DQDB

Distributed Queued Dual Bus
Metropolitan Area Networks
SMDS

Agenda

- Introduction
- DQDB Topology
- DQDB Physical Layer
- DQDB Access Control
- DQDB Framing
- MAN
- SMDS/SIP
MAN/DQDB

- metropolitan area network (MAN) provides
 - integrated services such as data, voice and video
 - high speed transmission of digital bitstreams over a large geographical area

- IEEE 802.6 defines base technology for MAN subnetworks
 - Distributed Queue Dual Bus (DQDB)
 - shared media like a LAN
 - fixed-length packets (cells) like ATM

DQDB subnetwork
- transmission rate between 1 Mbps and 155 Mbps
- shared media communication between DQDB nodes located within an area typically up to 50 km in diameter

usually a public or private MAN consists
- of several DQDB subnetworks interconnected via bridges, routers or gateways

therefore MAN service can cover large regions
- infinite range
IEEE 802.6 DQDB

IEEE 802.6 defines two layers
- DQDB layer (MAC sublayer of OSI layer 2)
- physical layer specification (OSI layer 1)

IEEE 802.6 provides three functions
- connectionless data service
 - MAC service to LLC (Logical Link Control) similar to LAN
 - DQDB plus LLC perform function of data link layer
- connection-oriented data service
 - asynchronous transport of data over virtual channels
 - no guarantee of constant inter-arrival time for data units
- isochronous service
 - transport of data with constant inter-arrival time over an isochronous connection (digitized voice or video)

IEEE 802 compared to OSI

<table>
<thead>
<tr>
<th>IEEE 802</th>
<th>OSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1</td>
<td>2a Data Link Layer</td>
</tr>
<tr>
<td>802.2</td>
<td>2b Medium Access Control (MAC)</td>
</tr>
<tr>
<td>802.3</td>
<td>802.4</td>
</tr>
<tr>
<td>CSMA/CD</td>
<td>Token Bus</td>
</tr>
<tr>
<td>802.1 Higher Layer Interface (Bridging/Management)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Physical Layer</td>
</tr>
</tbody>
</table>
IEEE 802.6 Layers and Functions

Agenda

- Introduction
- DQDB Topology
- DQDB Physical Layer
- DQDB Access Control
- DQDB Framing
- MAN
Dual-Bus Architecture

- End systems (DQDB stations) are connected to DQDB subnet via two unidirectional serial buses:
 - Bus A
 - Bus B

- Bus A and B support communication in opposite direction and full duplex transmission between any pair of stations.

- Station at the head of bus (HOB) generates fixed-length slots of 53 octets which can carry data between stations.
 - HOB A, HOB B

Open Dual-Bus Topology

Diagram showing the dual-bus architecture with HOB A, HOB B, and the connected DQDB stations via bus A and bus B.
HOB

- HOB A is
 - start of data flow for bus A
 - end of data flow for bus B
- HOB B vice versa
- HOB A and HOB B
 - can be in different stations (open dual-bus topology)
 - can be in the same station (looped dual-bus topology)
- looped topology allows
 - automatic recovery from link failure
 - self-healing

Looped Dual-Bus Topology
Reconfiguration

Agenda

- Introduction
- DQDB Topology
- DQDB Physical Layer
- DQDB Access Control
- DQDB Framing
- MAN
- SMDS/SIP
Physical Layer Options

- DQDB physical layer contains
 - Physical Layer Convergence Procedure (PLCP)
- PLCP is responsible
 - for adaptation of the capabilities of the transmission system in order to transport DQDB slots (53 octet cells)
- PLCP definitions for
 - DS1 (1.544 Mbps)
 - DS3 (45 Mbps)
 - G.703 E1 (2 Mbps)
 - G.703 E3 (34 Mbps)
 - G.703 E4 (140 Mbps)
 - G.707-9 (155 Mbps)

Agenda

- Introduction
- DQDB Topology
- DQDB Physical Layer
- DQDB Access Control
- DQDB Framing
- MAN
- SMDS/SIP
Access Control

- DQDB allows two access methods
 - pre-arbitrated (PA)
 - used by isochronous service
 - queued-arbitrated (QA)
 - used by data services

- PA
 - for every isochronous connection a unique channel identifier is assigned by network management in advance
 - VCI (virtual channel identifier) field in cell header
 - HOB generates PA-cells with this VCI periodically
 - to satisfy timing constraints of isochronous connection
 - stations can use PA-cells with this VCI value
 - to transmit isochronous traffic across the network

- QA
 - controlled by distributed queuing protocol

- distributed queuing
 - each station has explicit information about queuing state of the network
 - queuing state means, how many cells are waiting for transmission in all stations of the network
 - implemented by special bits in the cell header and counters within the station
 - busy-bit B, request bit R in access control field (ACF)
 - request counter RQ
 - countdown counter CD
Distributed Queuing Protocol

- handling of B-bit and R-bit
 - B and R bits in header of each cell
 - B = 0 ... empty cell, may be used by station for transmission downstream if access control does allow
 - if empty cell is used by a station, B is set to 1 on the fly and payload is filled
 - B = 1 ... busy cell, cannot be used by a downstream station
 - R = 1 ... cell contains a request of an upstream station, cannot be used by another station for signaling request
 - R = 0 ... cell does not contain a request of an upstream station, will be set on the fly by station signaling a request for a cell to downstream stations

Handling of RC and CC Counters
Access Control

- basic access principle
 - explained for access to bus A only (bus B vice versa)
 - if station wants to transmit a cell on bus A
 1. R-bit set to 1 in a cell on bus B to indicate the request must wait for a cell with R-bit equal 0 in order to do this
 2. count value of RQ is copied to CD
 3. RQ is reset
 - actual state of distributed queue is frozen
 - station can use an empty cell on bus A
 - if CD counter has already reached zero and an empty cell arrives
 - this procedure guarantees
 - that every station will satisfy current station requests (cells waiting for transmission in station buffers) first before a cell can be sent
 - cell to be sent is queued in distributed queue

Agenda

- Introduction
- DQDB Topology
- DQDB Physical Layer
- DQDB Access Control
- DQDB Framing
- MAN
- SMDS/SIP
DQDB Framing

125 usec

Header Slot 1 Slot 2 Slot 3 Slot N Trailer

ACF 1 octet
Segment Header 4 octets
PA/QA Segment Payload 48 octets

VCI 20 bit
Payload Type 2 bit
Seg. Priority 2 bit
Seg. Checksum 8 bit

Busy 1 bit
SL-Type 1 bit
Prev. Seg. Rec. 1 bit
reserved 2 bit
Request 2,1,0 3 bit

ACF, Segment Header

- ACF ... Access Control Field
 - Busy (0 ... slot empty, 1 ... slot contains information)
 - SL-Type ... Slot Type (0 ... QA, 1 ... PA)
 - Busy = 0 and SL-Type = 1 reserved
 - Previous Segment Cleared (1 ... clear)
 - Request 2, 1, 0 ... request (R) bits for three priority levels

- Segment Header Field
 - VCI ... Virtual Channel Identifier
 - set to all ones for QA (connectionless service)
 - identifies isochronous channel for PA
 - Payload Type (00 ... user data, other values reserved for further study)
 - Segment Priority (set to 00, other values reserved for multiport bridging)
 - Segment Header Checksum (x8 + x2 + x +1)
MAC Convergence Function

- basic DQDB framing is not sufficient for connectionless service
 - cell or slot contains no address information about source or destination (VCI = all ones !!!)
- MAC convergence function is necessary
 - to offer to the LLC layer normal MAC datagram functionality
 - to allow transport of variable length LLC packets over DQDB
 - segmenting of LLC PDU into cells
 - reassembling of cells to original LLC PDU

MAC Convergence Function

- MAC convergence function
 - takes MAC service data unit of LLC layer (0 - 9188 octets)
 - builds a so called Initial MAC Protocol Data Unit (IMPDU)
 - header contains information about source and destination, length of PDU, protocol type, QoS, Begin TAG; trailer contains End TAG, CRC, padding
 - splits IMPDU in segmentation units (44 octets), adds header to form a Derived MAC PDU (DMPDU)
 - header contains sequence number, type (BOM, COM, EOM) and message ID of segmentation unit; trailer contains checksum of segmentation unit
 - finally DMPDU (48 octets) fits in the QA Segment Payload of a slot
Mapping IMPDU/DMPDU/QA Segment

Initial MAC PDU (IMPDU)

<table>
<thead>
<tr>
<th>Field</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common PDU Hdr</td>
<td>4 octets</td>
</tr>
<tr>
<td>MCP Header</td>
<td>20 octets</td>
</tr>
<tr>
<td>Header Ext.</td>
<td>0-20 octets</td>
</tr>
<tr>
<td>IMPDU Info</td>
<td>0 - 9188 octets</td>
</tr>
<tr>
<td>PAD</td>
<td>0-3 octets</td>
</tr>
<tr>
<td>CRC</td>
<td>32 octets</td>
</tr>
<tr>
<td>Common PDU Trailer</td>
<td>4 octets</td>
</tr>
</tbody>
</table>

BOM Segment Unit 44 octets

COM Segment Unit 44 octets

COM Segment Unit 44 octets

EOM Segment Unit 44 octets

DMPDU Hdr 2 octets

Segment Unit 44 octets

DMPDU Trailer 2 octets

ACF 1 octet

Segment Header 4 octets

QA Segment Payload 48 octets

Derived MAC PDU (DMPDU)

IMPDU Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common PDU Hdr</td>
<td>4 octets</td>
</tr>
<tr>
<td>...............</td>
<td></td>
</tr>
<tr>
<td>Common PDU Trailer</td>
<td>4 octets</td>
</tr>
</tbody>
</table>

reserved 1 octets

BEtag 1 octets

BAsize 2 octets

reserved 1 octets

BEtag 1 octets

Length 2 octets

reserved ... set to zero for transfer of IMPDU

BE (Beginning-End) tag ... value selected by MAC convergence function to allows association of the BOM DMPDU with EOM DMPDU

BA (Buffer Allocation) size = Length ... number of octets MCP Header -> CRC32
IMPDU Fields

<table>
<thead>
<tr>
<th>Common PDU Hdr</th>
<th>MCP Header</th>
<th>..........</th>
<th>Common PDU Trailer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 octets</td>
<td>20 octets</td>
<td></td>
<td>4 octets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Destination Address</th>
<th>Source Address</th>
<th>Protocol Identifier</th>
<th>Pad Length</th>
<th>QoS Delay</th>
<th>QoS Loss</th>
<th>CRC32 Indic.</th>
<th>Hdr. Ext. Length</th>
<th>Bridging reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 octets</td>
<td>8 octets</td>
<td>6 bits</td>
<td>2 bits</td>
<td>3 bits</td>
<td>1 bits</td>
<td>1 bits</td>
<td>3 bits</td>
<td>2 octets</td>
</tr>
</tbody>
</table>

Address Type: 4 bits
Address: 60 bits

- source addresses can be individual only,
- mapping of 16 or 48 bit addressing in 56 bit done by padding remaining bits (left to right),
- assignment of E.164 addresses (country code) is administered by CCITT according to Numbering Plan for the ISDN Era
- E.164 uses decimal numbers encoded using BCD starting with 0xC (individual) or 0xE (group)

<table>
<thead>
<tr>
<th>Protocol Identifier</th>
<th>Pad Length</th>
<th>QoS Delay</th>
<th>QoS Loss</th>
<th>CRC32 Indication</th>
<th>Hdr. Ext. Length</th>
<th>Bridging reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol Identifier</td>
<td>Pad Length</td>
<td>QoS Delay</td>
<td>QoS Loss</td>
<td>CRC32 Indication</td>
<td>Hdr. Ext. Length</td>
<td>Bridging reserved</td>
</tr>
<tr>
<td>... set to 1 for LLC, 48-63 available for use of local administration, other values reserved for future standardization by IEE 802.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>... (0-3) number of Pad octets after INFO; INFO plus PAD must be an integral multiple of four octets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>... contains priority bits (7 ... shortest, 0 ... longest delay)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reserved (set to zero)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>... indicates presence or absence of CRC32 checksum field</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>... length of Header Extension field (multiple of four octets)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>... reserved for future use with MAC Sublayer bridging (set to zero)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DMPDU Fields

- Segment Type: 2 bits
- Sequence #: 4 bits
- Message ID: 10 bits
- Payload Length: 6 bits
- Payload CRC: 10 bits

Segment Type ...
- 00 Continuation of Message (COM), 01 End of Message (EOM)
- 10 Begin of Message (BOM), 11 Single Segment Message (SSM)

Sequence # sequence number of DMPDU, used for reassembling IMPDU

Message ID identifies all DMPDUs of original IMPDU using the same value;
(every station is assigned a unique identifier by DQDB layer management, which is used
as message ID; like TEI in ISDN)

Agenda

- Introduction
- DQDB Topology
- DQDB Physical Layer
- DQDB Access Control
- DQDB Framing
- MAN
- SMDS/SIP
MAN Hierarchy

- MAN is based on DQDB subnetworks
- DQDB subnetworks are shared media
- privacy problem if DQDB subnetworks should offer a public transport service to different customer
- therefore public MAN services
 - are built on hierarchical network topology
 - central public DQDB subnetwork to interconnect edge gateways (EGW)
 - several independent private DQDB subnetworks with customer gateways (CGW) as access stations
 - private DQDB subnetworks are used by one customer only and are connected to EGW

MAN Hierarchy (EGW/CGW)

- Private subnetworks for customers A and B
- Central public MAN subnetwork (MSS)
- Edge gateways (EGW) interconnect with customer gateways (CGW)
- Ethernet and Token Ring connections

© 2005, D.I. Manfred Lindner
DQDB, v3.4
MAN Hierarchy (EGW/CGW)

- **CGW**
 - Customer networks such as LAN’s, Frame Relay are connected to CGW which provides normal bridging or routing functionality over MAN.
 - Several CGWs can form a private DQDB subnetwork in order to connect different locations (e.g. campus).
 - Private DQDB subnetwork is controlled by customer.
 - Small customer locations can be connected EGW directly to avoid high cost of CGW.
 - Point-to-point link between router and EGW.
 - SMDS interface protocol (SIP)
 - DXI Data Exchange Interface (DXI)
 - SMDS DSU (“DQDB modem”)

- **EGW**
 - Is responsible to provide security and privacy to customer using MAN transport services.
 - Is controlled by service provider only.
 - Works as transparent bridge between private and public DQDB subnetworks.
 - Store and forward device (IMPDU packet switch with connectionless service).
 - Transparent bridging based on E.164 addresses.
 - Privacy guaranteed by EGWs.
 - Filtering functions of transparent bridge.
 - Mapping of customers broadcasts to customer specific E.164 group/multicast addresses.
MSS

- public DQDB network
 - consists of EGWs and DQDB trunk lines
 - MSS (MAN Switching System)
- countrywide public MAN service
 - can be built by interconnection of MSSs
 - done by DQDB routing functionality

Interconnection of MSS
Agenda

- Introduction
- DQDB Topology
- DQDB Physical Layer
- DQDB Access Control
- DQDB Framing
- MAN
- SMDS/SIP

SMDS

- Switched Megabit Digital Service
 - high-speed, connectionless, public packet switching service to extend LAN-like performance beyond the subscribers premises across a MAN or WAN

- SMDS is broadband networking technology developed by Bellcore
 - subset of IEEE 802.6; access to SMDS via DQDB
 - specifies interfaces and protocols to be used between user and SMDS provider
 - SNI (Subscriber Network Interface)
 - SIP (SMDS Interface Protocol) based on DQDB
 - internal implementation of SMDS different to 802.6
SIP

- **SIP Level 3**
 - format the same as for IMPDU of DQDB
 - variable frame length 0 - 8199 octets

- **SIP Level 2**
 - consists of DMPDU plus segment header and trailer
 - 53 octets cells

- **SIP Level 1**
 - defines PLCP for DS1 (1.544 Mbps), DS3 (45 Mbps)
DXI:

- to allow easy upgrade of existing equipment such as bridges or routers to DQDB/SMDS
 - DXI (Data Exchange Interface) protocol was defined
- DXI allows
 - communication between CPE (router) and DSU using normal serial interface technology and HDLC like framing
 - use of HDLC address field, UI and Test frames only
 - router is responsible for creating SIP Level 3 IMPDU
 - router will carry IMPDU’s in HDLC frames to DSU
 - DSU will provide splitting of IMPDU into DMPDUs and generating of DQDB cells in order to transmit DMPDUs
Summary

- DQDB (IEEE 802.6) is base technology for MAN
- three services
 - connectionless data (LAN-LAN)
 - connection oriented data (virtual channel)
 - isochronous (voice, video)
- dual-bus shared media
- access control by distributed queuing protocol
- data services need convergence functions
 - to assemble and reassemble packets into DQDB cells
- SMDS service description
 - based on IEEE 802.6, connectionless only, SIP, DXI