

Agenda

- Line Management, Modems
- Introduction HDLC
- Station Types, Modes of Operation
- Frame Format, Frame Types
- Protocol Procedures
- HDLC Classes

© 2006, D.I. Manfred Lindner

Line Protocol Basics

- line protocol basics already explained
 - serial transmission techniques
 - bit-synchronization
 - · asynchronous/synchronous transmission, encoding
 - frame-synchronization, bitstuffing
 - frame protection, error detection
 - connectionless versus connected oriented service
 - error recovery based on ARQ
 - IdleRQ, Continuos RQ
 - error control strategies (e.g. GoBackN)
 - sequence numbers
 - windowing
 - flow control

© 2006, D.I. Manfred Lindner

HDLC, v4.

Additional Issues

- connection oriented service requires
 - line management procedures in order to establish, to maintain and to clear a connection
- in the early days of data communications
 - analogous telephone network for data transport
 - Modem in order to transport digital data
 - line protocols must handle additional line management procedures
 - for support of half duplex physical lines
 - · for support of multipoint lines
 - done with help of modem control functions
- line protocol standards used today reflect this early days requirements

© 2006, D.I. Manfred Lindner

Modem

Modulator / Demodulator

- modem adapts digital (rectangle) signals in order to be transported over analogous telephone network
 - limited bandwidth (200 3500 Hz)
- done by different modulation techniques
 - AM, FM, Phase-Modulation, QAM, Trellis-Code, etc.
- 1st Wave
 - Frequency Division Protocols, all rates to 2400 bits/s
 - Modems: advanced analog filters
 - Telco: pass audio frequencies of 200 Hz to 2.4 KHz
- 2nd Wave
 - 1st generation Echo Canceling Protocols, 9600 & 14400 bits/s
 - Modems: low cost DSPs
 - Telco: pass audio frequencies of 200 Hz to 2.4 KHz

© 2006, D.I. Manfred Lindner

HDLC, v4.

Modem (cont.)

- 3rd Wave
 - 2nd gen. Echo Canceling Protocols, rates to 28.8 Kbits/s
 - Modems: higher performing, low cost DSPs
 - Telco: pass audio frequencies of 200 Hz to 2.8 KHz
- 4th Wave
 - extending Echo Canceling Protocols, rates to 33.6 Kbits/s
 - Modems: higher performing, low cost DSPs
 - Telco: pass audio frequencies of 200 Hz to 3.1 KH
- 5th Wave
 - Digital stepping protocols, 34 Kbits/s to 56 Kbits/s
 - Modems: higher performing, low cost DSPs
 - Telco: pass audio frequencies of 200 Hz to 3.1 KHz, all digital path to subscriber line,
 64K PCM digital to analog conversion, limited loop length, no line conditioners

© 2006, D.I. Manfred Lindner

Modem Control by EIA-232 / V.24

EIA-232 / V.24 standard

- serial interface definition between a DCE and DTE
 - DTE (Data Terminal Equipment e.g. end system)
 - DCE (<u>Data Circuit Terminating Equipment e.g. modem</u>)
- for short distance and low speed connectivity
- specifies a set of physical lines and necessary electrical / mechanical aspects
 - data signals for serial transmission, control signals for modem (DCE) control, unbalanced transmission, connector

EIA-232 Data and Control Signals

- data signals:
 - transport of serial data bitstream
 - TxD (Transmit Data) DTE -> DCD
 - RxD (Receive Data) DCE -> DTE
- control signals:
 - control function between modem and end system
 - RTS (Request To Send) DTE -> DCE
 - DTE requests permission to send data to modem
 - CTS (Clear To Send) DCE-> DTE
 - DCE grants permission to send
 - DCD (Data Carrier Detect) DCE -> DTE
 - DCE indicates that it is receiving carrier from remote modem
 - DSR (Data Set Ready) DCE -> DTE
 - DCE indicates that it is operational (the modem is powered on)

© 2006, D.I. Manfred Lindner

EIA-232 Control Signals (cont.)

- control signals (cont.)
 - DTR (Data Terminal Ready) DTE -> DCE
 - DTE indicates that it is operational (the end system is powered on)
 - RI (Ring Indicator) DCE -> DTE
 - DCE indicates that the phone is ringing
 - Transmitter Signal Element Timing DCE -> DTE
 - used in synchronous mode to provide clock to the DTE for TxD
 - Receiver Signal Element Timing DCE -> DTE
 - used in synchronous mode to provide clock to the DTE for RxD
 - Transmitter Signal Element Timing Return DTE -> DCE
- EIA-232 specified limits:
 - Length: 15m, 30m
 - Speed: 20kbit/sec, 64kbit/sec / Practice: up to 200kbit/sec

© 2006, D.I. Manfred Lindner

HDLC, v4

EIA-232 Pinout DB-25

- 2 Transmit Data (TxD)
- 3 Receive Data (RxD)
- 4 Request to Send (RTS)
- 5 Clear to Send (CTS)
- 6 Dataset Ready (DSR)
- 7 Signal Ground
- 8 Data Carrier Detect (DCD)
- 15 Transmit Clock
- 17 Receive Clock
- 20 Data Terminal Ready (DTR)
- 24 Auxiliary Clock

© 2006, D.I. Manfred Lindner

HDLC, v4.4

Half Duplex Support

half duplex line means

 only one side can use physical line for transmitting (operation mode of old modems)

control of half duplex line

- right to use the physical line (right to send a frame) is exchanged between partners
 - could be compared with Token rotation in Token ring LANs
- only possessor of the Token is allowed to send frames
 - P/F functions as Token in HDLC procedures
- possessor of first Token is determined through a fixed Master - Slave relationship

© 2006, D.I. Manfred Lindner HDLC, v4.4

Multipoint Support

- in order to save costs for transmission lines
 - modem sharing devices were developed
 - many stations share one physical line
- physical line can be used only by two stations at the same time
 - in case of a full duplex physical line
- in most cases
 - star shaped point-to-point communication between one central station and many remote stations was needed
 - one central mainframe computer, many terminals
 - FEP (Front-End-Processor), CCs (Cluster Controllers)
 - note: roots of line protocols were terminal networks

© 2006, D.I. Manfred Lindner

HDLC, v4.4

P/F Procedure

- simple station hierarchy was sufficient for star shaped communication
 - central station is master of multipoint line
 - remote stations are slaves of multipoint line
 - slaves can not communicate among each other
- master of multipoint line
 - is responsible for control of multipoint line
- control is done by P(oll)/F(inal) procedure
 - P invites a slave to transmit frame(s) to the master
 - F marks last frame sent by a slave
 - slave identification is done by an address

© 2006, D.I. Manfred Lindner HDLC, v4.4

Agenda

- Line Management, Modems
- Introduction HDLC
- Station Types, Modes of Operation
- Frame Format, Frame Types
- Protocol Procedures
- HDLC Classes

© 2006, D.I. Manfred Lindner HDLC, v4.4 22

HDLC

- High-level Data Link Control
- most widely used data link control protocol based on building elements
 - synchronous transmission
 - bit-oriented line protocol using bitstuffing
 - Continuos RQ with GoBackN, piggybacked ACK
 - P/F procedure
- provides many options
 - half-duplex and full-duplex transmission
 - point-to-point and multipoint configuration
 - switched or non-switched channels

© 2006, D.I. Manfred Lindner

HDLC, v4.

22

HDLC

- covers therefore a broad range of applications
- HDLC roots are
 - terminal networks
- because of the universal procedures
 - successful also in computer networks
- HDLC standardization was done by ISO
- has been used as a basis for a number of other data link layer protocols

© 2006, D.I. Manfred Lindner

HDLC, v4.4

2/

Standards HDLC and Family

- HDLC standards
 - ISO 3309 HDLC frame structure
 - ISO 4335 HDLC elements of procedure
 - ISO 7478 HDLC multilink procedures (MLP)
 - ISO 7809 HDLC class of procedures
 - ISO 8885 HDLC exchange data link identification (XID)
- Family
 - ISO 7776 LAPB
 - ISO 8471 LAPB address information
 - ISO 8802/2 LLC
 - ITU-T I.441 LAPD

© 2006, D.I. Manfred Lindner

HDLC, v4.4

Agenda

- Line Management, Modems
- Introduction HDLC
- Station Types, Modes of Operation
- Frame Format, Frame Types
- Protocol Procedures
- HDLC Classes

© 2006, D.I. Manfred Lindner

HDLC, v4.4

27

Primary / Secondary Station

- primary station
 - acts as a master
 - transmits command frames
 - receives response frames
 - maintains a separate session with each station on multipoint line
- secondary station
 - acts as a slave to the primary station
 - receive command frames
 - transmits response frames
 - secondary stations cannot communicate directly

© 2006, D.I. Manfred Lindner

HDLC, v4.4

Line Configuration Unbalanced Mode

unbalanced mode

- one primary and one or more secondary stations
- primary is responsible for controlling each secondary
- primary establishes and maintains the link and is responsible for triggering error recovery
- can be used on point-to-point and multipoint lines

addressing

- secondary stations only have an address
- command frames contain address of selected secondary station
- response frames contain address of responding secondary station

© 2006, D.I. Manfred Lindner HDLC, v4.4 29

Line Configuration Balanced Mode

balanced mode

- can be used on point-to-point lines only
- stations are peers on the link and share equal responsibility for error recovery and line management
- combined station type is required

for peers with equal responsibility

- a new type of station was necessary
- combined station

© 2006, D.I. Manfred Lindner

HDLC, v4.

24

Combined Station

combined station

- contains protocol components of primary and secondary in one physical station
- transmits both commands and responses
- receives both commands and responses
- uses line addresses to distinguish between command and response frames
 - frame received with own address -> command
 - frame received with partner address -> response
 - frame transmitted with own address -> response
 - frame transmitted with partner address -> command

© 2006, D.I. Manfred Lindner

HDLC, v4.4

Modes of Operation

- for unbalanced line configuration two operating modes are defined
 - NRM Normal Response Mode
 - ARM Asynchronous Response Mode
- for balanced line configuration one operating mode is defined
 - ABM Asynchronous Balanced Mode

2006 D.I. Manfred Lindner HDLC v4.4

Modes of Operation

Normal Response Mode - NRM

- requires the secondary to receive explicit permission from the primary before transmitting
- after permission, secondary initiates a response transmission that may contain data
- the last response frame returns the permission for transmitting to the primary
- after the last frame transmission, secondary must again wait for explicit permission
- polling done by primary
- mode best suited to half duplex physical lines and used frequently on multipoint lines

© 2006, D.I. Manfred Lindner

HDLC, v4

o.e.

Modes of Operation

Asynchronous Response Mode - ARM

- allows a secondary to initiate transmission without explicit permission from the primary
- a full duplex physical line is necessary
- can reduce overhead because secondary does not need to wait for polling sequence
- primary still responsible for line management and triggering of error recovery
- on multipoint lines only one secondary can be in ARM mode
- ARM is used very little today

© 2006, D.I. Manfred Lindner

HDLC, v4.4

Modes of Operation

Asynchronous Balanced Mode - ABM

- uses combined stations
- station may initiate transmission without prior permission from the other station
- both stations are equally responsible for error recovery and can establish and clear a connection
- ABM is the best choice for point-to-point links

© 2006, D.I. Manfred Lindner

HDLC, v4.

07

Non Operational Modes

Normal Disconnected Mode - NDM

- for unbalanced mode
- secondary not ready to receive any I or S frame

Asynchronous Disconnected Mode - ADM

- for balanced mode
- combined station not ready to receive any I or S frame

Initialization Mode - IM

- used for initialization of stations (download of software) or exchange of parameters between stations
 - e.g. SNA NCP download using U frames of type RIM or SIM

© 2006, D.I. Manfred Lindner

HDLC, v4.4

Agenda

- Line Management, Modems
- Introduction HDLC
- Station Types, Modes of Operation
- Frame Format, Frame Types
- Protocol Procedures
- HDLC Classes

© 2006, D.I. Manfred Lindner

HDLC, v4.

20

Frame Format

- an HDLC frame consists of
 - flag fields (F) 8 bit
 - address field (A) 8 or 16 bit
 - in unbalanced mode, commands AND responses contain the address of the secondary station
 - in balanced mode, commands contain the receiver address and responses contain the sender address
 - control field (C) 8 or 16 bit
 - contains frame type and corresponding protocol elements
 - information field (I) variable, not used in some frames
 - contains the actual data
 - frame check sequence (FCS) 16 or 32 bit
 - uses standard CRC-16, CRC-32

© 2006, D.I. Manfred Lindner

HDLC, v4.4

Frame Format

- special sequences
 - flag 01111110 (7E hex)
 - abort at least 7, but fewer than 15 Ones
 - idle 15 or more Ones

HDLC is code transparent

 uses bit stuffing (zero insertion) if flag sequence would appear within frame

control field

- three formats and hence three principle frame types
 - I (Information) format -> I frame
 - S (Supervisory) format -> S frame
 - U (Unnumbered) format -> U frame

2006, D.I. Manfred Lindner HDLC, v4.4

Agenda

- Line Management, Modems
- Introduction HDLC
- Station Types, Modes of Operation
- Frame Format, Frame Types
- Protocol Procedures
- HDLC Classes

2006, D.I. Manfred Lindner HDLC, v4.4 46

HDLC Data Link Services

- HDLC can provide connection-oriented service
 - setup of connection done by U-frames
 - SNRM, SARM, SABM, UA
 - I-frames and S-frame can be used only after connection setup
 - I, RR, RNR, REJ, SREJ
 - clearing of a connection done by U-frames
 - DISC, UA

HDLC can provide connectionless service

- only U-frames can be used
 - UI for data transport

© 2006, D.I. Manfred Lindner HDLC, v4.4

I - Frames

- are used to transmit user data between stations
 - requires connection setup
 - Send Sequence Number N(S)
 - Receive Sequence Number N(R)
 - · piggyback acknowledgement
 - range of sequence numbers (3 bit)
 - normal mode (SNRM, SARM, SABM)
 - 0 7
 - maximum send window = 7
 - range of sequence numbers (7 bit)
 - extended mode (SNRME, SARME, SABME)
 - 0 127
 - maximum send window = 127

© 2006, D.I. Manfred Lindner

HDLC, v4.4

/Ω

S - Frames

perform control functions

- like acknowledgement, request for retransmission, flow control
- usage depends on the operation mode / class of procedures
- Receiver Ready (RR) is used as <u>acknowledgement</u> in case no I frame is waiting to transmit
- additionally RR indicates that station can accept frames (<u>flow control - GO</u>)
- Receiver Not Ready (RNR) indicates that a station is temporarily not ready to receive frames (<u>flow control</u> -STOP) but also used to acknowledge
- RR and RNR can be used for <u>keepalive</u>, RR can be used for polling in case of NRM

© 2006, D.I. Manfred Lindner

HDLC, v4.

49

Error Recovery with Checkpointing

request for retransmission

- is done with <u>checkpointing</u>
- primary triggers with P = 1 exchange information of current/actual state of N(R) numbers
- retransmission in case of missing acknowledgements
 - GoBackN with N = N(R)
- delayed or triggered GoBackN
 - no explicit NACK frame used
 - RR or RNR contains corresponding N(R) number for GoBackN

checkpointing is

basic error recovery method for all HDLC operational modes

© 2006, D.I. Manfred Lindner

HDLC, v4.

Error Recovery with REJ / SREJ

- optional methods for error recovery use reject (REJ) or selective reject (SREJ) frames
- REJ can be used to initiate retransmission as soon as error is recognized
 - REJ is real NACK frame
 - it is not necessary to wait for triggering of checkpoint done by primary
 - GoBackN with N = N(R) of REJ frame
- SREJ can be used to request selectively retransmission of a frame
 - requests frame with number N(R)

© 2006, D.I. Manfred Lindner

HDLC, v4

EA

The P/F-Bit

- use of P/F-bit depends on mode of operation
 - NRM, ARM, ABM
- name of P/F-bit (P = poll, F= final)
 - can be explained with its original usage in NRM mode on half duplex physical lines
- general rule for all modes
 - bit is a P bit in command frames (the address field contains the address of the receiving station)
 - bit is a F bit in response frames (the address field contains the address of the sending station)
 - only recognized when set to 1

© 2006, D.I. Manfred Lindner

HDLC, v4.

The P/F-Bit

general rule for all modes (cont.)

- primary station uses the P bit to trigger a response from the secondary
- secondary station uses the F bit to indicate the corresponding response
- if primary station has sent a command with P = 1, the primary must wait until secondary has sent a response frame with F = 1, before a new command with P = 1 can be transmitted
- this exchange of P and F marks a synchronization point for error recovery -> checkpointing

© 2006, D.I. Manfred Lindner

HDLC, v4

P/F-Bit in NRM Mode

- used for exchange of transmission right (Token) between primary and secondary
 - primary station gives Token to secondary station with a command frame and P = 1 (primary polls secondary)
 - after a command frame with P = 1 is received the secondary station can send a sequence of response frames to the primary with F = 0
 - the last response frame is marked with F = 1 and returns the Token back to the primary station
 - after a response frame with F = 1 is received the primary station can use the half duplex link again
- used for checkpointing
 - the adequate error recovery method for half duplex lines

© 2006, D.I. Manfred Lindner

HDLC, v4.4

P/F-Bit in ARM/ABM Mode

remember:

 in ARM or ABM mode secondary station (secondary component in case of combined station) can transmit without explicit permission by the primary

P/F - bit used to trigger error recovery only

- if primary station sends a command frame with P = 1 the secondary should send a response frame with F = 1 as soon as possible
- checkpoint marking

© 2006, D.I. Manfred Lindner

HDLC, v4.

EE

Checkpointing in ARM/ABM mode

checkpointing method

- ARM: whenever a frame with P = 1 or F = 1 is received
 - stations perform a check which frames are not acknowledged so far using the N(R) field of these frames
 - if there are any unacknowledged frames retransmission is started with GoBackN method (N = value of received N(R)
- in ABM mode this is done only if a frame with F = 1 is received
 - combined station contains primary and secondary component
- checkpointing is of course the adequate error recovery method for NRM
 - combined with Token exchange for half duplex control

© 2006, D.I. Manfred Lindner

HDLC, v4

U - Frames

are used for control purposes

- like link establishment
 - SNRM (set normal response mode), SARM, SABM
 - UA (unnumbered acknowledgement)
 - SNRME, SARME, SABME (E ... extended sequence numbers)
- link disconnection
 - DISC, RD (request disconnect mode)
- reset of connection
 - FRMR (frame reject), RSET (reset)
- initialization, testing, exchange ID, signaling mode
 - RIM, SIM, TEST, XID, DM (disconnect mode),
- connectionless information transfer
 - UI unnumbered information -> datagram service

© 2006, D.I. Manfred Lindner

HDLC, v4

57

Handling of U Frames

- SNRM, SARM, SABM, SNRME, SARME, SABME
 - sets secondary station in corresponding mode
 - expected answer: UA

DISC

- terminates actual mode, expected answer: UA
- partner station -> NDM, ADM (disconnected mode)

DM

 response of secondary to every command frame except set mode frames while in disconnected mode

RD

station wants that other station issues an DISC command

© 2006, D.I. Manfred Lindner

HDLC, v4.

Handling of U Frames

FRMR

- response of secondary in case of protocol errors
 - invalid control field
 - invalid N(R)
 - information field too long or not expected in this frame

RSET

- command sent by primary on receipt of FRMR
- resets N(R) = 0 in secondary, resets N(S) = 0 in primary
- expected answer: UA

TEST

- basic link test
- expected answer: UA

© 2006, D.I. Manfred Lindner

HDLC, v4.

59

Handling of U Frames

SIM

- sets secondary in initialization mode
- expected answer: UA
- SW download from primary to secondary with UI frames

RIM

 sent by secondary as response to a mode setting command when secondary wants to be initialized first

XID

- requests identification from other station
- expected answer: XID

© 2006, D.I. Manfred Lindner

HDLC, v4.4

XID Exchange

three XID types

- user data exchange
 - information for upper protocol layers before connection setup
- address resolution
 - used on switched lines only

parameter negotiation

- class of procedures
- · functional extensions
- maximum transmit frame size
- maximum receive frame size
- send window
- receive window

© 2006, D.I. Manfred Lindner

IDLC, v4.

61

NRM Example (no errors)

Agenda

- Line Management, Modems
- Introduction HDLC
- Station Types, Modes of Operation
- Frame Format, Frame Types
- Protocol Procedures
- HDLC Classes

© 2006, D.I. Manfred Lindner

IDLC, v4.

67

HDLC Classes of Procedures

- used to classify HDLC implementations
 - basic repertoire (standard modes of operation)
 - Class UN (NRM), Class UA (ARM), Class BA (ABM)
 - must be implemented for HDLC standard compliance
 - functional extensions (see next page)
 - may be implemented, matter of negotiations between implementers

Unbalanced **Balanced Unbalanced Normal (UN)** Asynchronous (UA) Asynchronous (BA) Secondary **Primary** Secondary Primary Primary Secondary **Command Response** Command Response Command Response RR RR RR RR RR RR RNR **RNR** RNR RNR RNR **RNR SNRM** UA SARM UA **SABM** UA DISC DM DISC DM DISC DM **FRMR** FRMR **FRMR** 2006, D.I. Manfred Lindner HDLC, v4.4

HDLC Functional Extensions		
1. for switched circuits XID << ADD >> XID RD	7. extended addressing	13. request disconnect ADD >> RD
2. for 2-way simultaneous REJ << ADD >> REJ	8. delete "Response" I frames	14. 32 bit FCS
3. for single frame retrans. SREJ << ADD >> SREJ	9. delete "Command" I frames	for example UN 3.7 -> unbalanced normal -> mode and selective -> reject and extended -> address extensions
4. for information UI << ADD >> UI	10. extended sequence numbering	
5. for initialization SIM << ADD >> RIM	11. for mode reset RESET << ADD	
6. for group polling UP << ADD	12. Data link test TEST << ADD >> TEST	
© 2006, D.I. Manfred Lindner HDLC, v4.4 69		