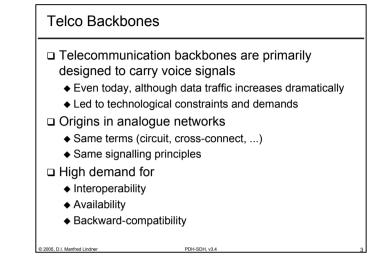
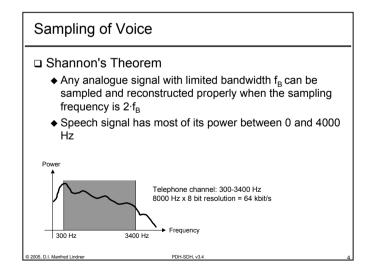

L13 - PDH and SDH

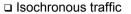
L13 - PDH and SDH


Agenda


🗆 PDH

- ◆ Speech Transmission Basics
- ◆ Plesiochrone Digital Hierarchy
- ♦ Digital Signal Levels
- Synchronization
- ♦ E1 Framing
- ◆ T1 Framing
- □ SONET/SDH
 - ♦ History
 - ♦ Network Structure
 - ♦ Frame Structure
 - Topology

2005, D.I. Manfred Lindner


© 2005, D.I. Manfred Lindner

Page 13 - 1

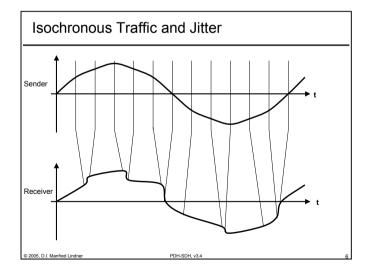
PDH-SDH v3

L13 - PDH and SDH

Isochronous Traffic

- ◆ Is very sensitive on delay variations (jitter)
- ◆ E.g. sampled analogue signals
- □ Some amount of delay is tolerable

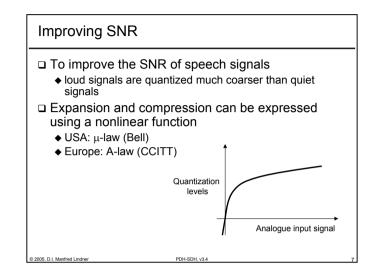
♦ Up to 500 ms

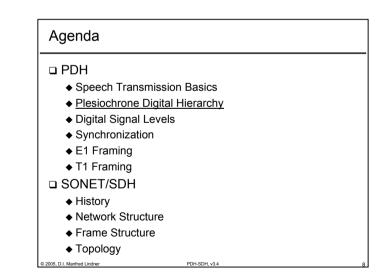

- Certain amount of jitter is not tolerable
 - ◆ Even if the delay is very small
 - ◆ Reconstruction of analogue signal too distorted

Solutions

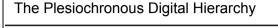
- ◆ *Isochronous* network (common clock for all components)
- ◆ *Plesiochronous* network with end-to-end synchronization
- ◆ Totally asynchronous network using buffer and playback

PDH-SDH, v3.4


2005, D.I. Manfred Lindner



Institute of Computer Technology - Vienna University of Technology


L13 - PDH and SDH

© 2005, D.I. Manfred Lindner

L13 - PDH and SDH

Created in the 1960s to supersede the analogue telephony infrastructure

PDH-SDH v3.

Smooth migration

Adaption of analogue signaling methods

Based on deterministic TDM

□ Widely used even today

◆ Telephony access level

♦ ISDN PRI

♦ Leased line

2005, D.I. Manfred Lindner

Why Plesiochronous?

Limitations of 1960s technology

♦ No buffering of frames at high speeds possible

Goal

◆ Fast delivery, very short delays (voice!)

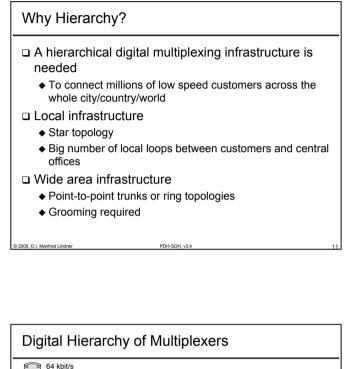
Solution

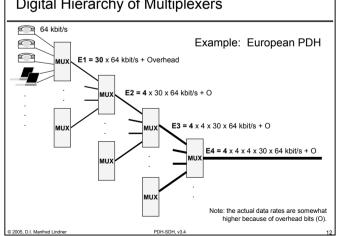
Immediate forwarding of bits

♦ Bit stuffing instead of buffering

□ Plesiochronous = "nearly synchronous"

Network itself is not synchronized but fast


• Sufficient to synchronize sender and receiver


© 2005, D.I. Manfred Lindner

PDH-SDH, v3.4

Institute of Computer Technology - Vienna University of Technology

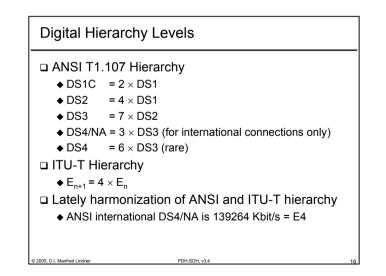
L13 - PDH and SDH

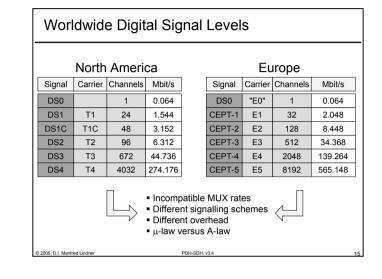


© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

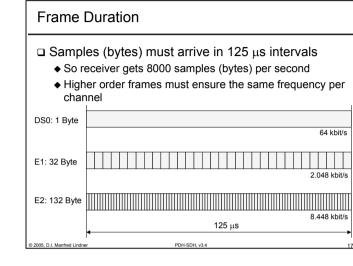
Page 13 - 5


L13 - PDH and SDH


Terminology: Digital Signal Levels Note: Different terms for Signal (Framing layer) Carrier system (Physical Layer) North America American National Standards Institute (ANSI) DS-n = Digital Signal level n Carrier system: T1, T2, ... Europe Conference of European Post and Telecommunications (CEPT, now ETSI) CEPT-n = ITU-T digital signal level n Carrier system: E1, E2, ...

© 2005, D.I. Manfred Lindner

PDH-SDH, v3.4

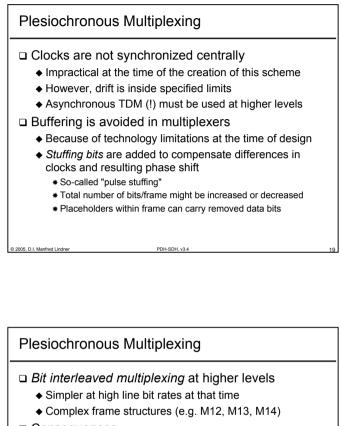


L13 - PDH and SDH

© 2005, D.I. Manfred Lindner Page 13 - 7

L13 - PDH and SDH

Agenda


PDH

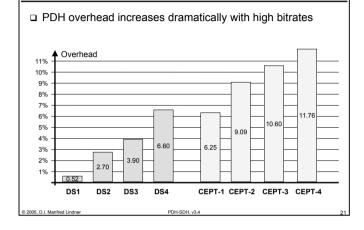
- ♦ Speech Transmission Basics
- ◆ Plesiochrone Digital Hierarchy
- Digital Signal Levels
- ◆ Synchronization
- ♦ E1 Framing
- ◆ T1 Framing
- □ SONET/SDH
 - ♦ History
 - Network Structure
 - ♦ Frame Structure
 - Topology

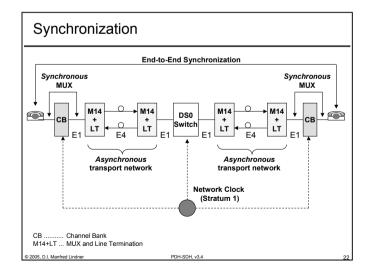
2005 D I Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L13 - PDH and SDH

Distribution of the structure intervention of the structure interventinter intervention of the structure intervention

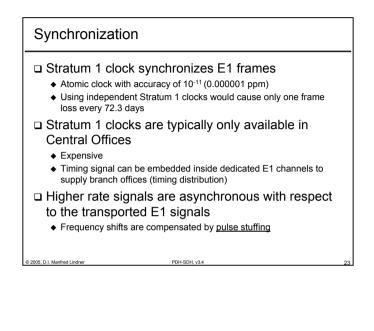

© 2005, D.I. Manfred Lindner

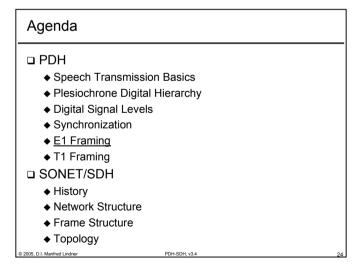

PDH-SDH v3

Page 13 - 9

L13 - PDH and SDH

PDH Limitations

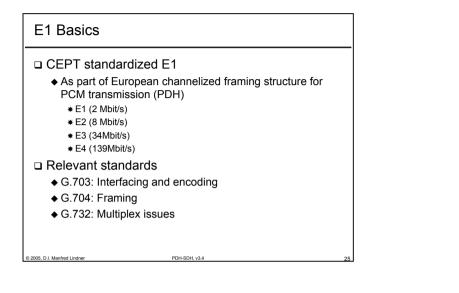




© 2005, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L13 - PDH and SDH



© 2005, D.I. Manfred Lindner

Page 13 - 11

L13 - PDH and SDH

E1 Physical Aspects: G.703

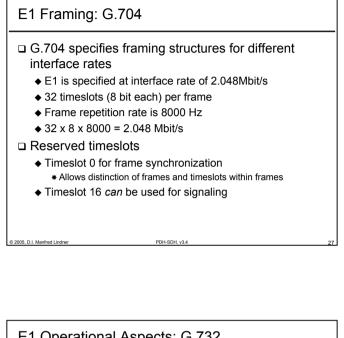
□ G.703 specifies

- Electrical and physical characteristics
 - * 75 ohm coax, unbalanced
- * 120 ohm twisted pair, balanced

Encoding

★ HDB3

2005, D.I. Manfred Lindner


© 2005, D.I. Manfred Lindner

PDH-SDH V

Page 13 - 13

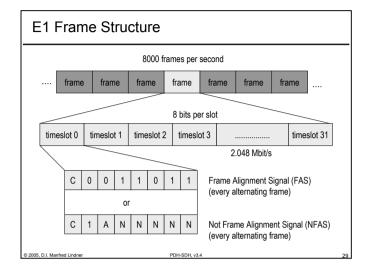
Institute of Computer Technology - Vienna University of Technology

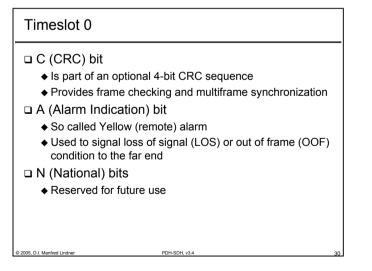
L13 - PDH and SDH

E1 Operational Aspects: G.732

□ G.732 specifies

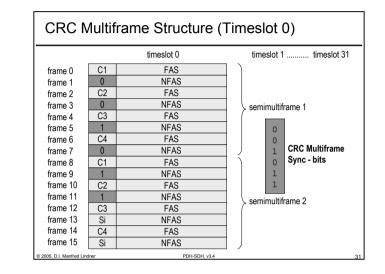
- Characteristics of PCM multiplex equipment operating at 2.048Mbit/s
 - * Based on frame structure G.704
 - * Encoding law when converting analogue to digital to be A-law
- Procedures for


© 2005, D.I. Manfred Lindner


- * Loss and recovery of frame alignment
- * Fault conditions and consequent actions
- * Acceptable jitter levels

© 2005, D.I. Manfred Lindner

PDH-SDH v3


L13 - PDH and SDH

Institute of Computer Technology - Vienna University of Technology

L13 - PDH and SDH

CRC Multiframe Structure

© 2005, D.I. Manfred Lindner

□ CRC check is an optional feature

- ♦ 16 frames are combined to a multiframe
- Start of multiframe can be detected by CRC Multiframe Sync bits
- Semimultiframe 2 contains four CRC bits, which were calculated over semimultiframe 1
- ◆ Si bits are used to report CRC errors to the far end

© 2005, D.I. Manfred Lindner

Page 13 - 15

© 2005, D.I. Manfred Lindner

L13 - PDH and SDH

E1 Signalling: Timeslot 16

- E1 framing is often used to connect PBXs via leased line
 - ◆ PBX = Private Branch Exchange
 - Timeslot 16 can carry out-band signaling information between PBX's
- Two signalling types
 - Common Channel Signalling (CCS)
 - * Transparent channel (capacity 64kbit/s) for signalling protocols such as DPNSS, CorNet, QSIG, SS7
 - Channel Associated Signalling (CAS)
 - Additional CAS multiframe structure

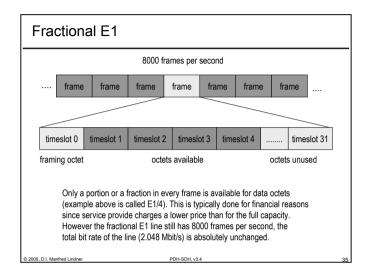
* Provides 4 bit signalling information per timeslot every 16th frame

·----

. . . .

* 30 independent signalling channels (capacity 2kbit/s per channel)

PDH-SDH, v3.4

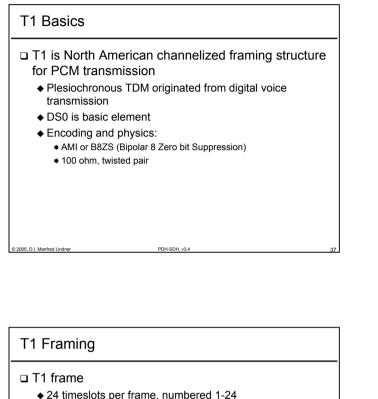

© 2005, D.I. Manfred Lindner

~ ~ ~ ~ ~ ~ ~ ~

imeslots 0-15	•			tir	neslo	ot 16	6				timeslots17-31
Frame 0	0	0		0	0	Х	Y		Х	Х	0000
Frame 1	A	В	(01)	С	D	Α	В	(17)	С	D	CAS Multiframe
Frame 2	A	В	(02)	С	D	Α	В	(18)	С	D	Alignment signal
Frame 3	A	В	(03)	С	D	Α	В	(19)	С	D	Alignment signal
Frame 4	A	В	(04)	С	D	Α	В	(20)	С	D	
Frame 5	A	В	(05)	С	D	Α	В	(21)	С	D	
Frame 6	A	В	(06)	С	D	A	В	(22)	С	D	A B C D are signaling
Frame 7	A	В	(07)	С	D	A	В	(23)	С	D	bits for the timeslot
Frame 8	A	В	(08)	С	D	A	В	(24)	С	D	indicated in ()
Frame 9	A	В	(09)	С	D	A	В	(25)	С	D	
Frame 10	A	В	(10)	С	D	A	В	(26)	С	D	Y is Multiframe Yellow
Frame 11	A	В	(11)	С	D	Α	В	(27)	С	D	alarm bit to signal a Loss
Frame 12	A	В	(12)	С	D	Α	В	(28)	С	D	of Multiframe (LOM)
Frame 13	A	В	(13)	С	D	Α	В	(29)	С	D	
Frame 14	A	в	(14)	С	D	Α	В	(30)	С	D	X bits not used (set to 1)
Frame 15	A	в	(15)	С	D	A	В	(31)	С	D	

Institute of Computer Technology - Vienna University of Technology

L13 - PDH and SDH

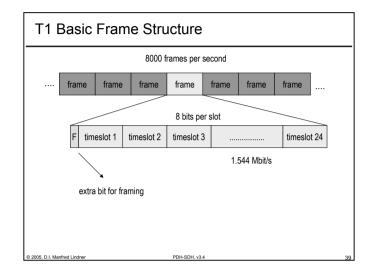


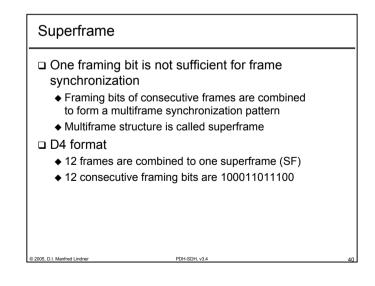
Agenda	
 PDH Speech Transmission Basics Plesiochrone Digital Hierarchy Digital Signal Levels Synchronization E1 Framing T1 Framing SONET/SDH History Network Structure 	
Frame Structure	
◆ Topology	
© 2005, D.I. Manfred Lindner PDH-SDH, v3.4	36

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

L13 - PDH and SDH

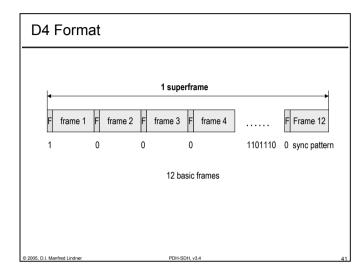



- 24 timeslots per frame, numbered 1-24
 * One timeslot can carry 8 bits
- ♦ One extra bit for framing
- ◆ Frame length 193 bits

2005, D.I. Manfred Lindner

- ◆ Frame repetition rate: 8000 Hz
- ♦ (24 x 8 +1) x 8000 = 1.544 Mbit/s

L13 - PDH and SDH

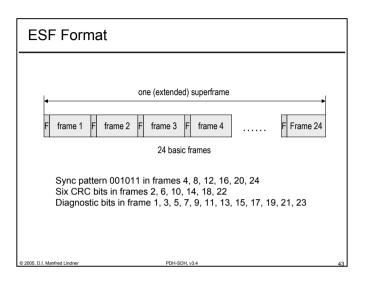


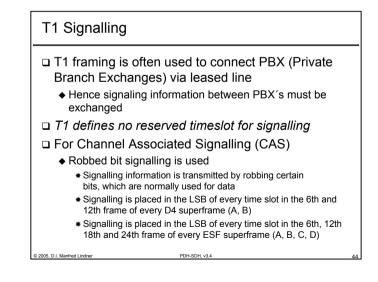
© 2005, D.I. Manfred Lindner

PDH-SDH v3

Page 13 - 19

L13 - PDH and SDH

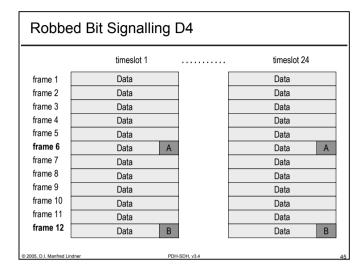

Extended Superframe

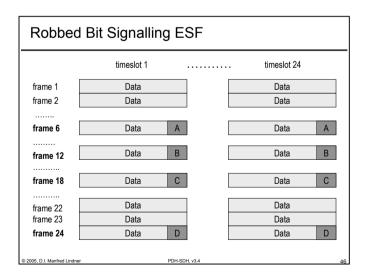

ESF format

- 24 frames are combined to one extended superframe (ESF)
- ♦ 6 framing bits (2000 bit/s) are used for synchronization in frames 4, 8, 12, 16, 20, 24 (pattern 001011)
- ♦ 6 framing bits (2000 bit/s) may be used for CRC error checking in frames 2, 6, 10, 14, 18, 22
- ◆ 12 framing bits (4000 bit/s) may be used for a diagnostic channel in all odd numbered frames

© 2005, D.I. Manfred Lindner

L13 - PDH and SDH

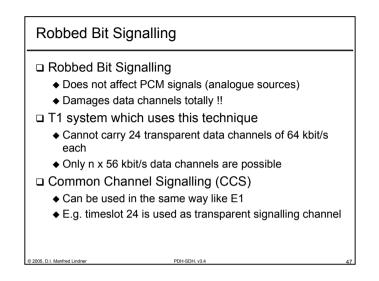


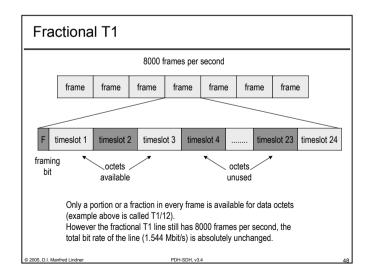

© 2005, D.I. Manfred Lindner

PDH-SDH v34

Page 13 - 21

L13 - PDH and SDH





© 2005, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L13 - PDH and SDH

© 2005, D.I. Manfred Lindner

Page 13 - 23

L13 - PDH and SDH

T1 and ISDN

In the USA, ISDN is typically carried over CAS systems

Bit robbing!

♦ So only 56 kbit/s per B channel usable

G4 kbit/s B channels would require CCS

♦ Also called Clear Channel Capability (CCC)

PDH-SDH v3.

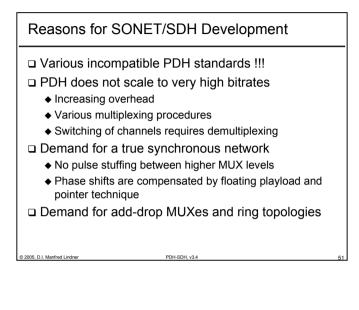
Agenda

2005. D.I. Manfred Lindner

DH

- ◆ Speech Transmission Basics
- ◆ Plesiochrone Digital Hierarchy
- ♦ Digital Signal Levels
- Synchronization
- ♦ E1 Framing
- ♦ T1 Framing
- □ SONET/SDH
 - ♦ <u>History</u>
 - ♦ Network Structure
 - ♦ Frame Structure
 - Topology

2005 D L Manfred Lindner


© 2005, D.I. Manfred Lindner

PDH-SDH v3

Page 13 - 25

Institute of Computer Technology - Vienna University of Technology

L13 - PDH and SDH

History (1)

© 2005, D.I. Manfred Lindner

□ After divestiture of AT&T

- Many companies -> many proprietary solutions for PDH successor technology
- In 1984 ECSA (Exchange Carriers Standards Association) started on SONET
 - ◆ Goal: one common standard
 - ◆ A standard that almost wasn't: over 400 proposals !
- SONET became an ANSI standard
- Tuned to carry US PDH payloads

© 2005, D.I. Manfred Lindner

L13 - PDH and SDH

History (2)

□ In 1986 CCITT became interested in SONET

- ◆ Created SDH as a superset
- Tuned to carry European PDH payloads including E4 (140 Mbit/s)
- □ SDH is a world standard
 - ♦ SONET is subset of SDH
 - First published in the CCITT Blue Book in 1989
 * G.707, G.708, G.709

PDH-SDH, v3./

- Originally designed for fiber optics
 - But radio systems are also implemented
 Might have partially filled payload
 ETSI defined 34 Mbit/s SDH

2005, D.I. Manfred Lindner

Agenda

DH

- ♦ Speech Transmission Basics
- ◆ Plesiochrone Digital Hierarchy
- ♦ Digital Signal Levels
- Synchronization
- ♦ E1 Framing
- ♦ T1 Framing
- □ SONET/SDH
 - History
 - ♦ Network Structure
 - ♦ Frame Structure
 - Topology

2005, D.I. Manfred Lindner

L13 - PDH and SDH

Network Elements Terminal Multiplexer At the edge of the SONET/SDH network Provides connectivity to the PDH network devices Regenerator Extending the possible distance and quality of a line Decomposes a line into multiple sections Add/drop multiplexer – ADM Main element for configuring paths on top of line

- topologies (point-to-point or ring)
- Multiplexed channels might be dropped and added

PDH-SDH v3.4

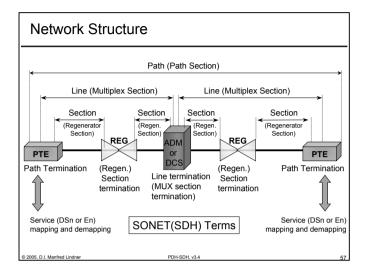
Network Elements

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

□ Digital Cross Connect – DCS or DXC

- ◆ Named after historical patch panels
- ◆ Connects equal level channels with each other


© 2005, D.I. Manfred Lindner

PDH-SDH, v3.

Page 13 - 27

© 2005, D.I. Manfred Lindner

L13 - PDH and SDH

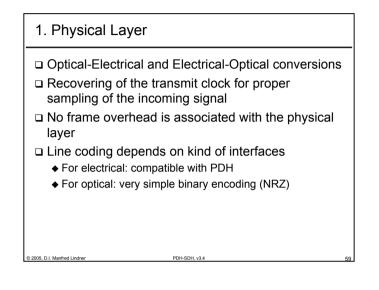
Layers and Overhead

□ SONET (SDH) consists of 4 layers

- Physical Layer
- Section (Regenerator Section) Layer
- ◆ Line (Multiplex Section) Layer
- Path Layer
- All layers (except the physical) insert information into the so-called <u>overhead</u> of each frame

□ Note:

 SONET and SDH are technically consistent, only the terms might be different


PDH-SDH v34

 In this chapter, each SONET term is named first, followed by the associated SDH term written in brackets

2005, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L13 - PDH and SDH

2. Section (Regenerator Section)

- Deals with the transport of an STS-N frame across the physical medium
 - Framing, scrambling
 - Section error monitoring
 - ♦ Section level communications overhead
- Together with physical layers can be used in some equipment without involving higher layers
 - ◆ Regenerator Equipment
- Section is terminated by (Regenerator-) Section Terminating Equipment
 - ♦ STE (RSTE)

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

Page 13 - 29

© 2005, D.I. Manfred Lindner

L13 - PDH and SDH

3. Line (Multiplex Section)

- Transport of path layer payloads across the physical medium
 - Supports the synchronization and multiplexing functions of the path layer
- Overhead associated functions
 - Includes maintenance and protection
- Overhead is interpreted and modified by
 - ◆ SONET: Line Terminating Equipment (LTE)
 - ◆ SDH: Multiplex Section Terminating Equipment (MSTE)
- Overhead can be accessed only after the (regen.-) section overhead has been first terminated
 By definition, any LTE (MSTE) contains a STE (RSTE)

PDH-SDH, v3.4

2005, D.I. Manfred Lindner

4. Path

- Transport of various payloads between SONET/SDH terminal multiplexing equipment
 - ♦ Path layer maps payloads into the format required by the Line Layer
 - ◆ Communicates end-to-end via the Path Overhead POH
- POH is terminated and modified by Path Terminating Equipment (PTE)
 - Lower layer overhead must be terminated to access the Path overhead
 - ♦ PTE also contains STE (RSTE) and LTE (MSTE)

2005, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L13 - PDH and SDH

Agenda PDH Speech Transmission Basics Plesiochrone Digital Hierarchy Digital Signal Levels Synchronization E1 Framing T1 Framing SONET/SDH History Network Structure Frame Structure Topology

SONET Signals

□ Electrical signal: STS-n

- Synchronous Transport Signal level n
- Optical signal: OC-n
 - Optical Carrier level n
 - ◆ OC-nc means concatenated
 - * Not multiplexed signal
 - * Originates at that speed (e.g. ATM)
 - * Administrative overhead optimized compared to real multiplexed signal

Frame format is independent from electrical or optical signals

* Typically only the term OC-n is used

© 2005, D.I. Manfred Lindner

PDH-SDH, v3.

© 2005, D.I. Manfred Lindner

PDH-SDH v3

Page 13 - 31

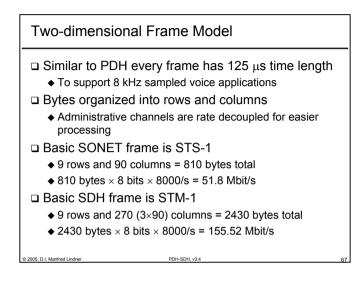
L13 - PDH and SDH

SDH Signals

Electrical signal: STM-n

- ♦ Synchronous Transport Module level n
- ♦ STM-nc means concatenated
- Not multiplexed signal
- * Originates at that speed
- * Administrative overhead optimized compared to real multiplexed signal
- □ Optical signal: **STM-nO**
- Frame format is independent from electrical or optical signals

PDH-SDH, v3./

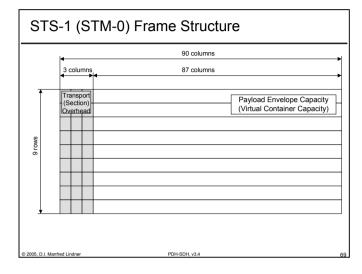

* Typically only the term STM-n is used

© 2005, D.I. Manfred Lindner

	SDH Line			
SONET Optical Levels	SONET Electrical Level	Line Rates Mbit/s	SDH Levels	
OC-1	STS-1	51.84	STM-0	
OC-3	STS-3	155.52	STM-1	
OC-9	STS-9	466.56	STM-3	1
OC-12	STS-12	622.08	STM-4	1 \
OC-18	STS-18	933.12	STM-6	Defined but later
OC-24	STS-24	1244.16	STM-8	removed, and only the
OC-36	STS-36	1866.24	STM-12	multiples by four were left!
OC-48	STS-48	2488.32	STM-16	ĺ
OC-96	STS-96	4976.64	STM-32	
OC-192	STS-192	9953.28	STM-64	
OC-768	STS-768	39813.12	STM-256	(Coming soon)
05. D.I. Manfred Lindner		PDH-SDH, v3	1	<u>.</u>

Institute of Computer Technology - Vienna University of Technology

L13 - PDH and SDH



SONET/SDH Frame Model Basics
 STM-0 frame was defined to be compatible with STS-1 of SONET Same frame size
 Originally only thought for comparisons
 Recently become real-life frame format for microwave links
Higher level frames can be defined
 by multiplying STS-1 and STM-1 frame sizes by a certain factor
 Only a few of them are available in real world
Frames are strictly byte oriented and byte multiplexed
© 2005, D.I. Manfred Lindner PDH-SDH, v3.4

© 2005, D.I. Manfred Lindner

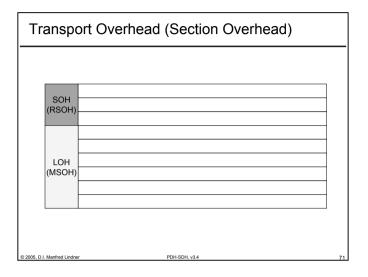
Page 13 - 33

L13 - PDH and SDH

Frame Structure

Frame consists of

- Transport Overhead (Section Overhead)
- Payload Envelope Capacity (Virtual Container Capacity)
- Higher level signals have same percentage of overhead
 - Number of columns are simply multiplied by rate factor
 - ♦ Other than PDH frames !
- Overhead consists of
 - Section Overhead SOH (Regen. Section Overhead – RSOH)
 - Line Overhead (Multiplex Section Overhead – MSOH)


© 2005, D.I. Manfred Lindner

PDH-SDH, v3.4

© 2005, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

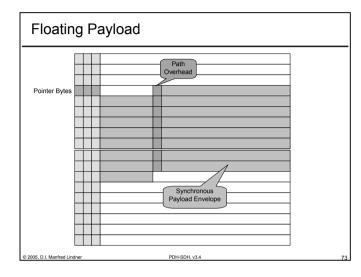
L13 - PDH and SDH

Payload

- The payload is transported inside the Synchronous Payload Envelope or SPE
 - The SPE may *float* inside the Payload Envelope Capacity (Virtual Container Capacity)
 - To compensate phase and frequency shifts

Path Overhead – POH

- ♦ The first column of the SPE
- □ Various additional "envelopes" were defined
 - ◆ For each type of payload
 - ∗ e. g. DS1, DS3, E1, E3, E4, ..., ATM
 - Virtual Tributaries (Virtual Containers)

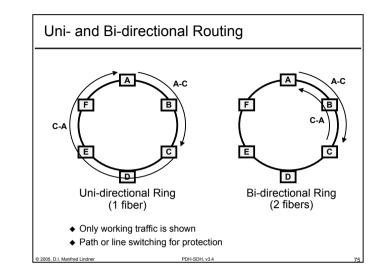

© 2005, D.I. Manfred Lindner

Page 13 - 35

Page 13 - 36

© 2005, D.I. Manfred Lindner

L13 - PDH and SDH

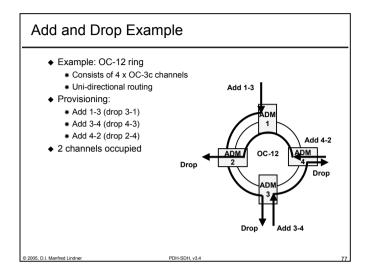

Agenda

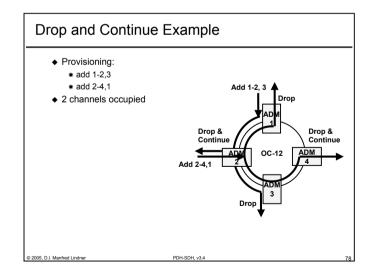
🗆 PDH

- ◆ Speech Transmission Basics
- ◆ Plesiochrone Digital Hierarchy
- Digital Signal Levels
- Synchronization
- ♦ E1 Framing
- ◆ T1 Framing
- □ SONET/SDH
 - History
 - Network Structure
 - ◆ Frame Structure
 - Topology

2005, D.I. Manfred Lindner

L13 - PDH and SDH

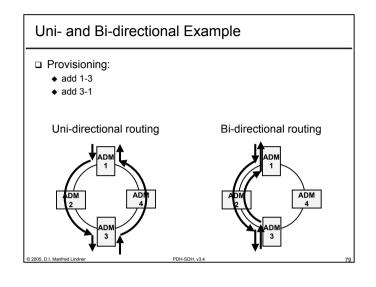

•	onnections over a SONET infrastructur by add-drop provisioning
♦ A path is b channels s	uilt up hop-by-hop by specifying which hould be added to a ring and which channels dropped from the ring
	ovisioning is typically done by the
	nagement system o signalling protocol !!!


© 2005, D.I. Manfred Lindner

PDH-SDH, v3.4

Page 13 - 37

L13 - PDH and SDH



© 2005, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L13 - PDH and SDH

© 2005, D.I. Manfred Lindner

Page 13 - 39

L13 - PDH and SDH

Operations

- Protection
 - ◆ Circuit recovery in milliseconds
- Restoration
 - ◆ Circuit recovery in seconds or minutes
- Provisioning
 - ◆ Allocation of capacity to preferred routes
- Consolidation
 - Moving traffic from unfilled bearers onto fewer bearers to reduce waste trunk capacity
- □ Grooming
 - ◆ Sorting of different traffic types from mixed payloads into separate destinations for each type of traffic

PDH-SDH, v3.4

2005. D.I. Manfred Lindner

SONET/SDH and the OSI Model

- □ SONET/SDH covers
 - Physical, Data Link, and Network layers
- □ However, in data networking it is used mostly as a transparent bit stream pipe
- □ Therefore SONET/SDH is regarded as a Physical layer, although it is more
- □ Functions might be repeated many times in the overall protocol stack
 - ◆ Worst case: IP over LANE over ATM over SONET

2005, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L13 - PDH and SDH

Summary

- Telecommunication backbones must be very much reliable and backward compatible
 - Changes are slow
 - Smooth path for reusing existing knowledge and skill sets
- □ PDH is still an important backbone technology
- Recently moving to optical backbones using SONET/SDH
 - First US nation-wide SONET ring backbone finished in 1997

PDH-SDH v3/

□ Traffic volume of voice services will decrease relative to general IP traffic

```
© 2005, D.I. Manfred Lindner
```

© 2005, D.I. Manfred Lindner

PDH-SDH v3

Page 13 - 41