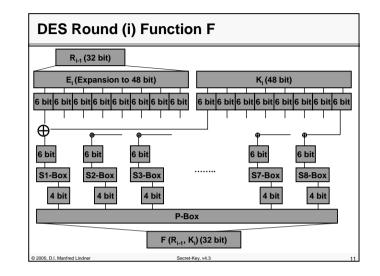
- output right is EXORed of input left and a function of input right and subkey Ki
- complexity lies in this function (expansion permutation, EXORed with Ki, given to S-box substitutions, final P-box permutation)
- decryption done by same procedure
 - subkeys must be used in reverse order (K16, K15, K1)


© 2005, D.I. Manfred Lindner

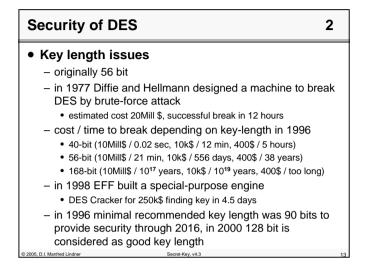

© 2005, D.I. Manfred Lindner

Page 93 - 3

© 2005, D.I. Manfred Lindner


L93 - Secret-Key Cryptography

Institute of Computer Technology - Vienna University of Technology


L93 - Secret-Key Cryptography

Security of DES 1	
 Standardization and Design 	
 originally IBM specified key length 128 bit 	
 after invitation to discuss this matter with NSA (National Security Agency) it was reduced to 56 bit 	
 design process (especially S-boxes) was kept secret 	
- there are some "rumors" about these facts	
 Cryptanalyst 	
 tried out a lot of methods to break it 	
 actually in most cases only brute-force is the danger 	
Conclusion:	
 the algorithm is very good and still considered to be very robust, but the key length is not 	
105. D.I. Manfred Lindner Secret-Kev. v4.3	

© 2005, D.I. Manfred Lindner

L93 - Secret-Key Cryptography

Agenda

- Introduction
- DES
- 3DES
- DES-Modes
- IDEA
- RC4
- AES

2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

Secret-Key v4

Institute of Computer Technology - Vienna University of Technology

L93 - Secret-Key Cryptography

How to improve DES

Increase key length to 112 bits

- 2¹¹² (5x10³³) possible keys to try out by brute-force attack instead of 2⁵⁶ (7x10¹⁶)
- seems to be sufficient for the next 100 million years

• Ideas to implement this

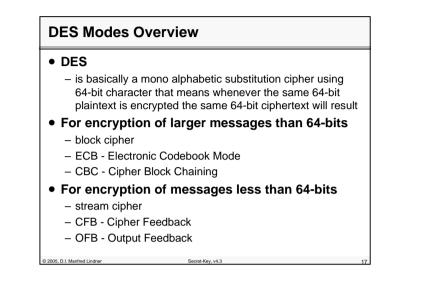
- by running DES twice with two different 56 bit keys
- but Cryptanalyst developed a method that makes double encryption suspect and it turned out, that double encryption is not much more secure than single encryption
- Triple Encryption (3DES, 112 bit)
 - three stages: first DES encrypt with K1 (56bit), then DES decrypt with K2 (56bit) and finally encrypt with K1 again (EDE) hence slower than single DES, 2 keys (112bit) are seen as save enough,
 - EDE allows backward compatibility with single DES when K1 = K2

Secret-Key, v4.3

© 2005, D.I. Manfred Lindner

Agenda

- Introduction
- DES
- 3DES
- DES-Modes
- IDEA
- RC4


© 2005, D.I. Manfred Lindner

• AES

© 2005, D.I. Manfred Lindner

L93 - Secret-Key Cryptography

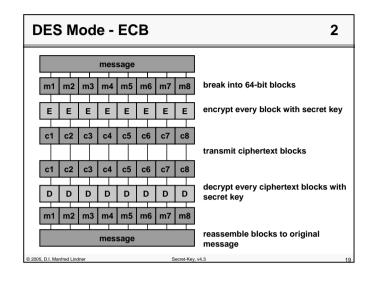
L93 - Secret-Key Cryptography

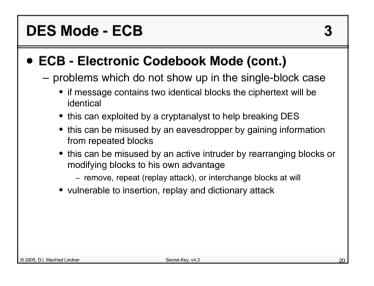
DES Mode - ECB

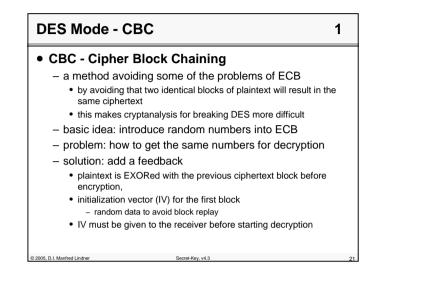
2005, D.I. Manfred Lindner

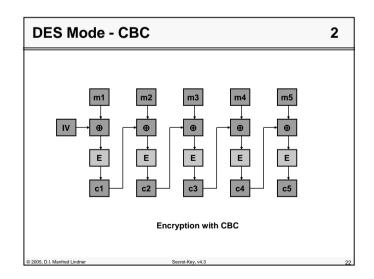
• ECB - Electronic Codebook Mode

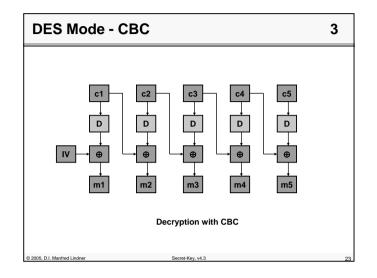
message is broken into 64-bit blocks, padding the last one to full 64-bits

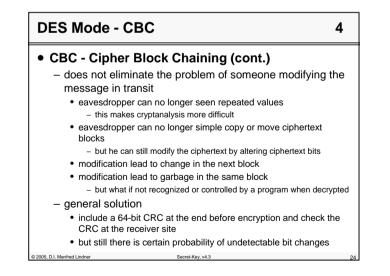

1


- every block is encrypted with the secret key


Secret-Key v4




© 2005, D.I. Manfred Lindner


L93 - Secret-Key Cryptography

L93 - Secret-Key Cryptography

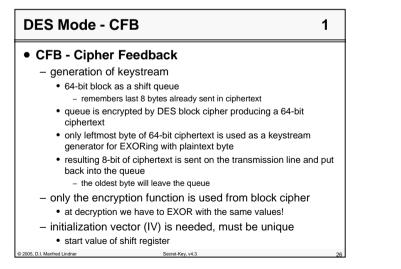
© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

L93 - Secret-Key Cryptography

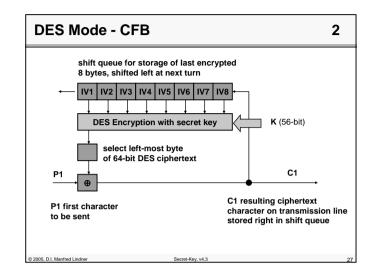
DES Modes - Block versus Stream

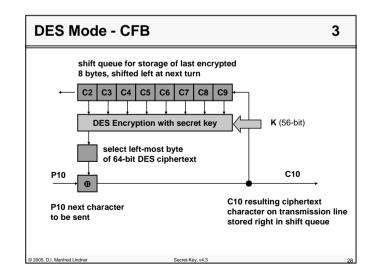
Cipher block chaining


- has the disadvantage of requiring an entire 64-bit block to arrive before decryption can begin
- unsuitable for usage with interactive terminals
 - people type lines shorter 8 characters, stop and wait for response

• Stream ciphers

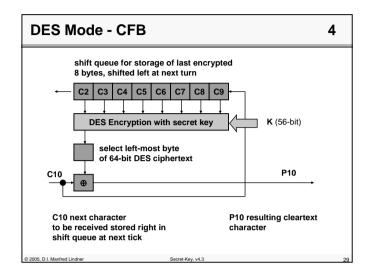
- are able to perform byte-by-byte encryption
- DES algorithm act as random number generator
 - pseudorandom stream controlled by a key
 - · EXORing plaintext with pseudorandom stream
 - pseudorandom stream bits are based on previous ciphertext
 - application of one-time pad
- Cipher Feedback (CFB), Output Feedback (OFB)

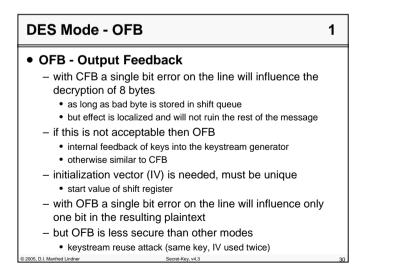

Secret-Key, v4.3


2005, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

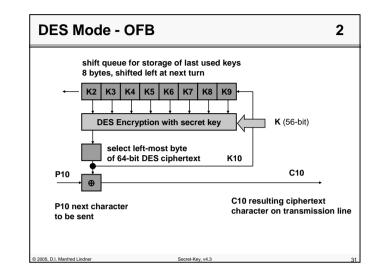
L93 - Secret-Key Cryptography

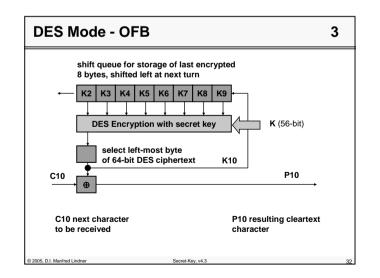



© 2005, D.I. Manfred Lindner

Page 93 - 13

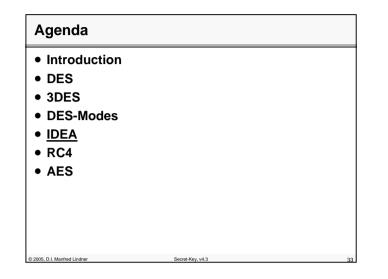
© 2005, D.I. Manfred Lindner


L93 - Secret-Key Cryptography



Institute of Computer Technology - Vienna University of Technology

L93 - Secret-Key Cryptography



© 2005, D.I. Manfred Lindner

Page 93 - 15

© 2005, D.I. Manfred Lindner

L93 - Secret-Key Cryptography

IDEA

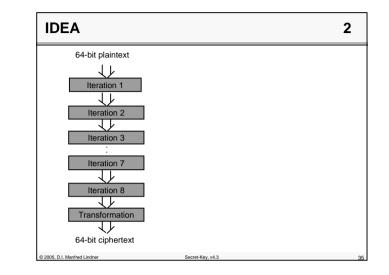
history

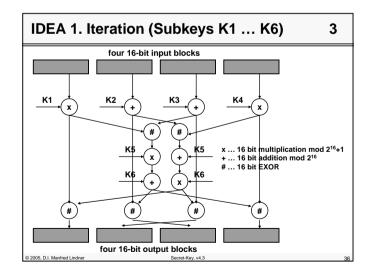
- 1990, IPES - Improved Proposed Encryption Standard

1

- 1993, IDEA International Data Encryption Algorithm
- best block cipher available until AES

operations


- 16 bit EXOR, addition modulo 2¹⁶, multiplication modulo 2¹⁶+1 (prime), 8 rounds mangling
- 64-bit data block, 4 sub-blocks
- 128-bit key, 52 generated subkeys of 16 bits each
 6 keys for each iteration, 4 for final transformation
- encryption and decryption uses the same algorithm
 reversed and slightly modified subkeys


2005, D.I. Manfred Lindner

Secret-Key, v4.3

Institute of Computer Technology - Vienna University of Technology

L93 - Secret-Key Cryptography

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

Page 93 - 17

L93 - Secret-Key Cryptography

IDEA

4

- twice the speed as DES
- free of NSA guidance
- no real weaknesses found up to now
- 128 bit key length
 - breaking IDEA by exhaustive search (brute-force) requires currently unbelievable computing resources
- patented
 - but no license fee for non-commercial use
- part of PGP
 - Pretty Good Privacy
- can be used in DES CBC and other DES modes Secret-Key, v4.3

© 2005, D.I. Manfred Lindner

Agenda

- Introduction
- DES
- 3DES
- DES-Modes
- IDEA
- RC4
- AES

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

Secret-Key, v4.

Page 93 - 19

Institute of Computer Technology - Vienna University of Technology

L93 - Secret-Key Cryptography

RC4

- developed by Ron Rivest in 1987 for RSADSI
- · secret algorithm for a long time
 - RSADSI still treats it as a trade secret
 - the name is trademarked
- · compatible program was released on Usenet in September 1994
- · variable key size stream cipher
 - works in OFB mode
 - · the keystream is independent of the plaintext
 - 8x8 S-box
 - · slowly evolves with use
 - highly non-linear
 - RSADSI claims that it is immune to differential and linear cryptanalysis

Secret-Key, v4.3

© 2005, D.I. Manfred Lindner

Agenda

- Introduction
- DES
- 3DES
- DES-Modes
- IDEA
- RC4
- AES

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

Secret-Ke

L93 - Secret-Key Cryptography

AES

Advanced Encryption Standard (AES)

- NIST sponsored a contest for new proposals which should replace DES and TripleDES in 1997
- contest request
 - algorithm for a symmetric block cipher
 - the full design must be public
 - key lengths 128, 192, 256 bits must be supported
 - both SW and HW implementations must be possible
 - $\ensuremath{\,\bullet\,}$ the algorithm must be public or licensed on nondiscriminatory terms

Secret-Key, v4.3

- finalists of these contest were
 - Rijndael (from Joan Daemon, Vincent Rijmen, 86 votes)
 - Serpent (59 votes)
 - Twofish (team Bruce Schneier, 31 votes)
 - RC6 (from RSA lab, 23 votes)
 - Mars (IBM, 13 votes)

© 2005, D.I. Manfred Lindner

AES

2

1

- Advanced Encryption Standard (AES)
 - Rijndael algorithm was chosen as the new standard
- Rijndael:
 - supports key length and block sizes from 128 bits to 256 bits in steps of 32
 - AES selects 128 bit block length and key lengths 128, 192, 256
 - 128 bit key length gives a key space of 3x10³⁸ keys
 - is based on Galois field theory
 - substitution and permutation in several rounds (10 rounds for 128 bit keys)
 - all operations involve entire bytes (SW friendly)
 - $-\,$ only one S-box is used, XOR function and rotation is used
 - matrix multiplication using finite Galois field GF(2⁸)
 - 2 GHZ machine should be able to do 700Mbit/s encryption

© 2005, D.I. Manfred Lindner

Secret-Key, v4.3

L93 - Secret-Key Cryptography

Secret-Key Algorithm Comparison

1-448 bits,	old and slow
56 bits,	too weak to use now
128 bits,	good, but patented
1-2048 bits,	caution, some keys are weak
128-256 bits,	good, but patented
128-256 bits,	best choice
128-256 bits,	very strong
112-168 bits,	second best choice
128-256 bits,	very strong, widely used
	128 bits, 1-2048 bits, 128-256 bits, 128-256 bits, 128-256 bits, 112-168 bits,

Secret-Key v4

Additional Information

• TCP-IP Tutorial

© 2005, D.I. Manfred Lindner

- IBM Redbook
- www.redbooks.ibm.com/pubs/pdfs/redbooks/gg243376.pdf
- Chapter 21.1.1
- Chapter 21.1.2

© 2005, D.I. Manfred Lindner

- Internet Protocol Journal
 - Volume 4 Issue 2
 - www.cisco.com/ipj/
 - Article " Goodbye DES, Welcome AES"

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner