

Agenda

- Introduction
- IP Address
 - Address Classes
 - Subnetting
- IP Forwarding
 - Routing Basics
 - Forwarding and ARP
 - Forwarding and ICMP (Error Signaling)

© 2006, D.I. Manfred Lindner

Technology Basics, v4.6

IP Technology

packet switching technology

- packet switch is called router or gateway (IETF terminology)
- end system is called IP host
- structured layer 3 address (IP address)

datagram service

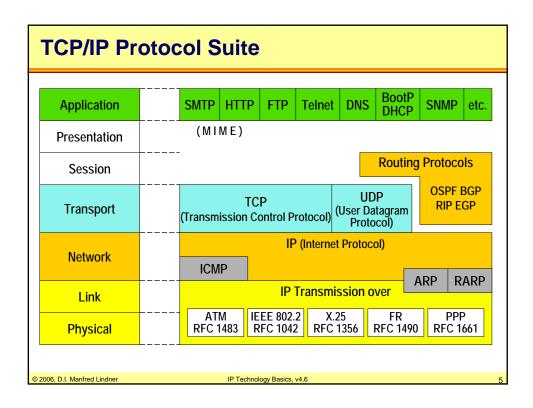
- connectionless
 - datagrams are sent without establishing a connection in advance
- best effort delivery
 - datagrams may be discarded due to transmission errors or network congestion

© 2006, D.I. Manfred Lindner

P Technology Basics, v4.6

TCP Technology

shared responsibility between network and end systems


- routers responsible for delivering datagrams to remote networks based on structured IP address
- IP hosts responsible for end-to-end control

end to end control

- is implemented in upper layers of IP hosts
- TCP (Transmission Control Protocol)
 - · connection oriented
 - sequencing, windowing
 - · error recovery by retransmission
 - flow control

© 2006, D.I. Manfred Lindner

IP Technology Basics, v4.6

TCP/IP Story of Success

IP over everything

- technology independent
- internetwork is built by layering a unique IP protocol on top of various network technologies
 - overlay technique
- it is easy to adopt new network technologies
 - define how to transfer IP datagrams and how to use the possible switching capability of the new network

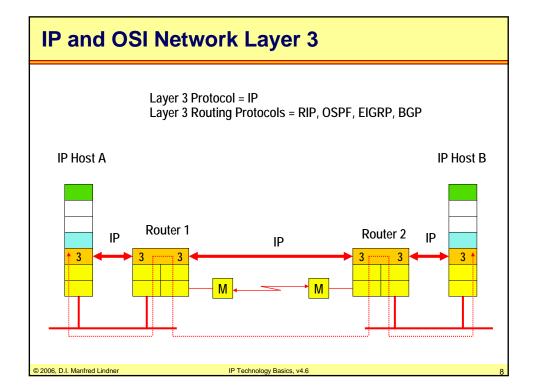
end-to-end principle

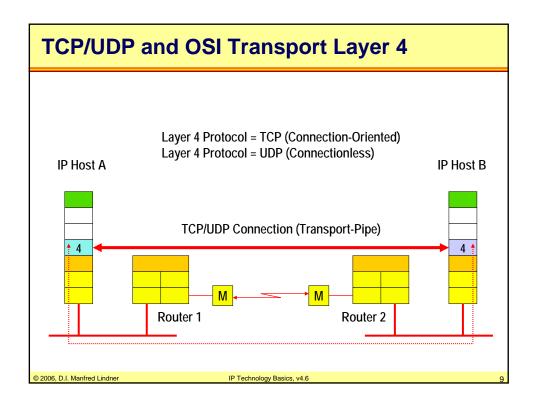
- avoids sophisticated tasks to be performed by network infrastructure (routers)
- TCP takes care of reliability

© 2006, D.I. Manfred Lindner IP Technology Basics, v4.6

TCP/IP Story of Success

- TCP
 - tolerant and adaptive to network operational conditions
 - robust against network failures
 - adapts to varying network delays
 - adapts to varying network load


right functionality partition between


- IP
 - knows nothing about end systems applications
 - makes best effort to route packets through the network
- and TCP
 - · takes care of end-to-end issues
 - end users know nothing about network internals

\/\/\/\/

© 2006, D.I. Manfred Lindner

P Technology Basics, v4.6

Key Players of Internet Technology

- IAB (Internet Architecture Board)
 - responsible for technical directions, coordination and standardization of the TCP/IP technology
 - the "Board" is highest authority and controls IETF, IRTF
- IETF (Internet Engineering Task Force)
 - provides solutions and extensions for TCP/IP
 - · working groups organized in areas
 - area manager and IETF chairman form the IESG (Internet Engineering Steering Group)
- IRTF (Internet Research Task Force)
 - coordinates and prioritize research
 - research groups controlled by the IRSG (Internet Research Steering Group)

© 2006, D.I. Manfred Lindner

IP Technology Basics, v4.6

Key Players of Internet Technology

- ISOC (Internet Society)
 - highest Internet organization founded in 1992
- RARE (Reseaux Associes pour la Recherche Europeen)
 - founded 1986 to build and maintain a European high speed data network infrastructure
 - EBONE initiated by RARE
 - member of ISOC and ETSI (European Telecommunications Standards Institute)
 - close cooperation with RIPE (Reseaux IP Europeen)

© 2006, D.I. Manfred Lindner IP Technology Basics

ISOC (Internet Society)

RARE (Reseaux Associes pour la Recherche Europeen)

IAB

IETF

IRTF

© 2006, D.I. Manfred Lindner

Internet in Europe

- RIPE NCC (Reséaux IP Européens Network Coordination Center)
 - Internet Registry
 - assigning IP addresses
 - assigning AS numbers
 - Routing Registry
 - coordinating policies between Internet Service Providers (ISP)
 - how to contact?
 - RIPE NCC
 - Singel 258
 - 1016 AB Amsterdam
 - The Netherlands
 - Phone: +31 20 535 4444, Fax: +31 20 535 4445
 - E-Mail: <ncc@ripe.net>, WWW: <http://www.ripe.net>

2006, D.I. Manfred Lindner

IP Technology Basics, v4.6

4.

Standardization by RFCs

- all documentation, standards, proposals for new protocols and enhancements for the Internet
 - are published as "Requests for Comments" (RFC)
 - RFCs were the initial approach of engineers to discuss questions, suggestions via e-mail to speed up development
 - part of the success story of TCP/IP
 - IETF (Internet Engineering Task Force) decides, which RFCs will be adopted as a standard after rigorous review (e.g. two different implementations have to exist)
 - RFCs are numbered in sequence of publishing
 - adopted enhancements or changes to a protocol will result in a new RFC number

© 2006, D.I. Manfred Lindner

IP Technology Basics, v4.6

Standardization by RFCs

- today's standardization process is best described
 - in RFC-2026
 - The Internet Standards Process Revision3
- not every RFC is an Internet Standard
 - categories
 - Informational, Experimental, Historic
 - Proposed Standard
 - Draft Standard
 - Standard
- IAB (Internet Architecture Board) publishes periodically a status list of all protocols:
 - Official Protocol Standard RFC (currently RFC 3300).

© 2006, D.I. Manfred Lindner

IP Technology Basics, v4.6

4-

How to get RFCs?

- RFCs can be ordered from the NIC (Network Information Center) or retrieved through "anonymous FTP":
 - ftp://ds.internic.net/rfc/
 - ftp://ftp.univie.ac.at/netinfo/rfc/

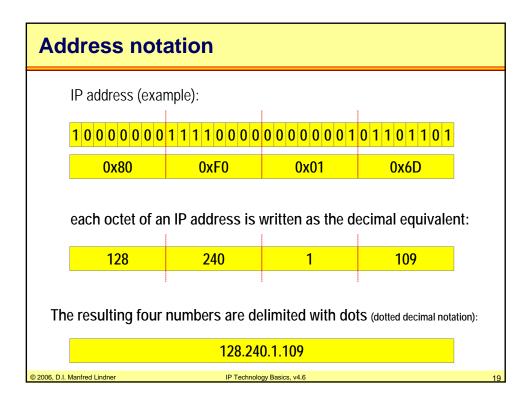
© 2006, D.I. Manfred Lindner

IP Technology Basics, v4.6

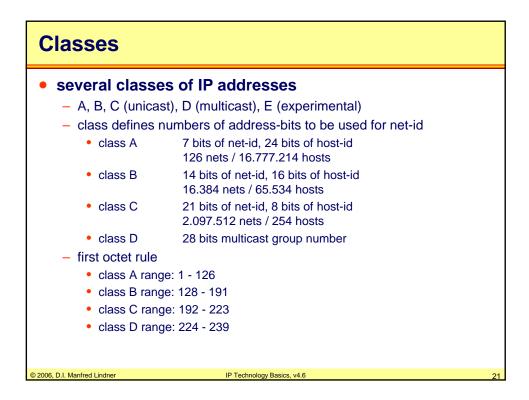
Agenda

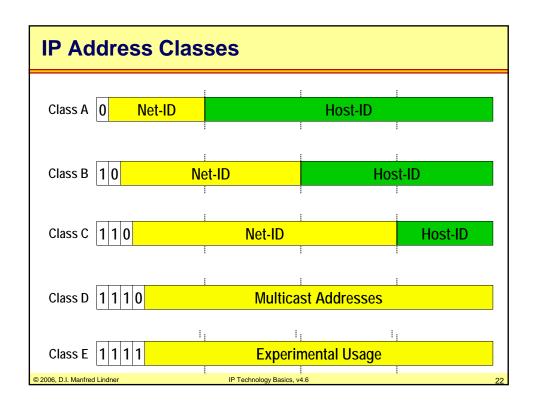
- Introduction
- IP Address
 - Address Classes
 - Subnetting
- IP Forwarding
 - Routing Basics
 - Forwarding and ARP
 - Forwarding and ICMP (Error Signaling)

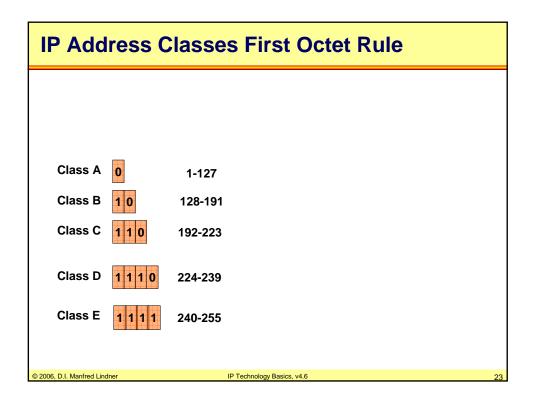
© 2006, D.I. Manfred Lindner

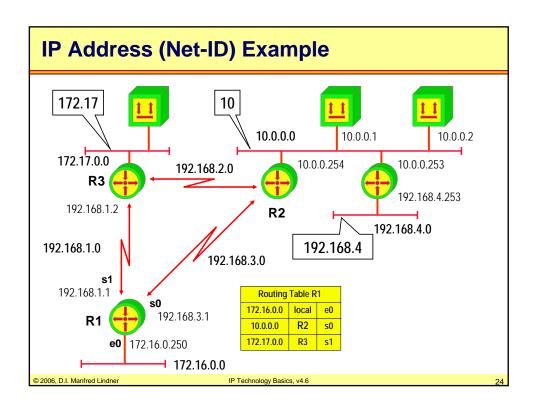

P Technology Basics, v4.6

IP Address

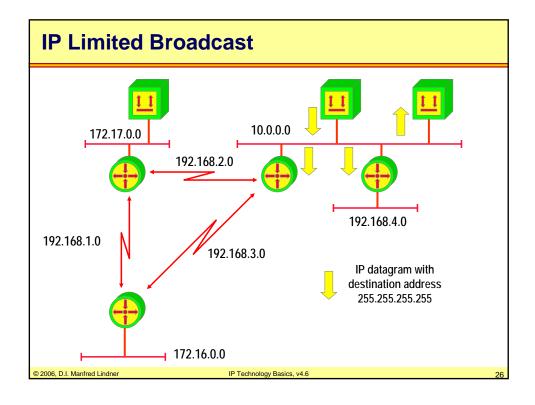

- IP address
 - 32 bit, dotted decimal notation
 - identifies access to a network (network interface)
 - basic structure
 - network number (net-id)
 - host number (host-id)
 - two level hierarchy
 - net-id must be unique when a physical network with IP hosts is connected to the Internet
 - · assignment controlled by Internet Registry
 - host-id is assigned by each local network manager

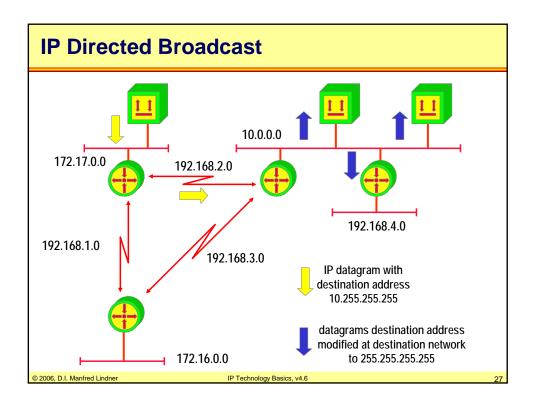

© 2006, D.I. Manfred Lindner


IP Technology Basics, v4.6

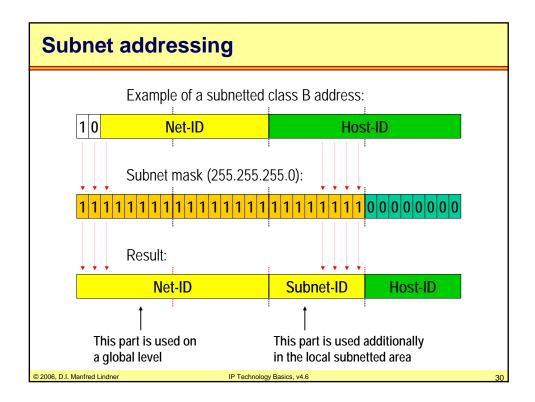


Binary vs Decimal Notation									
	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	
	1	0	0	0	0	0	0	0	128
	0	1	0	0	0	0	0	0	64
	0	0	1	0	0	0	0	0	32
	0	0	0	1	0	0	0	0	16
	0	0	0	0	1	0	0	0	8
	0	0	0	0	0	1	0	0	4
	0	0	0	0	0	0	1	0	2
	0	0	0	0	0	0	0	1	1
	1	1	1	1	1	1	1	1	255
© 2006, D.I. Manfred Lindner IP Technology Basics, v4.6 20									





Special Addresses basic IP address format - { net-id, host-id } special purpose addresses and rules **-** { 0, 0 } this host on this network (0.0.0.0) specified host on this network - { 0, <host-id> } directed broadcast to specified network - { <net-id>, -1 } **-** { -1, -1 } limited broadcast on this network (255.255.255.255) - { 127, <any> } loopback address - { <net-id>, 0 } never used for a host number, identifies network note: 0 ... means all corresponding bits = 0 -1 ... means all corresponding bits = 1


Introduction IP Address Address Classes Address Classes Subnetting IP Forwarding Routing Basics Forwarding and ARP Forwarding and ICMP (Error Signaling)

Subnetting

- two level hierarchy was sufficient in the early days of the Internet
- with local area networks a third hierarchical level was introduced by subnetting
- subnetting
 - some bits of the host-id can be used as subnet-id
 - subnet-id extends classful net-id meaning
 - subnet-id bits are only locally interpreted inside subnetted area
 - net-id bits are still globally seen outside the subnetted area
 - number of bits to be used for network identification are specified by subnet mask (written in dotted decimal notation)
 - ones portion represents network part (must be contiguous)
 - · zeros portion represent the host part

© 2006, D.I. Manfred Lindner

Technology Basics, v4.6

Possible Subnet Mask Values									
	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	
	1	0	0	0	0	0	0	0	128
	1	1	0	0	0	0	0	0	192
	1	1	1	0	0	0	0	0	224
	1	1	1	1	0	0	0	0	240
	1	1	1	1	1	0	0	0	248
	1	1	1	1	1	1	0	0	252
	1	1	1	1	1	1	1	0	254
	1	1	1	1	1	1	1	1	255
© 2006, D.I. Manfred Lindner IP Technology Basics, v4.6 31									

Subnet Mask

- natural subnet mask
 - address classes without subnetting
 - class A ... 255.0.0.0
 - class B ... 255.255.0.0
 - class C ... 255.255.255.0
- old notation of IP addresses
 - with subnetmask
 - 10.0.0.0 255.0.0.0 (Class A)
 - 176.16.0.0 255.255.0.0 (Class B)
- new notation of IP addresses
 - with prefix/length
 - 10.0.0.0 / 8 (Class A)
 - 176.16.0.0 / 16 (Class B)

© 2006, D.I. Manfred Lindner

IP Technology Basics, v4.6

Rules with Subnetting

- IP address format with subnetting
 - { net-id, subnet-id, host-id }
- additional special purpose addresses and rules
 - { <net-id>, <subnet-id>, -1 }
 - · directed broadcast to specified subnet
 - { <net-id>, -1, -1 }
 - directed broadcast to all subnets of specified subnetted network
 - { <net-id>, 0, <host-id> }
 - subnet zero never used for a subnet number for classful routing (see RFC 950)
 - { <net-id>, -1, <host-id> }
 - subnet broadcast never used for a subnet number for classful routing (see RFC 950)

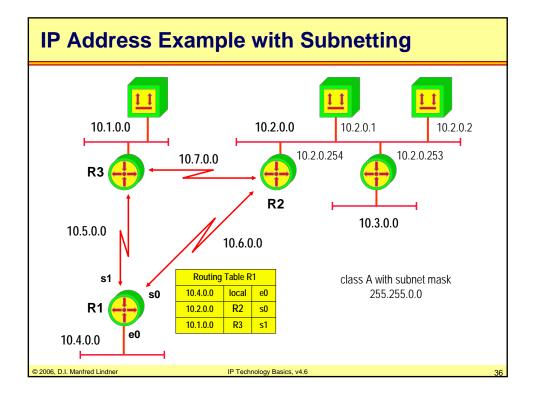
Subnet Mask Examples 1

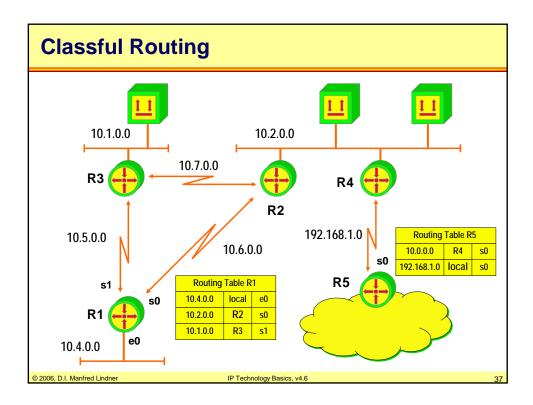
- class A ⇒ pseudo class B (8 bit subnetting)
 - 10.0.0.0 with 255.255.0.0 (10.0.0.0 / 16)
 - subnetworks:
 - 10.0.0.0 subnet zero

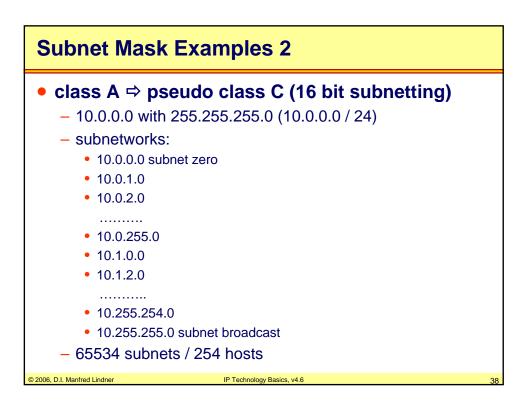
- 10.1.255.255

- 10.1.0.0
 - 10.1.0.1 first IP host in net 10.1.0.0
 - **-** 10.1.255.254 last IP host in net 10.1.0.0 directed broadcast in net 10.1.0.0
- 10.2.0.0
- 10.3.0.0

.


- 10.254.0.0
- 10.255.0.0 subnet broadcast
- 254 subnets / 65534 hosts


2006, D.I. Manfred Lindner


Subnet Zero / Subnet Broadcast

- What is the problem?
 - Does 10.0.0.0 mean net-ID of net 10 or of subnet 10.0 ?
 - Does 10.255.255.255 mean directed broadcast for the whole net 10 or for the subnet 10.255 ?
 - subnet zero and subnet broadcast are ambiguous

© 2006, D.I. Manfred Lindner IP Technology Basics, v4.6

Subnet Mask Examples 3

- class B ⇒ pseudo class C (8 bit subnetting)
 - 172.16.0.0 with 255.255.255.0 (172.16.0.0 / 24)
 - subnetworks:
 - 172.16.0.0 subnet zero
 - 172.16.1.0
 - 172.16.2.0

.....

- 172.16.254.0
- 172.16.255.0 subnet broadcast
- 254 subnets / 254 hosts

© 2006, D.I. Manfred Lindner

P Technology Basics, v4.6

20

Subnet Mask -> Net-ID, Host-ID

class A address

subnet mask 255.255.0.0 IP- Address 10.3.49.45

? net-id, ? host-id

net-id = 10.3.0.0

host-id = 0.0.49.45

65534 IP hosts

range: 10.3.0.1 -> 10.3.255.254

10.3.0.0 -> network itself

10.3.255.255 -> directed broadcast for this network

© 2006, D.I. Manfred Lindner

IP Technology Basics, v4.6

Subnet Mask Examples 4

class B address

subnet mask 255.255.255.192 IP- Address 172.16.3.144

? net-id, ? host-id

address binary 1010 1100 . 0001 0000 . 0000 0011 . 1001 0000 mask (binary) 1111 1111 . 1111 1111 . 1111 1111 . 1100 0000

logical AND (bit by bit)

net-id 1010 1100 . 0001 0000 . 0000 0011 . 1000 0000

net-id = 172.16.3.128

host-id = 0.0.0.16

© 2006, D.I. Manfred Lindner

Technology Basics, v4.6

Subnet Mask Examples 5

class B ⇒ 10 bit subnetting

- 172.16.0.0 with 255.255.255.192 (172.16.0.0 / 26)

subnetworks: net-ID host-ID
 172.16.0.0 subnet zero
 172.16.0.00 | xx xxxx
 172.16.0.01 | xx xxxx

- 172.16.0.65 first IP host 172.16.0. 01 | 00 0001 - 172.16.0.66 second IP host 172.16.0. 01 | 00 0010

.....

- 172.16.0.126 last IP host 172.16.0. 01 | 11 1110 - 172.16.0.127 directed broadcast 172.16.0. 01 | 11 1111

172.16.0.128
 172.16.0.10 | xx xxxx
 172.16.0.192
 172.16.0. 11 | xx xxxx

© 2006, D.I. Manfred Lindner

IP Technology Basics, v4.6

Subnet Mask Exam	ples 5
– subnetworks (cont.):	
• 172.16.1.0	172.16.1. 00 xx xxxx
• 172.16.1.64	172.16.1. 01 xx xxxx
• 172.16.1.128	172.16.1. 10 xx xxxx
• 172.16.1.192	172.16.1. 11 xx xxxx
• 172.16.2.0	172.16.2. 00 xx xxxx
• 172.16.2.64	172.16.2. 01 xx xxxx
• 172.16.255.0	172.16.255. 00 xx xxxx
• 172.16.255.64	172.16.255. 01 xx xxxx
• 172.16.255.128	172.16.255. 10 xx xxxx
 172.16.255.192 subnet 	broadcast 172.16.255. 11 xx xxxx
- 1022 subnets / 62 hos	ts
© 2006, D.I. Manfred Lindner IP	Technology Basics, v4.6 43

Subnet Mask Examples 6

class C ⇒ 2 bit subnetting

- 192.168.16.0 with 255.255.255.192 (192.168.16.0 / 26)

- subnetworks: net-ID host-ID

• 192.168.16.0 subnet zero 192.168.16.00 | xxxxxx

• 192.168.16.64 192.168.16.01 | xxxxxx

• 192.168.16.128 192.168.16.10 | xxxxxx

• 192.168.16.192 subnet broadcast 192.168.16.11 | xxxxxx

- 2 subnets / 62 hosts

2 000110107 02 110010

2006, D.I. Manfred Lindner IP Technology Basics, v4.6

Subnet Mask Examples 7 • class C ⇒ 3 bit subnetting

- 192.168.16.0 with 255.255.255.224 (192.168.16.0 / 27)

– subnetworks: net-ID 192.168.16.0 subnet zero 192.168.16. 000 | xxxxx • 192.168.16.32 192.168.16. 001 | xxxxx • 192.168.16.64 192.168.16. 010 | xxxxx • 192.168.16.96 192.168.16. 011 | xxxxx • 192.168.16.128 192.168.16. 100 | xxxxx • 192.168.16.160 192.168.16. 101 | xxxxx • 192.168.16.192 192.168.16. 110 | xxxxx • 192.168.16.224 subnet broadcast 192.168.16. 111 | xxxxx

- 6 subnets / 30 hosts

6, D.I. Manfred Lindner IP Technology Basics, v4.6

Subnet Mask Examples 8

class C ⇒ 4 bit subnetting

- 192.168.16.0 with 255.255.255.240 (192.168.16.0 / 28)

	•	
– subnetworks:	net-ID	host-ID
 192.168.16.0 subnet zero 	192.168.16. 000	00 xxxx
• 192.168.16.16	192.168.16. 000)1 xxxx
100 100 10 17 1 17	400 400 40 000	24 0004
 192.168.16.17 1st IP host 	192.168.16. 000	11 1000
- 192.168.16.18 2nd IP host	192.168.16. 000)1 0010
 192.168.16.30 14th IP host 	192.168.16. 000)1 1110
 192.168.16.31 directed broadcast 	192.168.16. 000)1 1111
• 192.168.16.32	192.168.16. 001	10 xxxx
• 192.168.16.48	192.168.16. 001	11 xxxx

Subnet Mask Example	es 8	
subnetworks (cont.):	net-ID	host-ID
• 192.168.16.64	192.168.16.	0100 xxxx
• 192.168.16.80	192.168.16.	0101 xxxx
• 192.168.16.96	192.168.16.	0110 xxxx
• 192.168.16.112	192.168.16.	0111 xxxx
• 192.168.16.128	192.168.16.	1000 xxxx
• 192.168.16.144	192.168.16.	1001 xxxx
• 192.168.16.160	192.168.16.	1010 xxxx
• 192.168.16.176	192.168.16.	1011 xxxx
• 192.168.16.192	192.168.16.	1100 xxxx
• 192.168.16.208	192.168.16.	1101 xxxx
• 192.168.16.224	192.168.16.	1110 xxxx
 192.168.16.240 subnet bro 	padcast 192.168.16.	1111 xxxx
– 14 subnets / 14 hosts		
© 2006, D.I. Manfred Lindner IP Techno	logy Basics, v4.6	47

Subnet Mask Examples 9

• class C ⇒ 5 bit subnetting

- 192.168.16.0 with 255.255.255.248 (192.168.16.0 / 29)

subnetworks:	net-ID	host-ID
 192.168.16.0 subnet zero 	192.168.16. 00	000 xxx
• 192.168.16.8	192.168.16. 00	001 xxx
• 192.168.16.16	192.168.16. 00	010 xxx
• 192.168.16.24	192.168.16. 00	011 xxx
• 192.168.16.240	192.168.16. 11	110 xxx
 192.168.16.248 subnet broadcast 	192.168.16. 11	111 xxx
30 subnets / 6 hosts		

IP Technology Basics, v4.6

Subnet Mask Examples 10

class C ⇒ 6 bit subnetting

- 192.168.16.0 with 255.255.255.252 (192.168.16.0 / 30)

– subnetworks: net-ID • 192.168.16.0 subnet zero 192.168.16. 000000 | xx

• 192.168.16.4 192.168.16. 000001 | xx

192.168.16. 000001 | 01 - 192.168.16.5 1st IP host

- 192.168.16.6 2nd IP host 192.168.16. 000001 | 10 192.168.16.7 directed broadcast

192.168.16. 000001 | 11

• 192.168.16.8 192.168.16. 000010 | xx

.

• 192.168.16.248 192.168.16. 1111110 | xx

 192.168.16.252 subnet broadcast 192.168.16. 1111111 | xx

62 subnets / 2 hosts

Agenda

- Introduction
- IP Address
 - Address Classes
 - Subnetting
- IP Forwarding
 - Routing Basics
 - Forwarding and ARP
 - Forwarding and ICMP (Error Signaling)

IP Routing

routing

- process of choosing a path over which to send IP datagrams
- IP hosts and routers take part in this process
 - routers responsible for selecting the best path in a meshed network in case of indirect delivery of IP datagrams
 - IP hosts responsible for direct delivery of IP datagrams
 - IP hosts responsible for choosing a "default" router (default gateway) as next hop in case of indirect delivery of IP datagrams
- direct versus indirect delivery
 - depends on destination net-ID
 - net-ID equal source net-ID -> direct delivery
 - net-ID unequal source net-ID -> indirect delivery

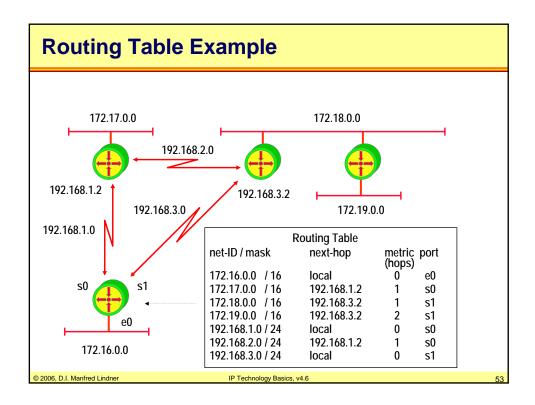
© 2006, D.I. Manfred Lindner

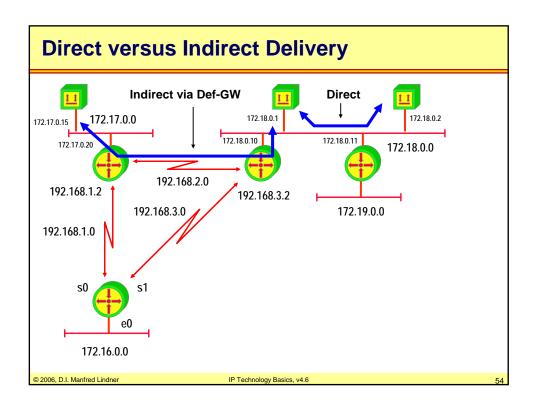
P Technology Basics, v4.6

-4

IP Routing

indirect routing of IP datagrams


- is done by routers based on routing tables
- routing table
 - database of known destinations in form of "signposts"
 - contains next hop router, outgoing port (and metric) to every specified (or known) destination network (net-ID, subnet mask)


routing can be either

- static
 - non-responsive to topology changes
- or dynamic
 - · responsive to topology changes
 - requires special communication protocols among routers (routing protocol)

2006, D.I. Manfred Lindner

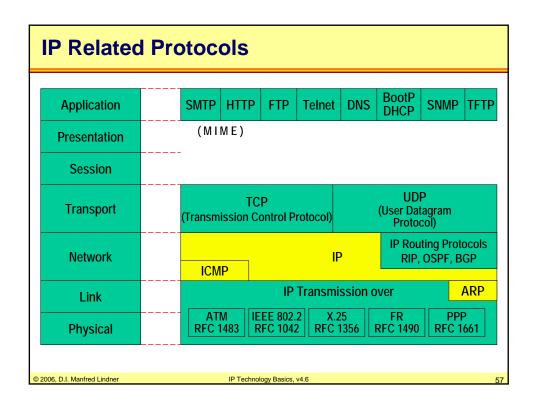
IP Technology Basics, v4.6

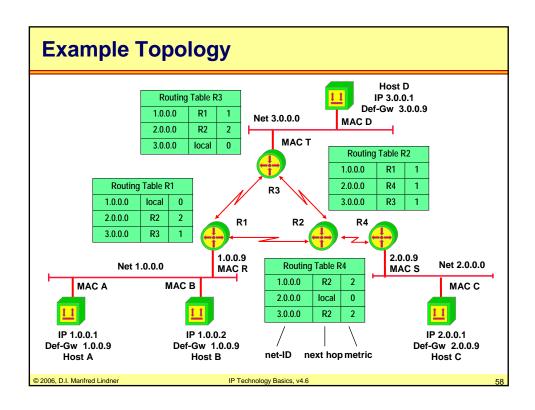
Agenda

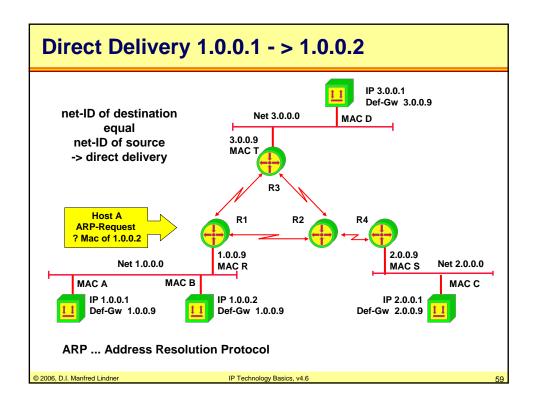
- Introduction
- IP Address
 - Address Classes
 - Subnetting
- IP Forwarding
 - Routing Basics
 - Forwarding and ARP
 - Forwarding and ICMP (Error Signaling)

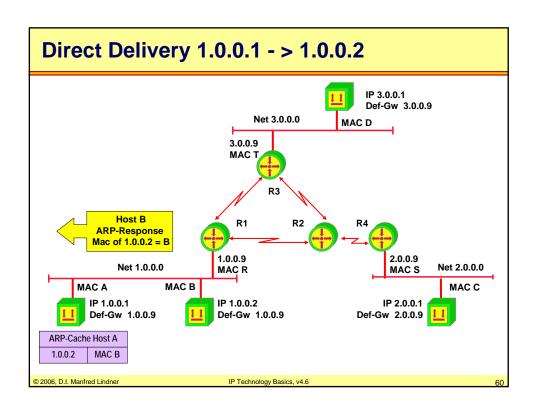
© 2006, D.I. Manfred Lindne

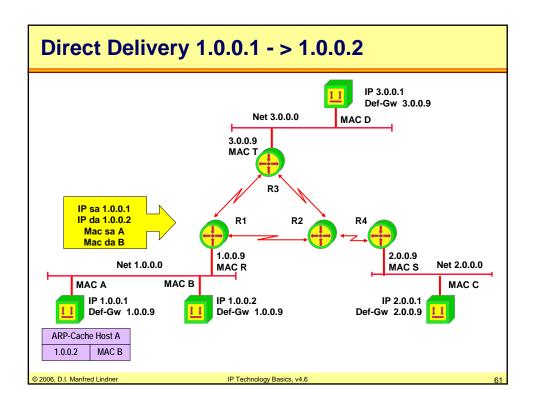
P Technology Basics, v4.6

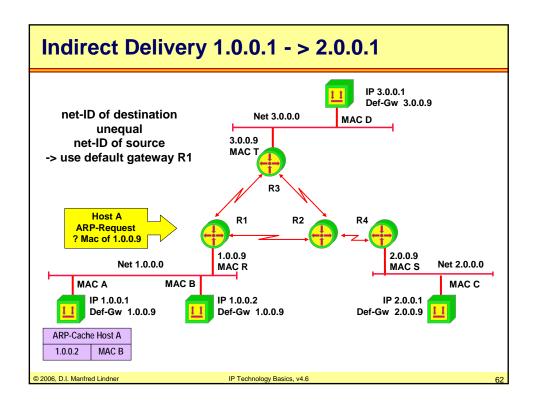

--

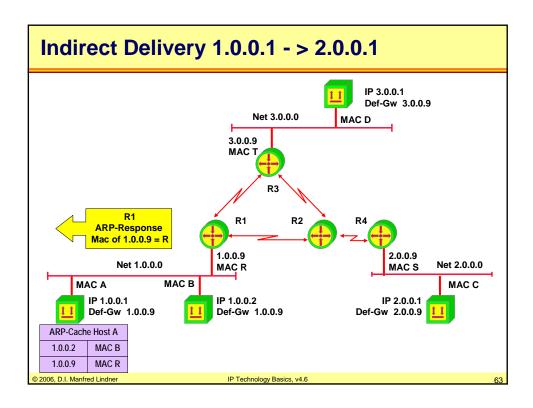

Principle

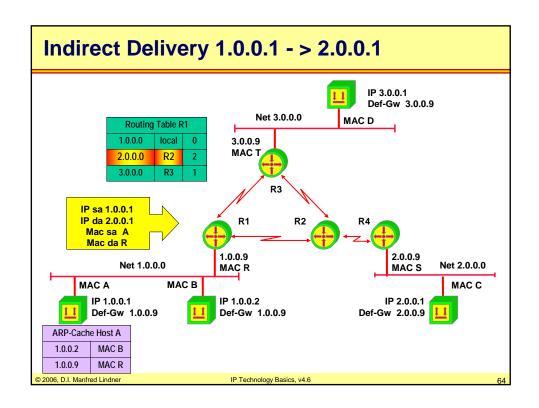

- IP Forwarding is done by routers in case of indirect routing
 - based on the destination address of a given IP datagram
 - following the path to the destination hop by hop
- routing tables
 - have information about which next hop router a given destination network can be reached
- L2 header must be changed hop by hop
 - if LAN then physical L2 address (MAC addresses) must be adapted for direct communication on LAN
- mapping between IP and L2 address
 - is done by Address Resolution Protocol (ARP)

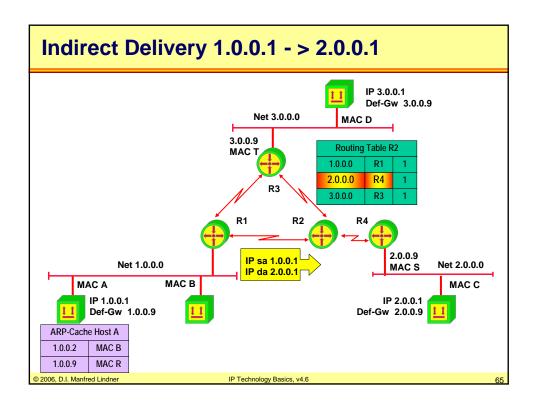

© 2006, D.I. Manfred Lindner

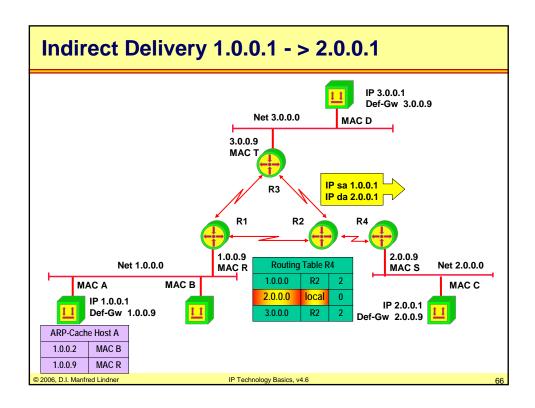

IP Technology Basics, v4.6

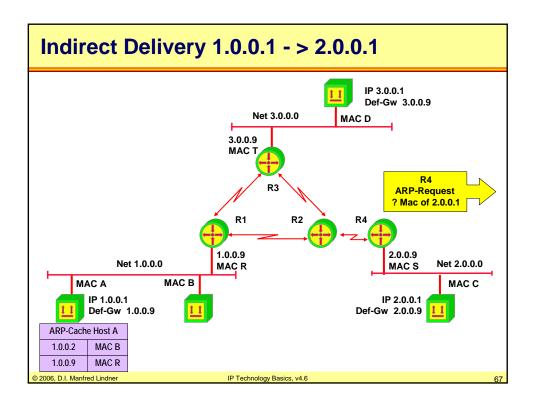


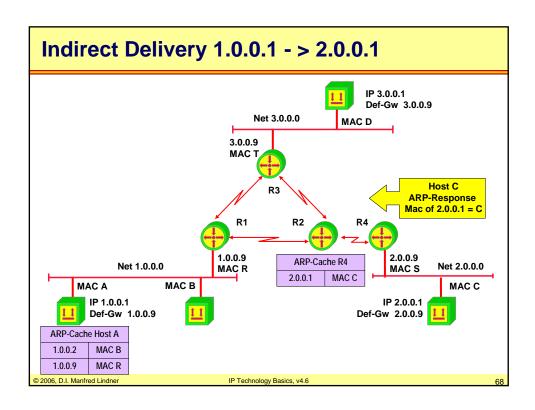


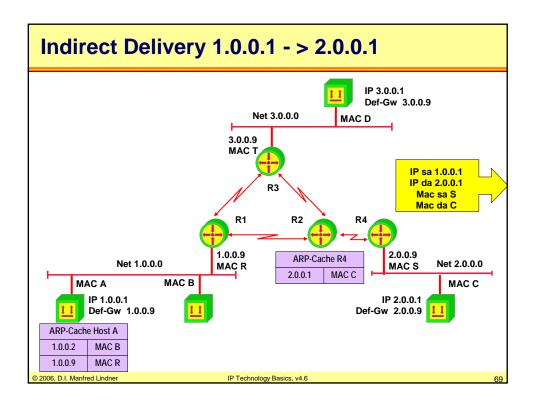


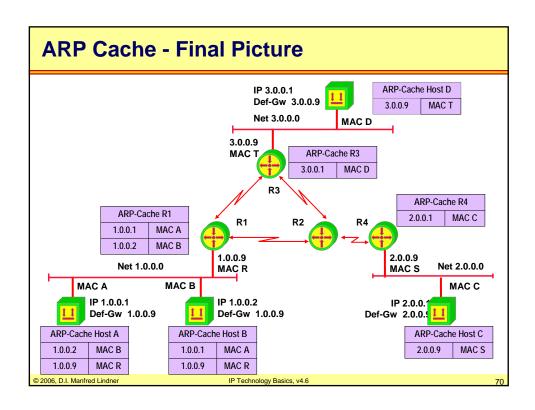










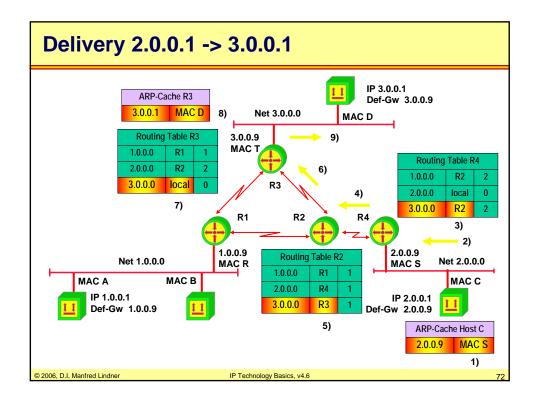


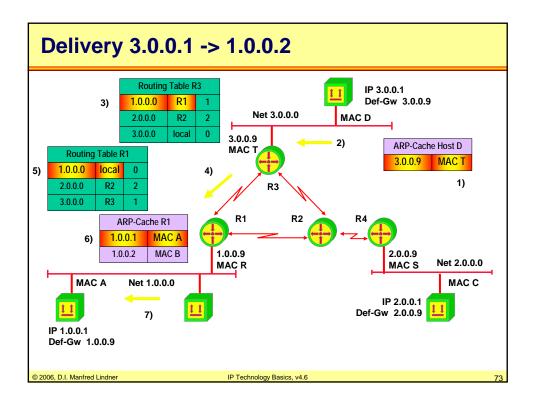
IP Routing Paradigm

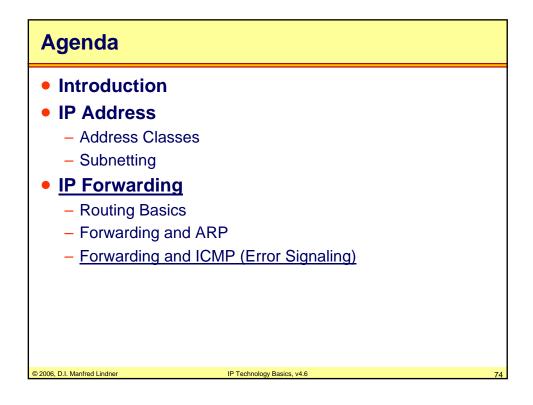
Destination Based Routing

source address is not taken into account for the forward decision

Hop by Hop Routing


 IP datagram's follow the path, which is pointed by the current state of the routing tables


Least Cost Routing


- normally only the best path is considered for forwarding of IP datagram's
- alternate paths will not be used in order to reach a given destination

© 2006, D.I. Manfred Lindner

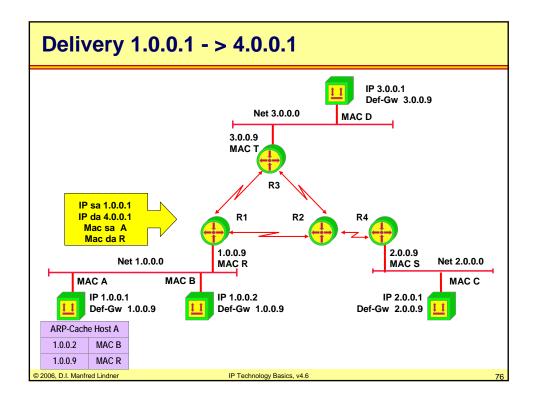
Technology Basics, v4.6

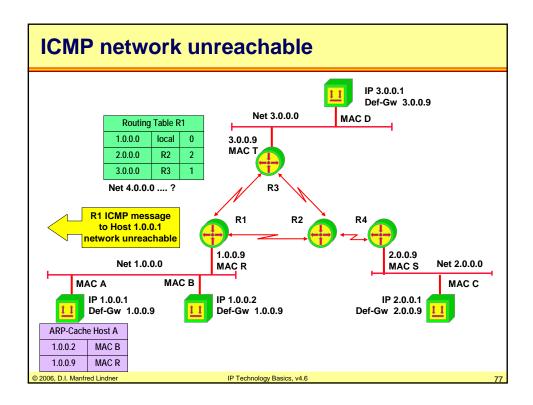
ICMP

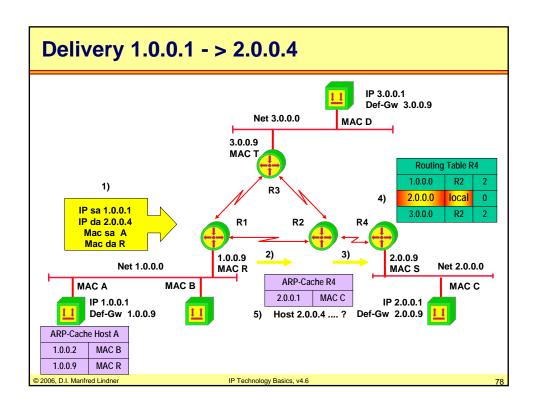
datagram service of IP

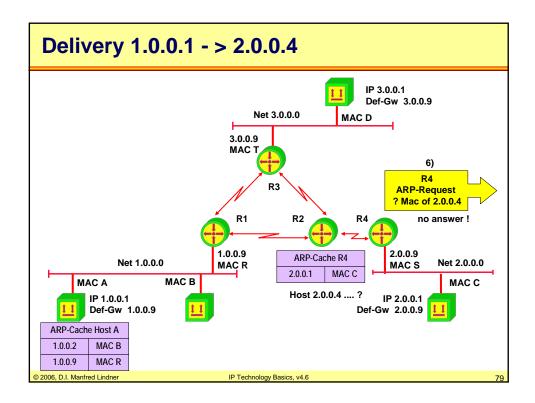
- best effort -> IP datagram's can be lost

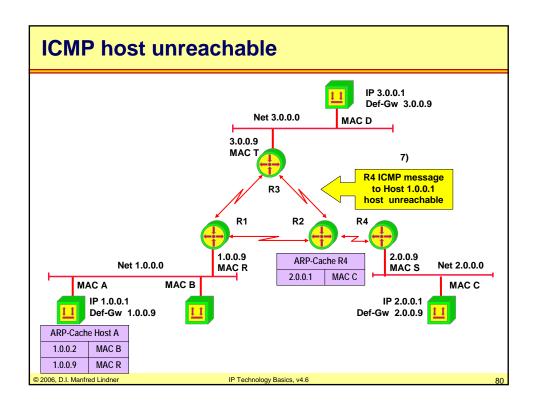
ICMP


 Internet Control Message Protocol generates error messages to enhance the reliability and to provide information about errors and packet loss in the network


principle of ICMP operation


- IP station (router or destination), which detects any transmission problems, generates an ICMP message
- ICMP message is addressed to the originating station (sender of the original IP packet)
- most famous ICMP message: PING


© 2006, D.I. Manfred Lindner


Technology Basics, v4.6

