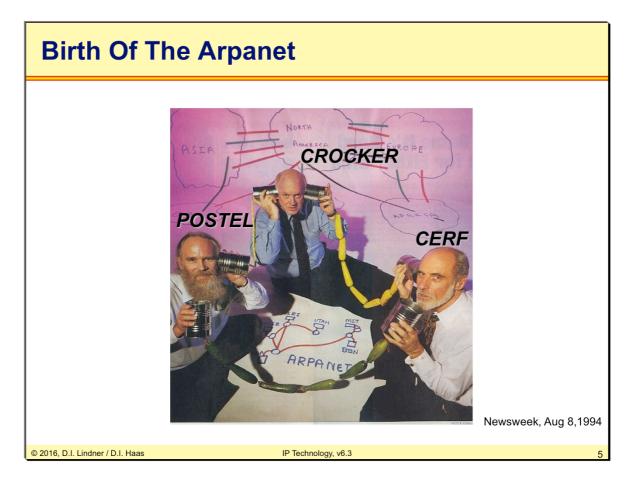
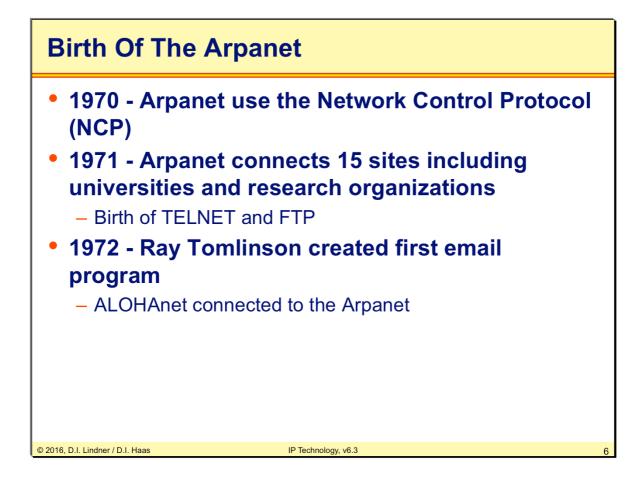

# **IP Technology**

Introduction, IP Protocol Details IP Addressing and IP Forwarding ARP, ICMP, PPP, HSRP, VRRP


| Agenda                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <ul> <li>Introduction         <ul> <li>Short History of the Internet (not part of the exam!)</li> <li>Basic Principles</li> </ul> </li> <li>IP         <ul> <li>IP Protocol</li> <li>IP QoS</li> <li>Addressing</li> <li>Classful versus Classless (not part of the exam!)</li> </ul> </li> <li>IP Forwarding         <ul> <li>Principles</li> <li>ARP</li> <li>ICMP</li> <li>ICMP</li> <li>PPP</li> </ul> </li> </ul> |   |
| <ul> <li>First Hop Redundancy</li> <li>Proxy ARP, IDRP</li> <li>HSRP</li> <li>VRRP (not part of the exam!)</li> </ul>                                                                                                                                                                                                                                                                                                  |   |
| © 2016, D.I. Lindner / D.I. Haas IP Technology, v6.3                                                                                                                                                                                                                                                                                                                                                                   | 2 |




In 1957 the USSR launched Sputnik, the first artificial earth satellite. In response, the United States formed the Advanced Research Projects Agency (ARPA) within the Department of Defense (DoD) to establish US lead in science and technology applicable to the military. The Cold War with his atomic menace lead the military to new technologies. The electronic communication was one of the important technologies. But there was one big problem with this kind of communication, if one communication-point went down, the whole communication stops. The design of the ARPANET began.



The physical network was constructed in 1969, linking four nodes: University of California at Los Angeles, SRI (in Stanford), University of California at Santa Barbara, and University of Utah. The network was wired together via 50 Kbps circuits. The first IMP's based on computers of the types Honeywell DDP-516 and Forts. The IMP's are the predecessors of "routers" and serve for the connection between the different computers. The first hosts where computers from IBM, DEC and SDS, and all running different operation systems.



Jon Postel, Steve Crocker and Vinton Cerf working for the UCLA and developed the packet switching principle of the ARPANET.



In 1969 Steve Crocker writes the first RFC to establish a way to document and to discuss the new upcoming technologies.

The NCP was the first protocol which connect all hosts in the ARPANET and in July 1970 the NCP protocol was standardize with the help of the RFCs. The ARPANET began to grow and connects 15 hosts:

University of California at Los Angeles (UCLA)

Stanford Research Institute (SRI)

University of California at Santa Barbara (UCSB)

University of Utah

Bolt Beranek and Newman (BBN)

Massachusetts Institute of Technology (MIT)

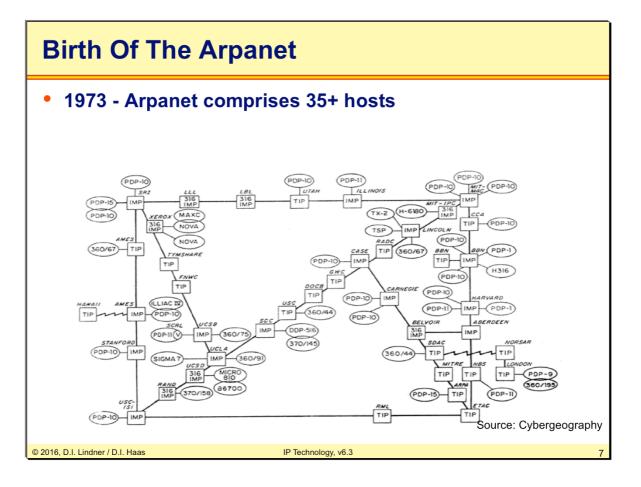
RAND Corporation

SDC

Harvard

Lincoln Labs

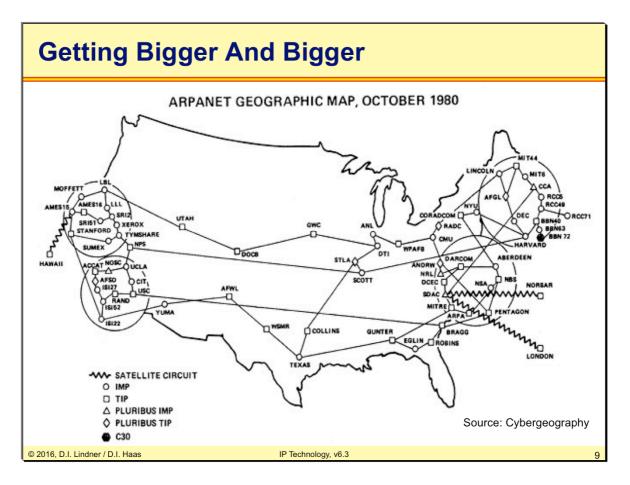
Stanford


University of Illinois at Urbana Champaign (UIUC)

Case Western Reserve University (CWRU)

Carnegie Mellon University (CMU)

NASA-Ames


The development was going on and new protocols and systems were created (TELNET, FTP, EMAIL).



In 1973 a multiplication of the existing IMPs began. The old DDP-516 computer changes to a Honeywell 316 and got the name "Terminal IMP" (TIP).

| The Arpanet Problem -<br>Birth of TCP/IP and the Internet                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Arpanet communicate with NCP but other<br/>networks use different protocols</li> <li>1974 - Transmission Control Protocol (TCP)</li> </ul> |
| <ul> <li>specification published</li> <li>TCP enabled the expansion from the Arpanet to<br/>a worldwide Internet !</li> </ul>                       |
| • The Winner: TCP/IP                                                                                                                                |
| • 1978 - TCP Split into TCP and IP                                                                                                                  |
| • 1983 - Arpanet converts to TCP/IP                                                                                                                 |
| <ul> <li>– UNIX (v4.2 BSD) released with TCP/IP</li> </ul>                                                                                          |
| <ul> <li>DARPA switched from Arpanet architecture to Internet<br/>architecture with TCP/IP as base protocols</li> </ul>                             |
| © 2016, D.I. Lindner / D.I. Haas IP Technology, v6.3 8                                                                                              |

Arpanet uses NCP (Network Control Protocol) for communication between packet switches. In order to connect other networks to the ARPANET a new problem occurred, because every network uses a different protocol. Robert Khan and Vinton Cerf started to design a network overlay protocol. In Mai 1974 a workgroup was founded for solving the problem (workgroup name "A Protocol for Packet Network Intercommunication") and in December the first RFC (RFC 675) "Specification of Internet Transmission Control Protocol" was edited. The number of hosts in the Arpanet reached 62. With the creation of TCP the expansion to a worldwide Internet was enabled. In 1978 first TCP was split into IP and TCP. After 5 years of TCP/IP development the protocol technology switched from a experimental to a operational protocol. To push the development on the TCP/IP protocol the Internet Configuration Control Board (ICCB) was created. On 1rst January 1983 NCP changed completely to TCP/IP.



1986 the ARPANET enfolded over whole USA and parts of Europe.

# Development Going On

- 1983 Arpanet Splits into Arpanet and MILNET
- 1983 Internet Activities Board (IAB)
- 1984 Domain Name System (DNS)
- 1985 Symbolics.com first registered domain.

© 2016, D.I. Lindner / D.I. Haas

IP Technology, v6.3

The ARPANET works fine, but in 1983 the Department of Defense decided to create an own military network, called MILNET.

To push the development on the Internet the Internet Configuration Control Board (ICCB) was chanced to the Internet Activities Board (IAB). Now the IAB has the function to control and edit the RFCs.

Because of the fast grow of the Internet (around 1000 hosts) the Domain Name System (DNS) was created. It took 2 years until all hosts were connected to the DNS.

Who Is Who?

J.C.R. Licklider (MIT, ARPA/IPTO)

Memos about a global, distributed network and addressing

Vision of a universal network had a powerful influence

Robert Taylor (ARPA)

Designed the ALTO workstation

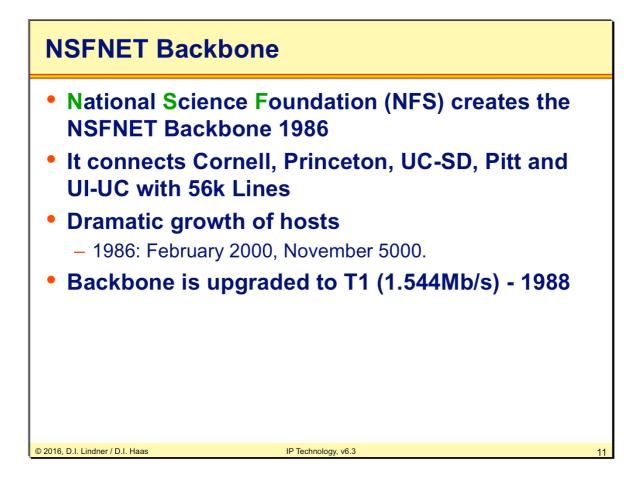
Larry Roberts, Barry Wessler (ARPA)

Roberts: the principal architect of the Arpanet

Wessler: ARPA administrator

Wesley Clark (Washington University)

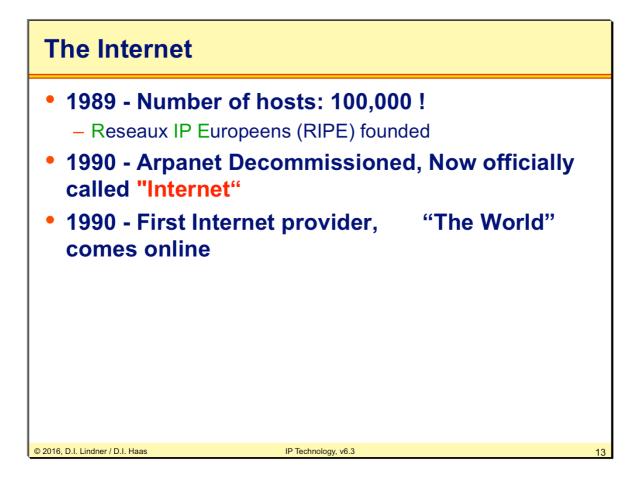
Frank Heart, Robert Kahn, Dave Walden, Willy Crowther, Severo Ornstein et al (BBN)


First packet switch

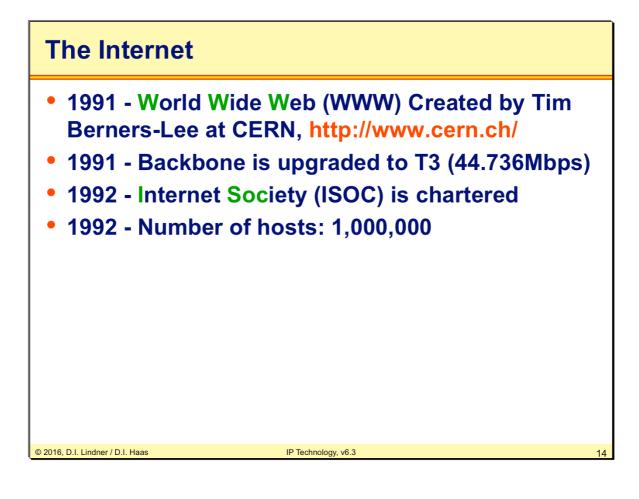
First router


First person-to-person network email

Leonard Kleinrock (UCLA) and Crocker, Postel, Kline, Braden, Cerf et al


Principles of packet switching



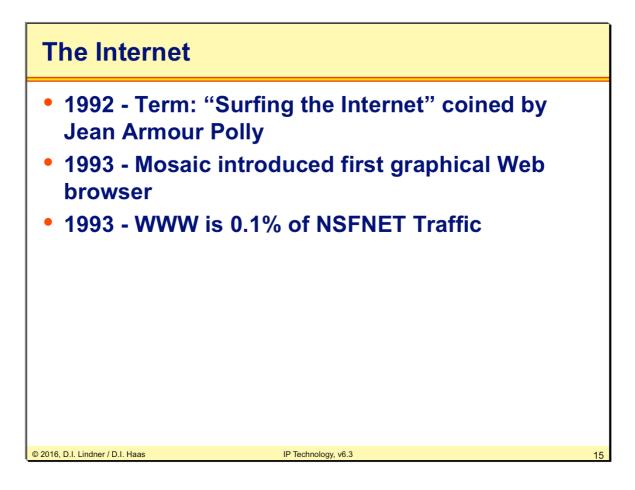

In 1986 the NFS created the NSFNET backbone to which each of the local networks could be attached. With this step the diffusion to a worldwide Internet began. In 1987 the number of hosts raised above 28000 and the 1000st RFC was published. The number of hosts grew and so the backbone was upgraded to a T1 connection in 1988 (Merit Network Inc., IBM and MCI were working on that update).



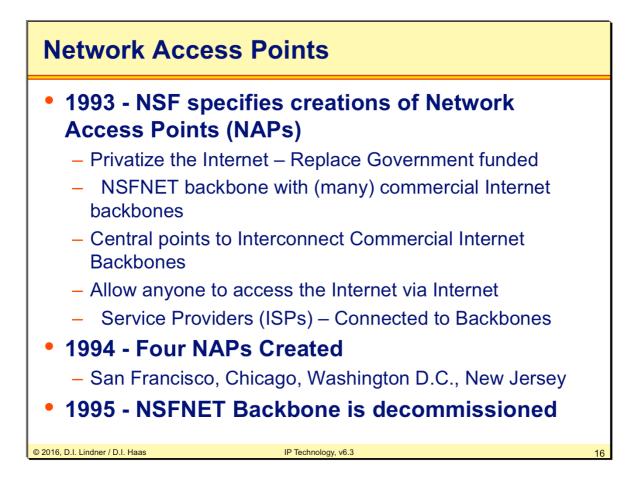
The NSFNET Backbone spanned over whole USA.



In 1989 two new organization were founded which should boost the development on TCP/IP and the Internet. The Internet Engineering Task Force (IETF) and the Internet Research Task Force (IRTF).

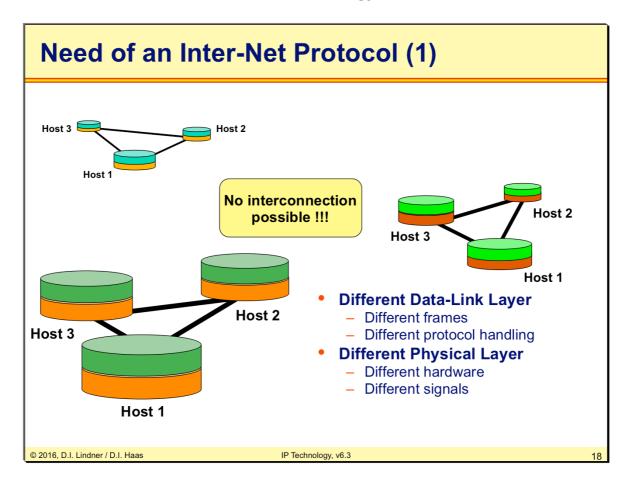



The invention of the World Wide Web (WWW) had the most important impact to the Internet growth and development. WWW had been created by Tim Berners-Lee, a MIT graduate, working for the CERN in Switzerland. The first browser he wrote was called "Nexus" and was also capable to display inline graphics already.

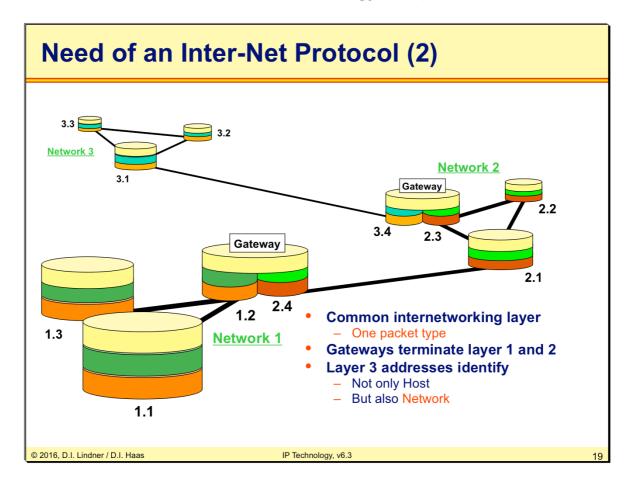

Backbone networks from many different organizations had been created, such as General Atomics (CERFNet) and Performance Systems International (PSINet) and UUNET Technologies (AlterNet).

Upgrades of the initial modem-speed lines to T3 and more were made during the early 1990s.

With the help of the ISOC the development was going on and many new protocols, for example: Multipurpose Internet Mail Extensions (MIME), were created.

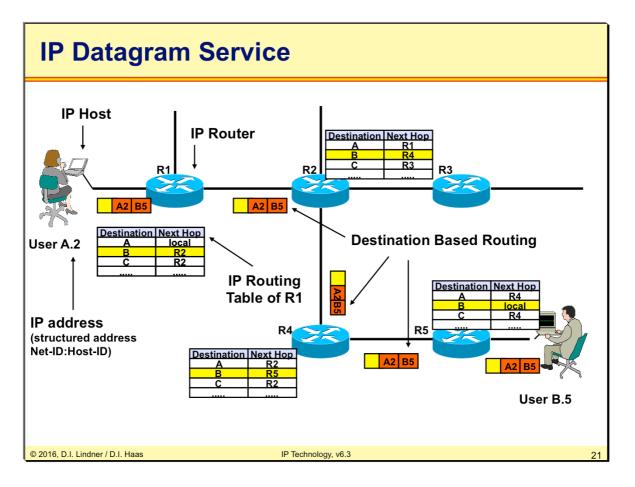



In the following years the WWW significantly influenced the development of the Internet. Although only a few users could utilize this new service, many journalists paid great attention to WWW, and soon everybody wanted to "surf in the Internet". Also 1993 was a milestone in the history of the WWW, as NCSA released the first fully featured graphical web browser called "Mosaic". Later the famous Netscape Navigator was created upon this code.




The NSP plan to chance the backbone structure of the Internet and choose to leave the Internet. Instead of the backbone structure many independent Network Access Points should be created. On this NAP's regional networks can connect. The growth of the Internet was around 100% per year and so there where around 2 millions host and over 16000 networks connected each other.

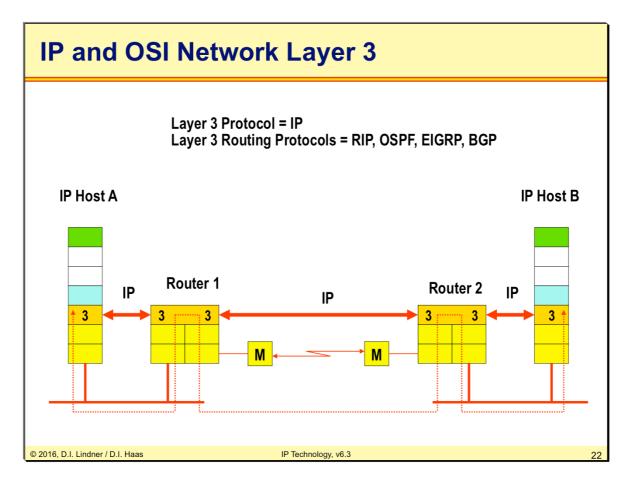
| Agenda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Introduction <ul> <li>Short History of the Internet (not part of the exam!)</li> <li>Basic Principles</li> </ul> </li> <li>IP <ul> <li>IP Protocol</li> <li>IP QoS</li> <li>Addressing</li> <li>Classful versus Classless (not part of the exam!)</li> </ul> </li> <li>IP Forwarding <ul> <li>Principles</li> <li>ARP</li> <li>ICMP</li> <li>PPP</li> </ul> </li> <li>First Hop Redundancy <ul> <li>Proxy ARP, IDRP</li> <li>HSRP</li> <li>VRRP (not part of the exam!)</li> </ul> </li> </ul> |
| © 2016, D.I. Lindner / D.I. Haas IP Technology, v6.3 17                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

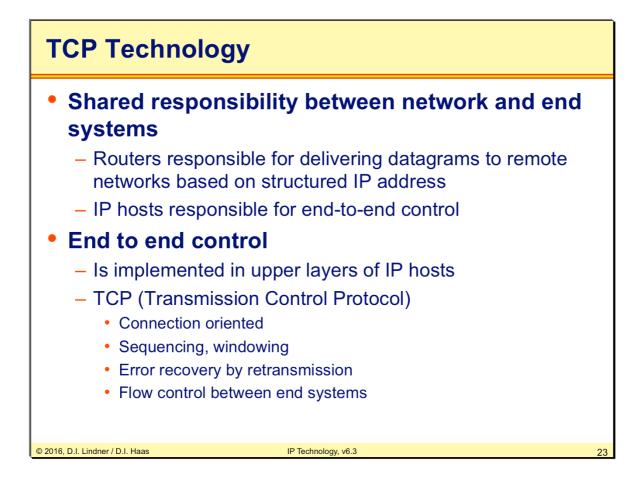


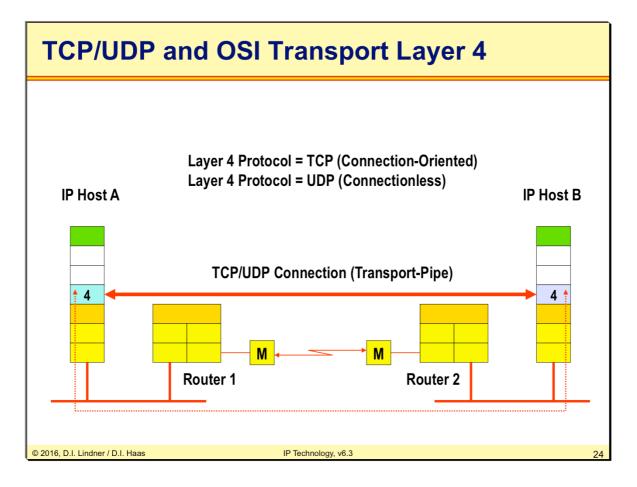

Why do we need an Inter-Net Protocol? Different networks have different Data-Link Layer. Every Network runs a different protocol. Some networks use proprietary link layer protocols or X.25, other networks have Ethernet or HDLC. You see, every network has its own hardware, signals and frames. As long as they do not want to communicate with each other, there is no problem...

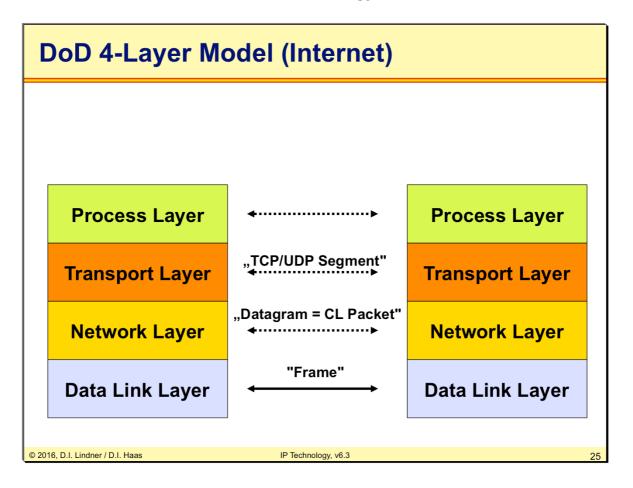


If we want to interconnect these networks we would need a common internetworking layer. Network interconnections are realized with dedicated hosts called "Gateways" which include at least two different network interface cards (NIC) – each with an appropriate physical and link layer. These gateways transport the common Inter-Net protocol (encapsulated in layer 2) and terminate layer 1 and layer 2 on each side. In the late 1970's the IP protocol was widely used as Inter-Net protocol. It works on Layer 3 and identifies the host and the network using dedicated addresses.

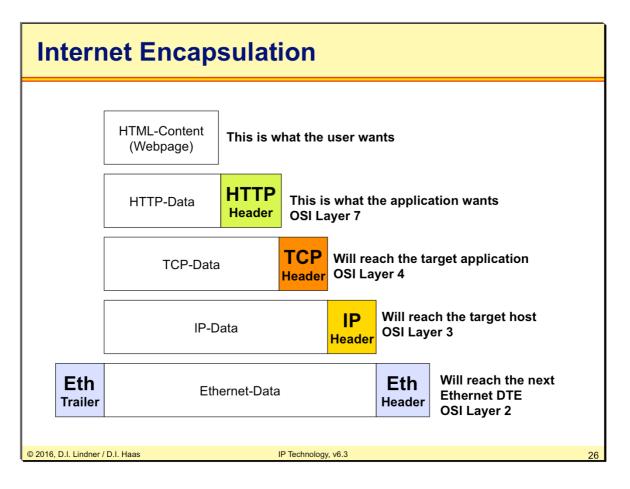

| IP Technology                                                           |                                             |    |
|-------------------------------------------------------------------------|---------------------------------------------|----|
| IP (Internet Protoco                                                    | I)                                          |    |
| <ul> <li>Packet switching tech</li> </ul>                               | nology                                      |    |
| <ul> <li>Packet switch is called<br/>gateway (IETF termined)</li> </ul> |                                             |    |
| <ul> <li>End system is called II</li> </ul>                             | P host                                      |    |
| <ul> <li>Structured layer 3 add</li> </ul>                              | ress (IP address)                           |    |
| <ul> <li>Datagram service</li> </ul>                                    |                                             |    |
| <ul> <li>Connectionless</li> </ul>                                      |                                             |    |
| <ul> <li>Datagrams are sent w</li> </ul>                                | ithout establishing a connection in advance |    |
| <ul> <li>Best effort delivery</li> </ul>                                |                                             |    |
| <ul> <li>Datagrams may be dis<br/>network congestion</li> </ul>         | carded due to transmission errors or        |    |
| © 2016, D.I. Lindner / D.I. Haas                                        | IP Technology, v6.3                         | 20 |



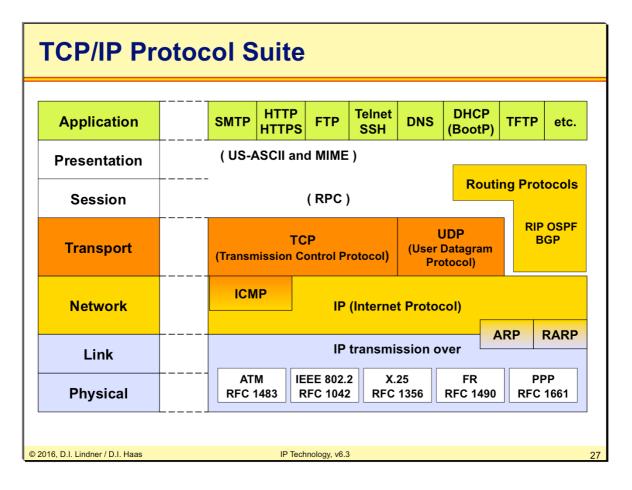


In the Datagram technology user A.2 sends out data packets destined for the user B.5. Each single datagram holds the information about sender and receiver address.


The datagram forwarding devices in our example routers hold a routing table in memory. In the routing table we find a correlation between the destination address of a data packet and the corresponding outgoing interface as well as the next hop router. So data packets are forwarded through the network on a hop by hop basis.

The routing tables can be set up either by manual configuration of the administrator or by the help of dynamic routing protocols like RIP, OSPF, IS-IS, etc. The use of dynamic routing protocols may lead to rerouting decisions in case of network failure and so packet overtaking may happen in these systems.








The picture above shows the W. Stevens 4 layer model which is used also in the Internet. The Internet layer model is also called "Department of Defense" (DoD) model.



In our example let's suppose a webserver sends a webpage (HTML code) to a client. The webpage is carried via the Hyper Text Transfer Protocol (HTTP) which provides for error and status messages, encoding styles and other things. The HTTP header and body is carried via TCP segments, which are sent via IP packets. On some links in-between, the IP packets might be carried inside Ethernet frames.



IP is the connectionless layer 3 protocol. Datagram transport, fragmentation, addressing, all this is done by IP. ICMP (IP Control Message Protocol) is also seen as part of layer 3 providing error signaling to IP stations. It is carried in IP. most famous ICMP messages are those used for the PING-application. On the Transport Layer (Layer 4) you can see TCP and UDP. TCP protects the transmission of a "segment" and takes care for reliable delivery. UDP passes on just the connectionless service (best-effort-service) of IP to the higher layers (applications). ARP (Address Resolution Protocol) maps addresses between IP and L2 in case of a shared media (like LAN). In case of dynamic routing -> routing protocols are needed. RIP (Routing Information Protocol), OSPF (Open Shortest Path First protocol) are used within a limited area (so called autonomous system) of the Internet (such as within an ISP (Internet Service Provider) or within company or organization) whereas BGP is used for Internet routing. RIP is carried in UDP segments, OSPF is carried in IP datagrams and BGP is carried in TCP segments.

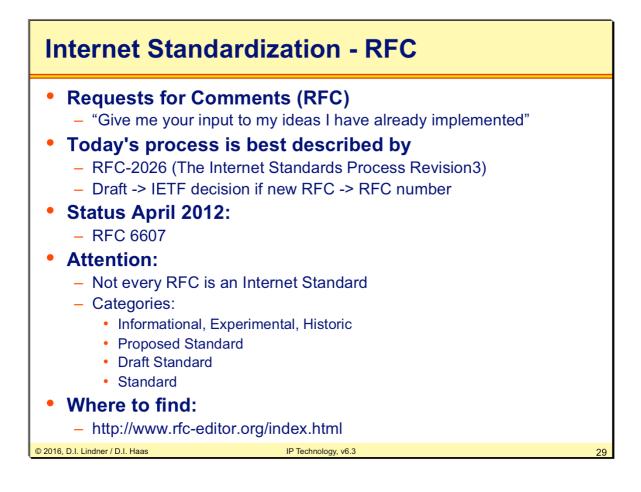
Some popular applications are shown: SMTP (Simple Mail Transport Protocol) for delivering emails, HTTP (HyperText Transfer Protocol) for WEB (HTTPS for secure/encrypted HTTP), FTP (File Transfer Protocol) for file transport, Telnet for remote login / virtual terminal, (SSH Secure Shell - > encrypted Telnet), DNS (Domain Name System) for resolving symbolic names to IP addresses, DHCP (Dynamic Host Configuration Protocol) for assigning IP addresses to IP hosts, TFTP (Trivial File Transport Protocol) as Idle-RQ technique for delivering files with small implementation overhead (e.g. needed for booting of a system). Of course there are lot of other important applications - which are not shown in the picture - like SNMP (Simple Network Management Protocol), SIP (Session Initiation Protocol) and RTP (Realtime Transport Protocol) used for VOIP (Voice Over IP).

TCP/IP seems to lack from OSI layer 5 and 6. That is not really true: Often parts of the presentation layer is covered in the application themselves in a very pragmatic way (like using US-ASCII as the base coding of email content (SMTP) or file content (FTP) or character set for terminal (Telnet)) or the content could be described and structured using MIME (Multipurpose Internet Mail Extensions). The later is also used for WEB and allows to carry nearly everything using HTTP. Pragmatic means, that no negotiation takes place about type of content to be delivered, e.g. a binary file containing a program is supposed to be usable/ readable for the receiving system. There is nothing which converts a MS PowerPoint presentation to an Apple keynote presentation during the transfer over a network. Also often parts of the session layer are included in the applications, sometimes the session layer is covered by a piece of software in a system like the RPC (Remote Procedure Call).

| TCP/IP Story of Success                                                  |
|--------------------------------------------------------------------------|
| IP over everything                                                       |
| <ul> <li>Overlay technique</li> </ul>                                    |
| <ul> <li>End-to-end principle</li> </ul>                                 |
| <ul> <li>Network could be stupid simple</li> </ul>                       |
| <ul> <li>End systems do the sophisticated tasks like TCP</li> </ul>      |
| • TCP                                                                    |
| <ul> <li>Best implementation of a transport protocol nowadays</li> </ul> |
| • www                                                                    |
| <ul> <li>Killer application in the 1990's</li> </ul>                     |
| Standardization                                                          |
| <ul> <li>Standardization of running code</li> </ul>                      |
|                                                                          |
| © 2016, D.I. Lindner / D.I. Haas IP Technology, v6.3 28                  |

One reason for IP's success is its ability to adapt to all types of layer 2 technologies. On one hand, the IP developers were very quick to design convergence ("helper") protocols, for example to resolve L2/L3 addresses on multipoint connections or encapsulation headers for delineation on dialup or serial links, such as PPP. On the other hand, IP is a relative simple protocol. Because of this it had been integrated in many different operating systems, most importantly UNIX.

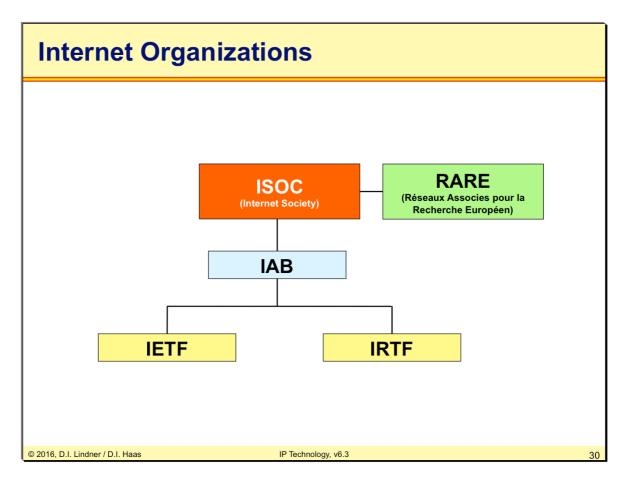
IP over everything means that layering a unique IP protocol on top of various network technologies is technology-independent. Just a definition is necessary how to transfer IP datagrams using a given transmission- or network-technology. Hence it is easy to adopt to new network technologies.


Note: IP's simplicity is based on the end-to-end philosophy. That is, the network itself does not care for reliable transmission; only the end-systems care for error recovery. This way, the network can be kept simple.

End-to-end principle avoids sophisticated tasks to be performed by network infrastructure (routers). The IP host takes care if reliability of information transport is necessary. Routers can be held dump, IP hosts are the smart ones.

TCP is tolerant and adaptive to network operational conditions, robust against network failures, adapts to varying network delays and varying network load.

Right functionality partition between IP and TCP: IP knows nothing about end systems applications, makes best effort to route packets through the network, it only cares about networks and host-addresses. TCP takes care of end-to-end issues (error recovery, flow control, sequencing,...). hence end systems need to know nothing about network internals (Note: that might change with the need for QoS in the IP world). TCP carries the Port-Number. The Port-Number is necessary for the host. With the Port-number he knows which datagram belongs to which application.


WWW was invented 1991, world take first notice in 1993. WWW (the web browser) was the killer application allowing normal people to use technology for information gathering, communication and fun.

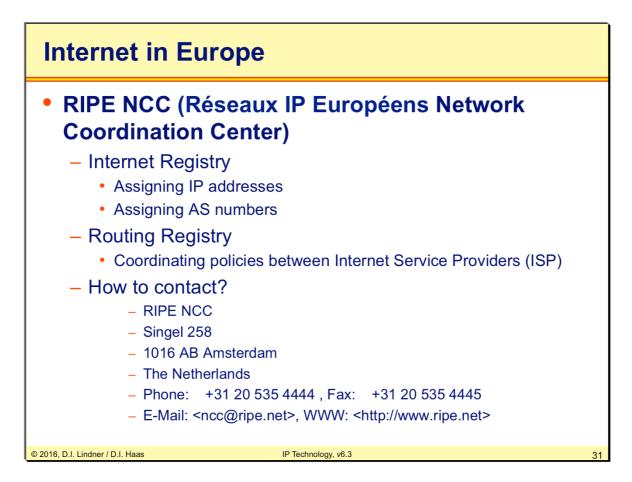


All documentation, standards, proposals for new protocols and enhancements for the Internet are published as RFCs which are accessible by everyone for free.

RFCs were the initial approach of engineers to discuss questions, suggestions via e-mail in order to speed up development compared to the slow processes known by other standardization organization such as ISO and ITU.

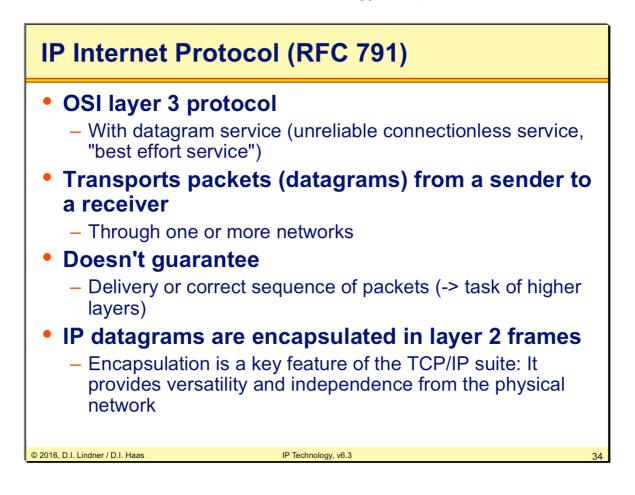
Nowadays a RFC starts as a draft document with a version number. A draft can be written by everyone who likes it. The IETF (Internet Engineering Task Force) decides if the draft is something which is "good" for the Internet technology or not. If not or if the draft is seen to be not complete the draft will remain for six months at the IETF server and will be removed after six months. The draft owner can create an adapted draft with a new version number and the game starts again. If finally a draft is seen as something which is worth to be considered, it will get a RFC number. RFCs are numbered in sequence of publishing hence adopted enhancements or changes to a protocol will result in a new RFC number.




The Internet Society (ISOC) provides leadership in addressing issues that confront the future of the Internet, and is the organization home for the groups responsible for Internet infrastructure standards, including the Internet Engineering Task Force (IETF) and the Internet Architecture Board (IAB).

The Réseaux Associes pour la Recherche Européen (RARE) was founded in 1986 to build and maintain a European high speed data network infrastructure. RARE is also a member of ISOC and ETSI (European Telecommunications Standards Institute). EBONE was initiated by RARA and RARA is a close cooperation with RIPE (Réseaux IP Européen).

The Internet Architecture Board (IAB) is responsible for technical directions, coordination and standardization of the TCP/IP technology. It was formerly known as Internet Activity Board and is the highest authority and controls the IETF and IRTF.


The Internet Engineering Task Force (IETF) is "actually" the most important technical organization for the Internet working groups and is organized in several areas. Area manager and IETF chairman form the IESG (Internet Engineering Steering Group). The IETF is also responsible to maintain the RFCs.

The Internet Research Task Force (IRTF) coordinates and prioritize research groups that are controlled by the IRSG (Internet Research Steering Group).



| Agenda                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Introduction <ul> <li>Short History of the Internet (not part of the exam!)</li> <li>Basic Principles</li> </ul> </li> <li>IP <ul> <li>IP Protocol</li> <li>IP QoS</li> <li>Addressing</li> <li>Classful versus Classless (not part of the exam!)</li> </ul> </li> <li>IP Forwarding <ul> <li>Principles</li> <li>ARP</li> <li>ICMP</li> <li>PPP</li> </ul> </li> </ul> |
| <ul> <li>First Hop Redundancy         <ul> <li>Proxy ARP, IDRP</li> <li>HSRP</li> <li>VRRP (not part of the exam!)</li> </ul> </li> </ul>                                                                                                                                                                                                                                        |
| © 2016, D.I. Lindner / D.I. Haas IP Technology, v6.3 32                                                                                                                                                                                                                                                                                                                          |

| CP/IP Prot                   | tocol Si                                                                   | uite                                   |              |               |     |                                    |      |      |
|------------------------------|----------------------------------------------------------------------------|----------------------------------------|--------------|---------------|-----|------------------------------------|------|------|
| Application                  |                                                                            | HTTP<br>HTTPS                          | FTP          | Telnet<br>SSH | DNS | DHCP<br>(BootP)                    | TFTP | etc. |
| Presentation                 | (US-ASCII and MIME )                                                       |                                        |              |               |     |                                    |      |      |
| Session                      | ( RPC )                                                                    |                                        |              |               |     |                                    |      |      |
| Transport                    | (Transmi                                                                   | TCP<br>(Transmission Control Protocol) |              |               |     | UDP<br>(User Datagram<br>Protocol) |      |      |
| Network                      | ICMF                                                                       | DIP (Internet Protocol)                |              |               |     |                                    |      |      |
|                              |                                                                            | ARP RARP                               |              |               |     |                                    |      |      |
| Link                         |                                                                            | IP transmission over                   |              |               |     |                                    |      |      |
| Physical                     | ATM IEEE 802.2 X.25 FR PPP<br>RFC 1483 RFC 1042 RFC 1356 RFC 1490 RFC 1661 |                                        |              |               |     |                                    |      |      |
| 16, D.I. Lindner / D.I. Haas |                                                                            | IP Tech                                | nology, v6.3 |               |     |                                    |      |      |



# **IP Protocol Functions**

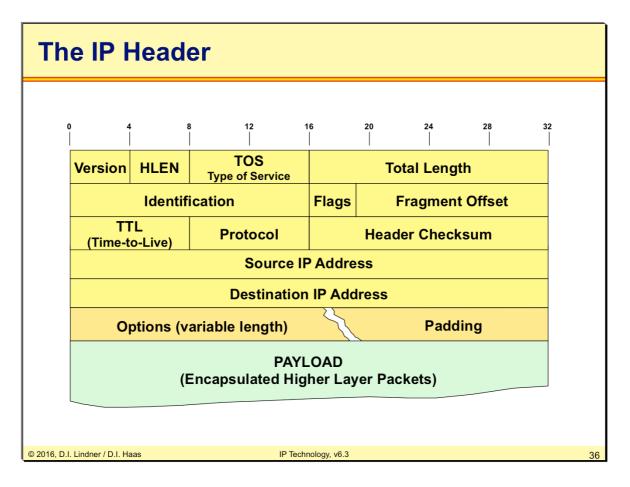
## Packet forwarding

- Based on network addressing (Net-IDs)

### Error detection

- Packet header only

### Fragmentation and reassembly


- Necessary, if a datagram has to pass a network with a smaller maximum frame size
- MTU (Maximum Transmission Unit)
- Reassembly is done at the receiver

## Mechanisms to limit the lifetime of a datagram

 To omit an endless circulating of datagrams if routing loops occur in the network

© 2016, D.I. Lindner / D.I. Haas

IP Technology, v6.3



**Version**: Version of the IP protocol. Current version is 4. Useful for testing or for migration to a new version, e.g. IPv6.

HLEN: Length of the header in 32 bit words. Header without options (HLEN 5 = 20 bytes).

**TOS**: Type of service -> covered by following slides.

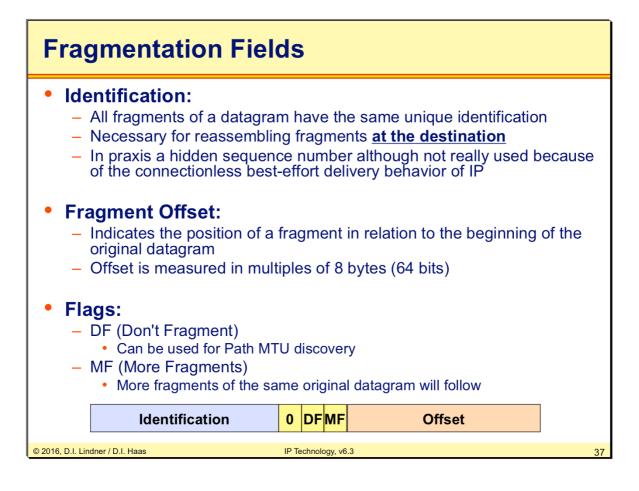
**Total Length**: The length of the datagram including header and data. If fragmented -> length of fragment. Maximum datagram size = 65535 octets.

Identification, Flags (3 bits) and Fragment Offset (13 bits) -> covered by following slides.

**TTL**: This field indicates the maximum lifetime the datagram is allowed to remain in the system/network. The datagram must be destroyed, if the field contains the value zero. Units are seconds, range 0-255. It is set by the source to a starting value. 32 to 64 are common values. Every router decrements the TTL by the processing/waiting time of a datagram is to be forwarded. If the time is less than one second, TTL is just decremented by one. Therefore nowadays TTL is just a hop count. If TTL reaches 0, the datagram or fragment is discarded. An end system use the remaining TTL value of the first arriving fragment to set the reassembly timer.

Attention: Because of decrementing TTL for each datagram a router has to recompute the header checksum too. That is one of the reasons while IP routing (L3 switching) is still slower than Ethernet switching (L2 switching).

**Protocol**: Describes what protocol is used in the next level e.g. 1 (ICMP), 6 (TCP), 8 (EGP), 17 (UDP), 89 (OSPF), etc... Over 100 different IP protocol types are registered so far.


**Header Checksum**: A Checksum for the header only -> modulo 2 sum of the individual bytes computed byte by byte.

Source IP Address: 32 bit IP address of the source (sender) of a datagram

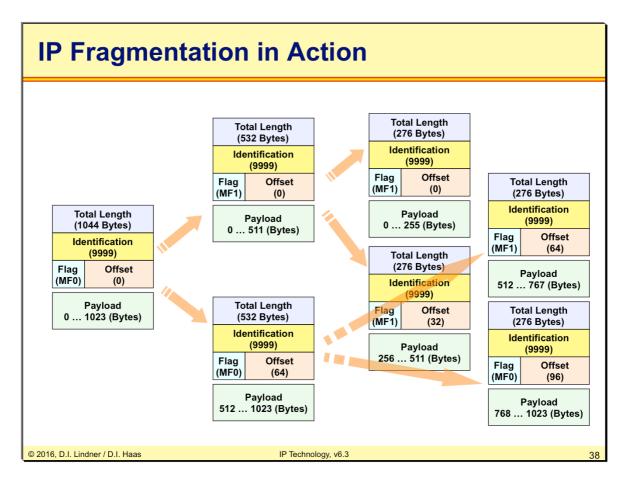
**Destination IP Address**: 32 bit IP address of the receiver (destination) of a datagram

Padding: "0"-bytes to fill the header to a 32 bit boundary in case of options.

**IP Options**: Options were used for timestamps, security and special routing aspects. Record Route option: Records the route of a packet through the network. Each router, which forwards the packet, enters its IP address into the provided space. Loose Source Route option: A datagram or fragment has to pass the routers in the sequence provided in the list. Other intermediate routers not listed may also be passed. Strict Source Route option: A datagram or fragment has to pass the routers in the sequence listed in the source route. No other router are allowed to pass. Today most IP Options are blocked by firewalls because of inherent security flaws e.g. source routing could divert an IP stream to a hackers network station.

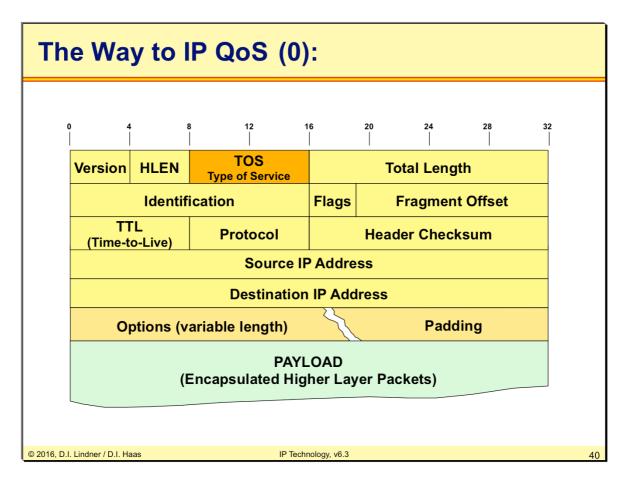


As already mentioned fragmentation is necessary, if a datagram has to pass a network with a smaller maximum frame size / MTU size than the current length of the given datagram.

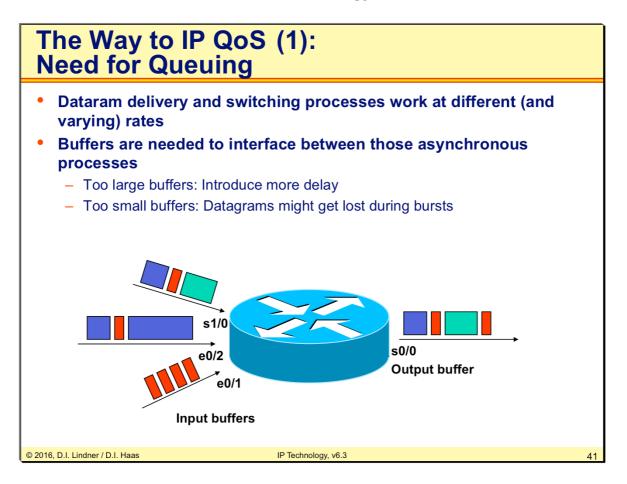

Some details for fragment offset: The first fragment and non-fragmented packets have an offset of 0. Fragments (except the last) must be a multiple of 8 bytes. Fragments with the same combination of source address / destination address / protocol / identification will be reassembled to the original datagram at the receiver.

#### Flags:

**DF** (Don't fragment): If set fragmentation is not allowed and the corresponding datagram has to be discarded by router if MTU (maximum transmission unit) size of next link is too small. This can be used for Path-MTU discovery where an IP host will probe which is the best datagram size without experiencing fragmentation in the network. Fragmentation has performance constraints: It is bad for the router performance because of the fragmentation process and also bad for the IP host performance because of reassembling. Because of this, packets are typically sent with the lowest MTU size that may occur somewhere in the network. An (older) RFC recommendation specifies 576 Bytes to be used as minimum MTU but in the age of Ethernet most people use 1500 Bytes to gain more efficiency. IP version 6 does not fragment anymore but uses Path MTU discovery instead.


MF (More fragment): If set more fragments will follow. The last fragment of a given datagram will have MF set to 0.

**Reassembling:** Is done at the destination, because fragments can take different paths. Buffer space has to be provided at the receiver. Some fragments of a datagram may not arrive because of the unreliable nature of IP. If a datagram can not be reconstructed because of missing fragments in order to free buffers a reassembly timer is used. The first arriving fragment of an IP datagram (with MF=1 or MF=0 with unequal 0) starts the timer. The TTL of this fragment is used a s timeout in seconds. If the timer expires before the datagram was reconstructed, all fragments stored in the buffer so far will be discarded.

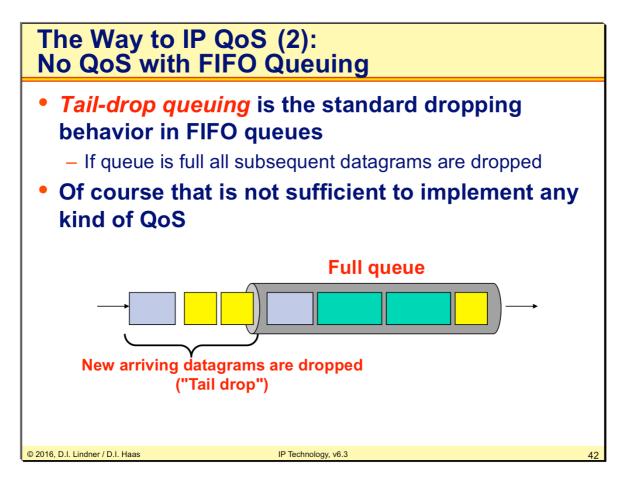



The example above shows how an IP packet (left) is fragmented into two smaller fragments (middle) by a router and further fragmented into a total number of four fragments by a another router (right).

| Agenda                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| <ul> <li>Introduction <ul> <li>Short History of the Internet (r</li> <li>Basic Principles</li> </ul> </li> <li>IP <ul> <li>IP Protocol</li> <li>IP QoS</li> <li>Addressing</li> <li>Classful versus Classless (not</li> </ul> </li> <li>IP Forwarding <ul> <li>Principles</li> <li>ARP</li> <li>ICMP</li> <li>PPP</li> </ul> </li> <li>First Hop Redundancy <ul> <li>Proxy ARP, IDRP</li> <li>HSRP</li> </ul> </li> </ul> |                   |
| - VRRP (not part of the exam!)                                                                                                                                                                                                                                                                                                                                                                                            | chnology, v6.3 39 |



The idea of a certain kind of QoS (Quality of Service) support in IP networks is very old. The TOS field in the IP header is the starting point of this long way to QoS. Unfortunately QoS support is restricted to regions of IP networks. The Internet today still gives no end-to-end QoS to the end systems.

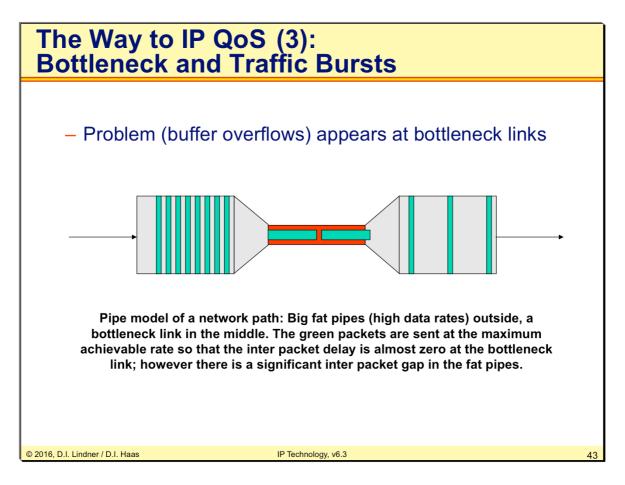



So what is the basic problem:

We need queuing in a packet switch to overcome different input and output rates.

It is a common misunderstanding to assume that queues are always filled at a certain percentage. If this would be the case then traffic bursts would occur too frequent and the probability of congestion is very high.

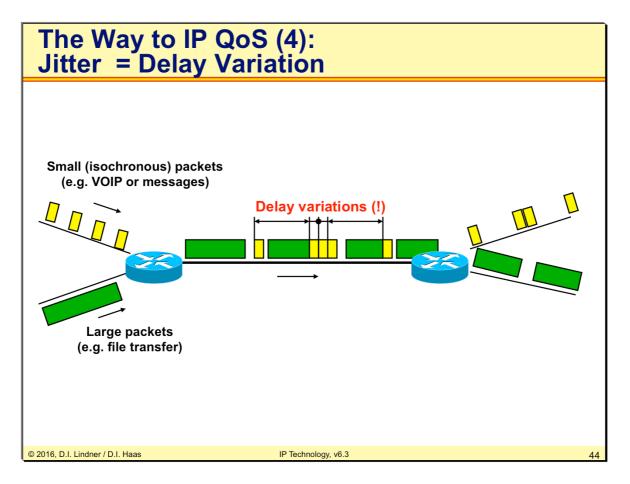
Note that queues should only smooth bursts! On average the traffic rate should be easily handled by the network devices (packet switches in general) without filling the queues considerably.




The easiest implementation is the famous FIFO "First In First Out" queueing.

FIFO queueing is the default behavior of all packet switching devices. Does a good job, if network is not saturated and is easy to be implemented.

Datenkommunikation 384.081


## L09 - IP Technology (v6.3)



That is just another picture to see what happens on a bottleneck. The arrival rate of packets at the receiving end is determined by the bottleneck.

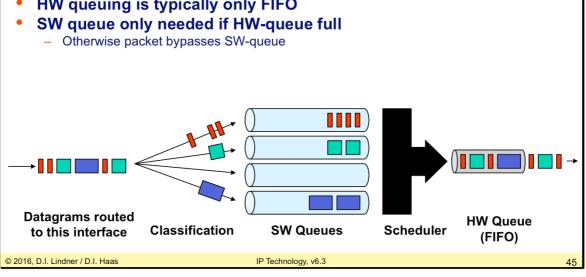
Datenkommunikation 384.081

## L09 - IP Technology (v6.3)



Delay in networks:

Serialization delay is the time which is necessary to put a block of bits on a serial line with a given bitrate.


Propagation delay is the time which is needed for a electrical signal to propagate along a given length of line / transmission path. The upper limit for velocity is of course the speed of light.

Switching delay additionally occurs in case of the presence of an active component in the transmission path.

If small packets can be forwarded without waiting for the link to be ready then delay variation will be small. If small packets cannot immediately be forwarded because link to be used is occupied by another ongoing transmission (especially if long packets are on the way) then delay variation will be large. Also you can see in the picture that isochronous traffic can lead to packet burst which happens if for a certain time a sequence of such small isochronous packets was buffered and then send out one packet after the other without any gap.

# The Way to IP QoS (5): QoS with SW Queues

- Queuing actually encompasses two parts: SW and HW queues!
- SW queuing is typically more sophisticated
  - WRR Weighted Round Robin)
  - CBWFQ (Class Based Weighted Fair Queuing)
  - Priority Queuing, LLQ (Low Latency Queuing)
  - These kind of techniques are an important part of any QoS implementation
- HW queuing is typically only FIFO



By giving different IP datagrams (red, green, blue) to different queues and by differentiated scheduling of datagrams among these queues for sending out on the outgoing interface, we can give more or less priority for the individual streams. So some of them will get a better service while other will receive a poorer service based on the importance of a stream.

Ethernet switches with QoS support are a little bit different. They often support advanced queuing techniques in hardware.

## The Way to IP QoS (6): QoS Basic Considerations

- No QoS is necessary in case of over-provisioning
   But can you economically justify it?
- Manages available bandwidth in case of congestion
   But cannot create additional bandwidth on the fly
- Ensures certain upper limits for transmission parameters
  - Bounded maximum delay, jitter and loss
  - Assured minimum throughput
- Needs more performance at the network components
  - Hardware (ASIC), CPU, memory at Ethernet switches, IP routers, firewalls, etc.

#### • Needs monitoring

- To understand what is going on in your network
- To recognize trends for deploying additional bandwidth in time

© 2016, D.I. Lindner / D.I. Haas

IP Technology, v6.3

Synchronous networks (also called "isochronous" networks) have no problem with quality of service: Each piece of data is transmitted in equal times and there are no "bursts" of data that would lead to sudden congestion. Real synchronous clocking of all network components means no need of any buffers.

The Internet on the other hand is an extremely inhomogeneous and asynchronous kind of network. It is a network of networks and the prevalent type of traffic is data traffic. Data traffic is bursty by nature.

What is meant by "Quality of Service" (QoS) actually? The total network bandwidth is shared by many users and applications. We demand for QoS in that some specific type of traffic should be handled "nicer" than others. When buffers in routers and switches are congested then delays and packet-drops occur. One solution is to over-provision the network, but this is expensive and the behavior is still unpredictable.

Thus QoS mechanisms are thought to manage the network resources in terms of bandwidth and queuing behavior, so delays can be limited.

IP QoS mechanisms ensure that the most important IP datagrams will get their sufficient traffic characteristic behavior (e.g. bounded maximum delay but still variable, bounded maximum jitter, zero loss or loss below certain percentage, assured minimum throughput) during times of congestions. Of course quality of service is determined by the weakest link between each two points of communications.

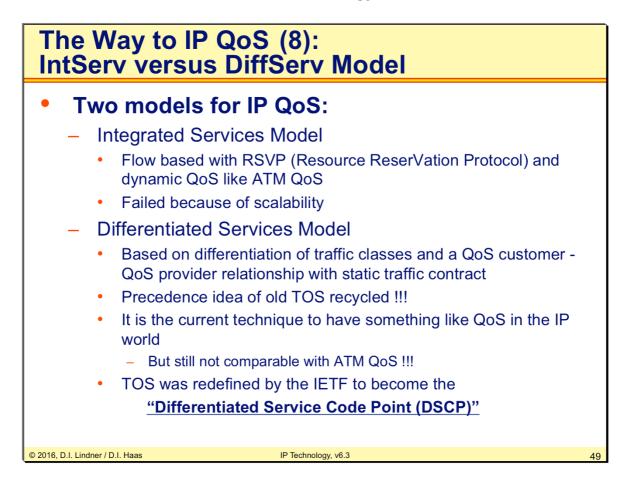
Important to know is that QoS cannot create additional bandwidth. You are still limited to the given physical bit-rate / bandwidth on the weakest network link between source and destination of traffic. QoS mechanisms can only manage the available bandwidth according to a QoS policy during time of congestion.

The negative side of these mechanisms is that less important traffic will suffer (= higher delay) or even will be killed (= loss because of no buffer resources are available). Hence it can be conducted that QoS can overcome only short-time temporary congestion but no long-time congestion. During long-time-congestion less important traffic will get into starvation so either this traffic has no real importance to the overall system or the bandwidth has to be increased anyway to keep such traffic flowing again.

QoS mechanisms need to be supported by the network components, hence such QoS enabled components need more performance (CPU) and in case of higher speed links hardware support (ASICS) especially for queuing. Software queuing may be sufficient up to 2-10 Mbps speed. Hardware queuing is a must for Fast Ethernet (100 Mbps) and higher.

QoS monitoring helps verifying the communication matrix and real behavior of distributed communication. It also allows base-lining and forecasts. Hence network performance can be increased by adding more bandwidth to the corresponding links in time in a proactive way.

Golden rule is to have more bandwidth as needed in the network (over-provisioning) and usage of the QoS system just to overcome temporary traffic bursts.

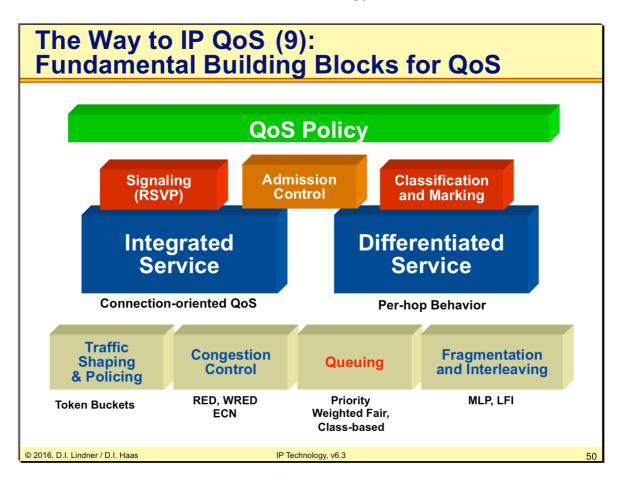

| The Way to Il<br>Original Idea                                                                                                   |                                                                                                                                                                           |    |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <ul> <li>Priority (preced<br/>queued up in th</li> </ul>                                                                         | RFC 791 and RFC 1349)<br>lence) of a datagram in relation to other datagrams                                                                                              |    |
| congestion<br>• Allow router to<br>QOS (Quality)<br>- <u>D, T, R and C Io</u><br>• low Delay, hi<br>• Can be used<br>corresponds | to queue datagrams in different output queues in case of<br>to schedule datagrams of different queues according to a<br>/ Of Service) policy (e.g. round robin, priority) |    |
| © 2016, D.I. Lindner / D.I. Haas                                                                                                 | IP Technology, v6.3                                                                                                                                                       | 47 |

Both things were not really useable in IP networks. Why? If people know that they will get better performance by setting these bits they will do it. Without any control between IP hosts and the IP network (who is allowed to set the bits and who not) a QOS policy can not be implemented in a network. So in the past a router set all bypassing user IP datagrams to precedence 0 and just use precedence 7 for prioritizing own or received routing messages . The idea having different routing tables according different network characteristics (e.g. differentiating between long-delay satellite links versus small delay terrastic links) in a router failed because there was no dynamic routing protocol supporting different routing tables in a router for a long period (OSPF was the first routing protocol to allow different metrics for different characteristics, but is was to late; the last version of OSPF removed that support!).

Datenkommunikation 384.081

# L09 - IP Technology (v6.3)

|          | he Way to IP QoS (7):<br>OS Field Meaning (RFC 791, 1349)                                                                                                                                                  |                                                                   |        |         |          |  |  |  |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------|---------|----------|--|--|--|--|--|
|          |                                                                                                                                                                                                            |                                                                   |        |         |          |  |  |  |  |  |
|          | Precedence                                                                                                                                                                                                 | D T                                                               | R      | С       | "0"      |  |  |  |  |  |
|          | Precedence (Priority):<br>111 Network Control<br>110 Internetwork Control<br>101 Critic/ECP<br>100 Flash Override                                                                                          | DTRC bits:<br>00000<br>1000D Delay<br>0100T Throu<br>0010R Relial | Ighput | min. de | roughput |  |  |  |  |  |
|          | 100 Frash Overnide0 0 For K Renabilitymax. renability011 Flash0 0 0 1 C Costmin. cost010 Immediate001 PriorityNo other values are defined but have to be000 Routineaccepted (ignored) by a router or host. |                                                                   |        |         |          |  |  |  |  |  |
| 16, D.I. | Lindner / D.I. Haas                                                                                                                                                                                        | IP Technology, v6.3                                               |        |         |          |  |  |  |  |  |




Remember IP is a best-effort service, therefore not suited for interactive real-time traffic like voice and video. ATM was designed for supporting QoS in the most perfect way. During the 1990s there was a battle between ATM and IP world. IP lost its simplicity by dealing now with QoS. Two flavours: Integrated services model and differentiated services model were borne by the IETF.

See RFC 2474: "Definition of the Differentiated Service Field in the IPv4 and IPv6 Headers" and RFC 2475: "An Architecture for Differentiated Services"

#### Datenkommunikation 384.081

#### L09 - IP Technology (v6.3)



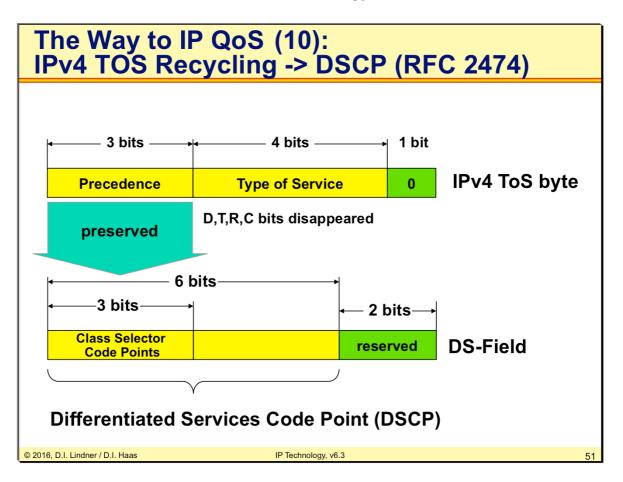
The diagram above shows the main building blocks of a QoS design. Let's discuss it from the bottom to the top:

The first layer represents important tools which are almost always present in a QoS architecture:

Traffic Shaping (smooth bursts), Congestion Control (avoid bottlenecks and denial of service) and Queuing are the most fundamental parts of QoS. RED (Random Early Discard) randomly drops segments before queue is full by utilizing TCP specific behavior of dynamically adjusting traffic throughput by reducing TCP window size. WRED (Weighted Random Early Discard) drops less important packets more aggressively than more important packets based on TOS/DSCP value. ECN (Early Congestion Notification) allows ECN capable routers to inform TCP sessions to reduce TCP window size before a packet drop occurs. MLP (Multilink PPP) and LFI (Link Fragment Interleaving) are techniques to provides load balancing functionality over multiple WAN links, while providing packet fragmentation and proper sequencing. MLP allows packets to be fragmented and the fragments to be sent at the same time over multiple point-to-point links to the same remote address. MLP reduces transmission latency across WAN links. LFI Interleaving on MLP allows large packets to be multilink encapsulated and fragmented into a small enough size to satisfy the delay requirements of real-time traffic. Small real-time packets are not multilink encapsulated and are sent between fragments of the large packets. The interleaving feature also provides a special transmit queue for the smaller, delay-sensitive packets, enabling them to be sent earlier than other flows.

The next layer represents two totally different QoS architecture principles: **Integrated Services** ("IntServ") and **Differentiated Services** ("DiffServ"). IntServ (RFC 1633) is a connection-oriented approach but seems not to be scalable for large networks. DiffServ (RFC 2475) is connectionless and more scalable but QoS is difficult to control. Both technologies adjust the queuing parameters.

We will concentrate on DiffServ principle for our discussion of IP QoS.


On the next layer, the diagram presents the instances that are used to implement QoS: IntServ uses a signaling protocol called **RSVP** (Resource ReSerVation Protocol, RFC 2205) and DiffServ uses a **Classification** and **Marking** engine in the packet switches (routers). **Admission Control** assign QoS to dedicated users (dynamic on demand by usage of signaling for IntServ and static in a provisioning phase for DiffServ).

Finally on the top layer the **QoS Policy** constitutes a fundament for the whole QoS concept. Here all desires and rules are specified.

IntServ model with RSVP is outside the scope of this lecture. We will concentrate on DiffServ model only during the next discussions. It is the favored technique of IETF for IP QoS.

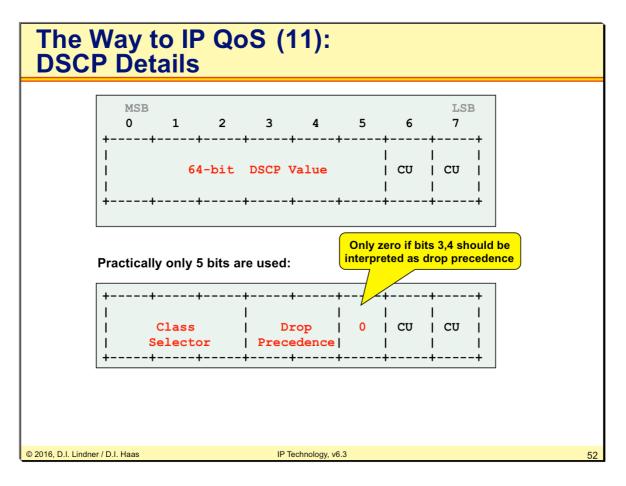
Datenkommunikation 384.081

## L09 - IP Technology (v6.3)



The IP header supports classification of service classes in the TOS (Type of Service, 8 bits.) or DSCP (Differentiated Services Code Point, 6 bits) field. Usage of original ToS (RFC 1430, 1349) was seldom implemented in the applications and only partly supported by routers. DSCP (RFC 2474) is the current way to implement DiffServ in the IP world by classifying IP datagrams to belong to a certain QoS class, which is handled by the routers according to the QoS policy.

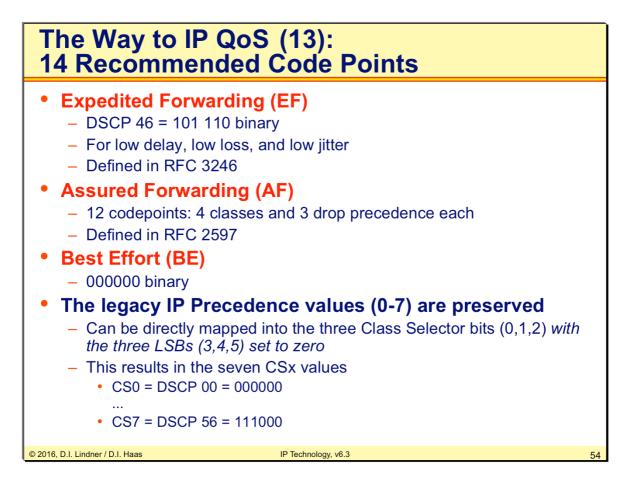
ToS (old meaning):


Tells the priority of a datagram (3 precedence bits) and the preferred network characteristics (4 bits, low delay D, high throughput T, high reliability R, low monetary cost B). Precedence bits define the handling of a datagram within the router e.g. priority within the input / output queues. D, T, R and C bits can be used to take a path decision for routing if multiple paths with different characteristics exist to the destination. That needs one routing table per characteristic which is not supported by current routing protocols anymore. TOS bits may be ignored by routers but may never lead to discarding a packet if the preferred service cannot be provided.

DSCP (current meaning for DiffServ):

Bits 0,1,2 – Class Selector: Again carries the 0-7 IP ToS precedence value. However there is a new definition of these values. See next slide.

Bits 3,4 – Drop Precedence: Carry the drop precedence which allows a further differentiation of traffic within the same class level. Note that this requires bit 5 to be zero.


Bits 6,7 – Currently Unused (or reserved for ECN...)



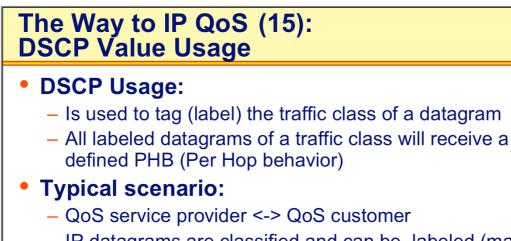
With 6 bits for DSCP we can now differentiate up to 64 traffic classes.

Datenkommunikation 384.081

L09 - IP Technology (v6.3)



Expedited Forwarding (EF): For low delay, low loss, and low jitter

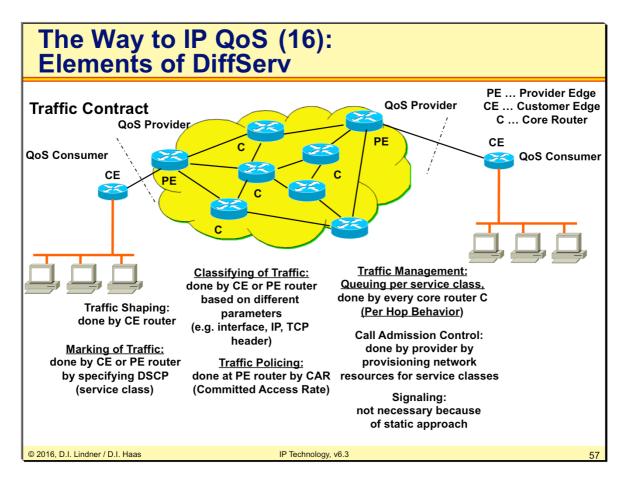

Assured Forwarding (AF): Guarantees a certain bandwidth to a traffic class.

Best Effort (BE): Default behavoir

The legacy ToS IP Precedence values (0-3) can be directly mapped into the three Class Selector bits in order to achieve backward compatibility.

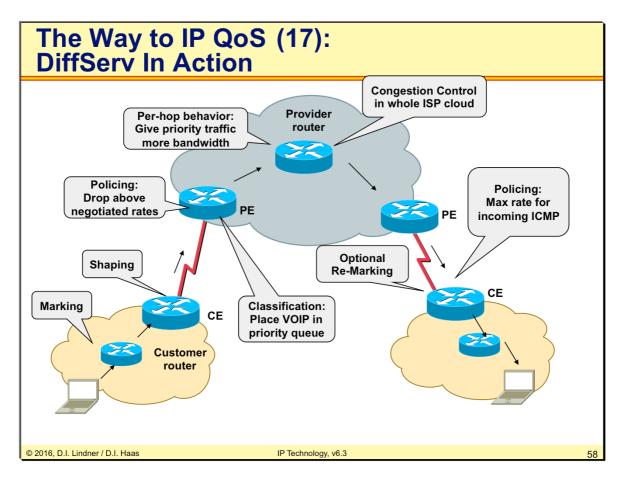
|                    | The Way to IP QoS (14):<br>Assured Forwarding (AF)                                                                                                                                                                                                                                                                                                                                                                   |       |             |      |      |        |      |     |        |      |       |        |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|------|------|--------|------|-----|--------|------|-------|--------|--|
|                    | <ul> <li>Guarantees a certain bandwidth to a traffic class <ul> <li>If the traffic exceeds the committed bandwidth the drop probability is raised according to the specified drop precedence</li> </ul> </li> <li>There are 12 different AF behavior code points <ul> <li>Consisting of 4 classes (AF1y to AF4y)</li> <li>And 3 drop probabilities (AFx1 to AFx3) for each class (low/med/hi)</li> </ul> </li> </ul> |       |             |      |      |        |      |     |        |      |       |        |  |
| Drop:              | C                                                                                                                                                                                                                                                                                                                                                                                                                    | Class | <b>5</b> 1  | C    | lass | s 2    | C    | las | s 3    | (    | Class | s 4    |  |
| Low                | AF11                                                                                                                                                                                                                                                                                                                                                                                                                 | 10    | 001010      | AF21 | 18   | 010010 | AF31 | 26  | 011010 | AF41 | 34    | 100010 |  |
| Medium             | AF12                                                                                                                                                                                                                                                                                                                                                                                                                 | 12    | 001100      | AF22 | 20   | 010100 | AF32 | 28  | 011100 | AF42 | 36    | 100100 |  |
| High               | AF13                                                                                                                                                                                                                                                                                                                                                                                                                 | 14    | 001110      | AF23 | 22   | 010110 | AF33 | 30  | 011110 | AF43 | 38    | 100110 |  |
|                    | c                                                                                                                                                                                                                                                                                                                                                                                                                    | lecim | al   binary |      |      |        |      |     |        |      |       |        |  |
| © 2016, D.I. Lindr | © 2016, D.I. Lindner / D.I. Haas IP Technology, v6.3 55                                                                                                                                                                                                                                                                                                                                                              |       |             |      |      |        |      |     |        |      |       | 55     |  |

AF has been defined in RFC 2597.

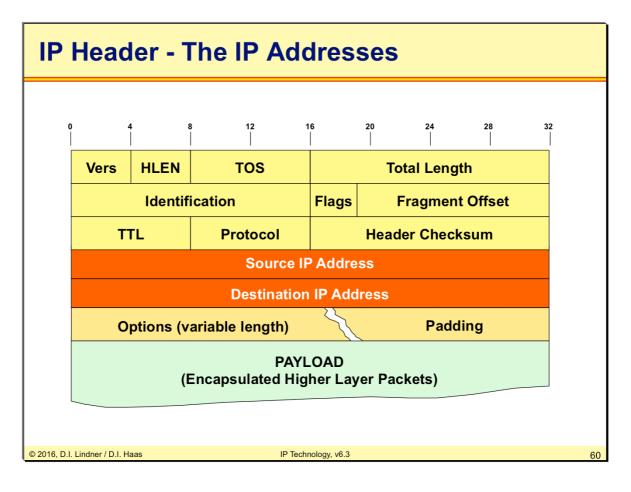


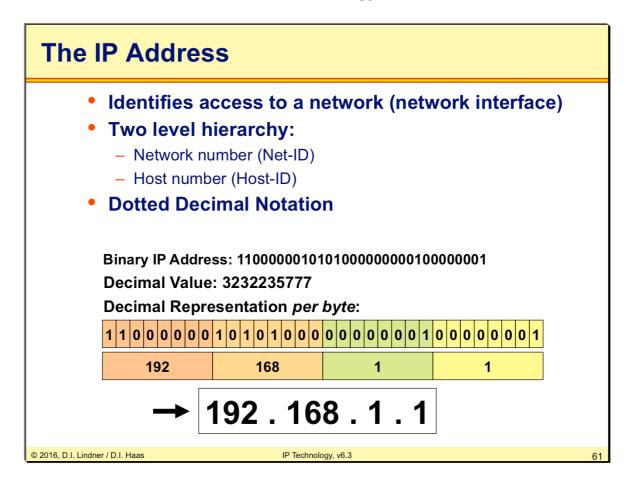

- IP datagrams are classified and can be labeled (marked) at the border of IP QoS domain
- Border has to perform traffic policing according to the static traffic contract
- Customer may shape traffic to obey the traffic contract
- Traffic class will receive their PHP handling within in IP QoS Domain
  - e.g. Limited delay, Guaranteed throughput

© 2016, D.I. Lindner / D.I. Haas


IP Technology, v6.3

56





QoS mechanism are traffic marking (TM, assigning an IP packet to a QoS service class), traffic classification (TC, assigning traffic into different queues of a router/switch), traffic policing (TP, controlling amount of traffic of a given service class and acting on violation of traffic contract for this service class), traffic shaping (TS, reforming traffic characteristics regarding burstiness and average throughput to fulfill a given traffic contract) and finally queuing strategy applied to queues maintained by a router (PHP, Per-Hop-Behavior). Typical queuing strategies are WFQ (Weighted Fair Queuing), PQ (Priority Queuing), FIFO (FirstInFirstOut Queuing), WRR (Weighted Round Robin), CBWFQ (Class Based WFQ) and LLQ (Low Latency Queuing - combination of PQ and CBWFQ).

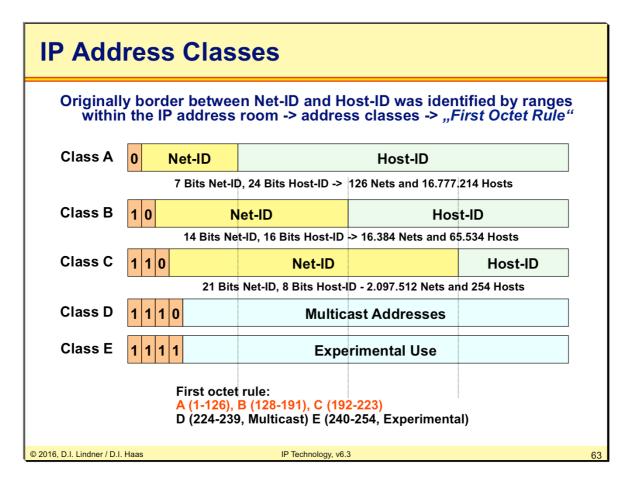
Recommendation: Analyze the tradeoff between QoS management compared to overprovisioning in your solution. Think about if it is really worth to invest in technology and operational people instead of taking the more expensive wire. Especially testing is a challenge, because QoS comes only into action if there is congestion in the network. Producing of huge traffic may be a problem in a simple test-lab for verification of overall functionality and performance. Fixing it in the operational network might be not possible. A sound network monitoring is necessary in all cases.



| Agenda                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <ul> <li>Introduction <ul> <li>Short History of the Internet (not part o</li> <li>Basic Principles</li> </ul> </li> <li>IP <ul> <li>IP Protocol</li> <li>IP QoS</li> <li>Addressing</li> <li>Classful versus Classless (not part of</li> </ul> </li> <li>IP Forwarding <ul> <li>Principles</li> <li>ARP</li> <li>ICMP</li> <li>PPP</li> </ul> </li> <li>First Hop Redundancy <ul> <li>Proxy ARP, IDRP</li> </ul> </li> </ul> | ·  |
| <ul> <li>HSRP</li> <li>VRRP (not part of the exam!)</li> </ul>                                                                                                                                                                                                                                                                                                                                                               |    |
| © 2016, D.I. Lindner / D.I. Haas IP Technology, v6.3                                                                                                                                                                                                                                                                                                                                                                         | 59 |






The IP Address is a 32 bit value in the IP header. The address identifies the access to a network. Always keep in mind that IP addresses are basically simple numbers only. There is no natural structure in it.

It is widely common to write down an IP address in the so-called "dotted decimal notation", where each byte is represented by a decimal number (0-255) and those numbers are separated by dots.

In order to make an address routable we need topological information on it. Therefore, the address is split into two parts: the network number (or "Net-ID") and the host number (or "Host-ID"). The Net-ID must be unique for each IP network connected to the Internet and is maintained by RIPE ("Internet Registry") in Europe. The Host-ID can be arbitrarily assigned by each local network manager.

You can compare the structure of an IP address with the following picture: The Net-ID is like the street name and the Host-ID is like the house number of a building connected to this street. The Net-ID contains the topology information in the network map and must be unique. The Host-ID has only local meaning. So the same Host-ID can be used on different streets.

| Binary versus Decimal Notation |                                                       |                       |                       |                       |                       |                       |                       |                       |     |  |  |
|--------------------------------|-------------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----|--|--|
|                                | <b>2</b> <sup>7</sup>                                 | <b>2</b> <sup>6</sup> | <b>2</b> <sup>5</sup> | <b>2</b> <sup>4</sup> | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> |     |  |  |
|                                | 1                                                     | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     | 128 |  |  |
|                                | 0                                                     | 1                     | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     | 64  |  |  |
|                                | 0                                                     | 0                     | 1                     | 0                     | 0                     | 0                     | 0                     | 0                     | 32  |  |  |
|                                | 0                                                     | 0                     | 0                     | 1                     | 0                     | 0                     | 0                     | 0                     | 16  |  |  |
|                                | 0                                                     | 0                     | 0                     | 0                     | 1                     | 0                     | 0                     | 0                     | 8   |  |  |
|                                | 0                                                     | 0                     | 0                     | 0                     | 0                     | 1                     | 0                     | 0                     | 4   |  |  |
|                                | 0                                                     | 0                     | 0                     | 0                     | 0                     | 0                     | 1                     | 0                     | 2   |  |  |
|                                | 0                                                     | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     | 1                     | 1   |  |  |
|                                | 1                                                     | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 255 |  |  |
| © 2016, D.I. Lindner / D.I. H  | 2016, D.I. Lindner / D.I. Haas IP Technology, v6.3 62 |                       |                       |                       |                       |                       |                       |                       |     |  |  |



The first part of the address identifies the network (NET-ID) on which the host resides, the second part identifies the host (Host-ID) on the given network.

In the beginning of the Internet, five address classes had been defined in order to identity the border between Net-ID and host-ID and a fixed way. The idea of classes helps a router to decide how many bits of a given IP address identify a network number and how many bits are therefore available for host numbering.

Classes A, B, and C had been created to provide different network addresses ranges. Additionally Class D is the range of IP multicast addresses, that is they have no topological structure. Finally, class E had been reserved for research experiments and are not used in the Internet.

The usage of classes has a long tradition in the Internet and was a main reason for IP address depletion which first was overcome by classless routing and NAT and finally by IPv6.

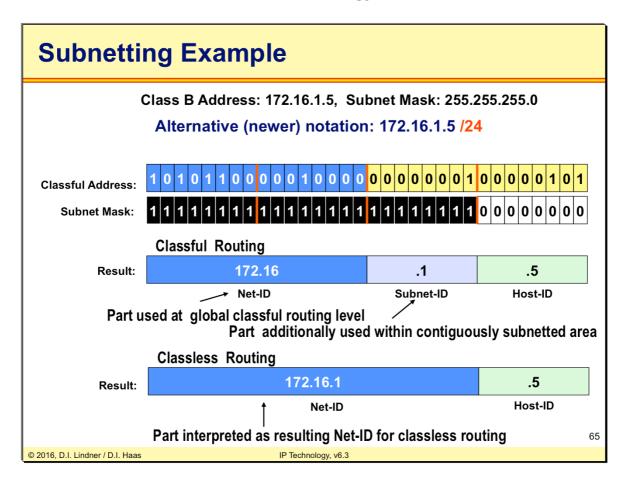
The first byte (or "octet") of an IP address identifies the class. For example the address 205.176.253.5 is a class C address.

The **"classful"** method of identifying network-IDs based on the given IP address class is inflexible and lead to address space depletion. Class C networks are too small for most organizations but class A and B are too large. A waste of the IP address space happened by giving class B or class A address space to customers which do not need the entire space. LANs were getting bigger and bigger and a logical separation of an organizations network (e. g. of a class A network number) would be a great help. Even a class A address would not help in that case because with a single class A Net-ID only one physical flat network can be addressed (even if 16.777.214 hosts are possible on this flat network. Another problem which was introduced by classful addressing was exponential growing of the Internet routing tables by giving multiple class C addresses to customers in order to support their addressing needs.



# Border between Net-ID and Host-ID of an IP address is identified

- by Subnetmask
- Subnetmask
  - is either written in IP address style e.g. 255.255.0.0
  - or given by prefix / length notation e.g. 10.3.0.0 / 16


## Classless Routing

- No interpretation of old IP address classes A, B, C
- Modern IP routing protocols can carry subnetmask
  - · hence no classless routing limitations anymore
- VLSM (Variable Length Subnet Mask)
- Address room can be managed in the most flexible way

© 2016, D.I. Lindner / D.I. Haas

IP Technology, v6.3

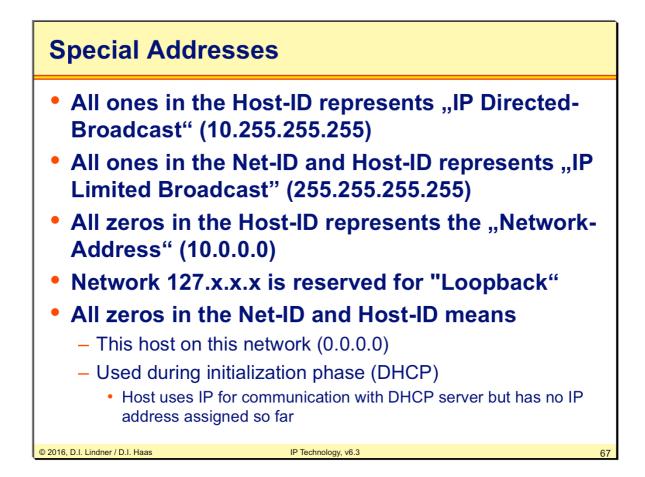
In 1985, RFC 950 defined a standard procedure to support **subnetting** of a single Class A, B or C network number into smaller pieces. Now organizations can deploy additional subnets without needing to obtain a new network number from the Internet. Instead of the classful two-level hierarchy, subnetting provides a **three-level** hierarchy. The idea of subnetting is, to divide the standard host-number field into two parts, the subnet-number and the host-number on *that subnet*. The subnet structure of a network is never visible outside of a the organizations private network. The route from the Internet to any subnet of a given IP address is the same, no matter which subnet the destination host is on. This is because all subnets of a given network number use the same network-prefix but different subnet numbers.



Number of bits to be used for Net-ID and Subnet-ID are specified by subnet mask (also written in dotted decimal notation):

Ones portion represents network part.

Zeros portion represent the host part.


Note: A subnet mask must always consist of a contiguous series of "1". For example, these are not valid subnet masks: 254.255.0.0, 255.127.255.0, 255.255.255.195

There are two notations:

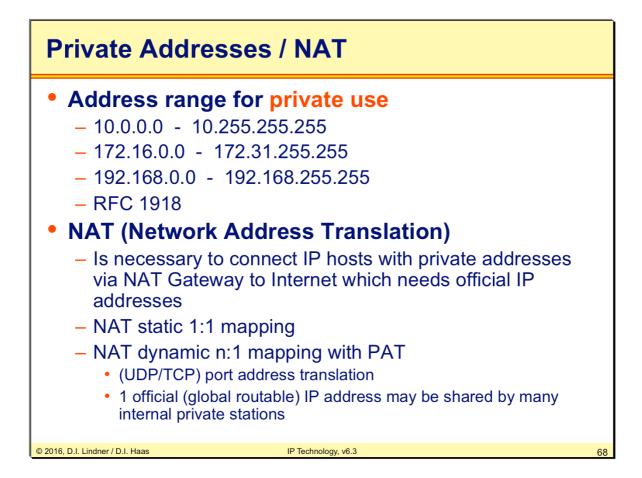
The old but still commonly used notation is to write the subnet mask like an IP address. Examples: 255.255.0.0, 255.255.0, 255.255.192.0.

The new notation is much simpler and identifies the subnet mask by a simple number, that is the number of "1"-bits. Examples: /16, /24, or /18. Thus a network can be specified as 172.16.128.0/18 or shorter as 172.16.128/18 (prefix notation).

| Possible Subnet Mask Values   |                                                         |                       |                       |                       |                       |                       |                       |                       |     |  |  |
|-------------------------------|---------------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----|--|--|
|                               | <b>2</b> <sup>7</sup>                                   | <b>2</b> <sup>6</sup> | <b>2</b> <sup>5</sup> | <b>2</b> <sup>4</sup> | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> |     |  |  |
|                               | 1                                                       | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     | 128 |  |  |
|                               | 1                                                       | 1                     | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     | 192 |  |  |
|                               | 1                                                       | 1                     | 1                     | 0                     | 0                     | 0                     | 0                     | 0                     | 224 |  |  |
|                               | 1                                                       | 1                     | 1                     | 1                     | 0                     | 0                     | 0                     | 0                     | 240 |  |  |
|                               | 1                                                       | 1                     | 1                     | 1                     | 1                     | 0                     | 0                     | 0                     | 248 |  |  |
|                               | 1                                                       | 1                     | 1                     | 1                     | 1                     | 1                     | 0                     | 0                     | 252 |  |  |
|                               | 1                                                       | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 0                     | 254 |  |  |
|                               | 1                                                       | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 255 |  |  |
| © 2016, D.I. Lindner / D.I. F | © 2016, D.I. Lindner / D.I. Haas IP Technology, v6.3 66 |                       |                       |                       |                       |                       |                       |                       |     |  |  |

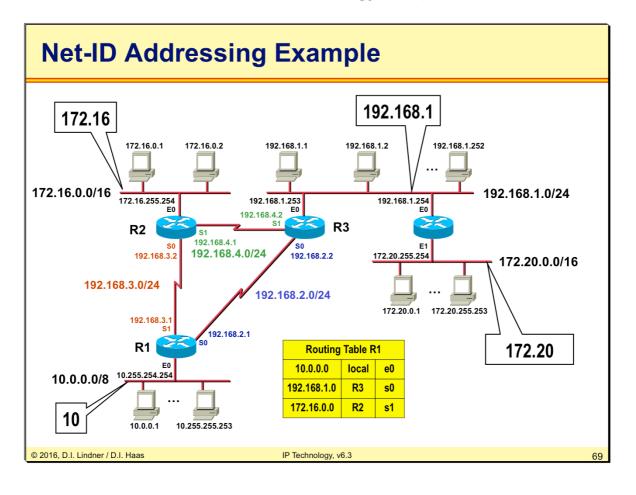


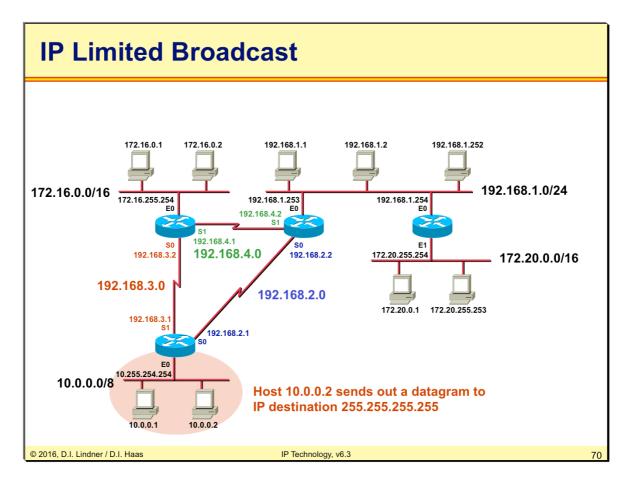
A network broadcast is used to send a broadcast packet to a dedicated network. The IETF strongly discourages the use of IP directed broadcast and it is not defined for IPv6.


If a destination IP address consists of "all 1", which can be represented by decimal numbers as "255.255.255.255", then this is recognized as "local" or "limited" broadcast. A limited broadcast is never forwarded by routers, otherwise the whole Internet would be congested by "broadcast storms". Note that broadcast addresses must not be used for source addresses.

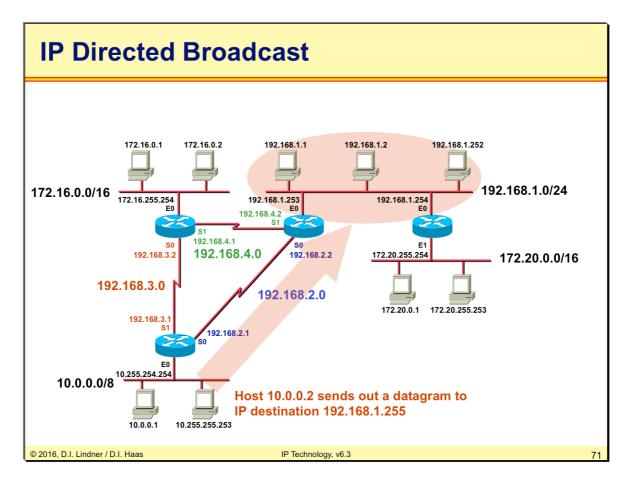
A network is described using the "network address", which is simply its IP address with host part set to zero. Network addresses are used in routing entries and routing protocols, since a router only deals with networks and doesn't care for host addresses.

Each operating system provides a virtual IP interface, called the loopback interface. Per default the IP addresses 127.x.x.x are reserved for this reason. Initially, the idea came from the UNIX world as IP is only one of several means to achieve inter-process communication upon a UNIX workstation. Other methods are named/unnamed pipes, shared memories, or message queues for example.


When using IP for inter-process-communication, the involved client/server processes can be distributed upon different servers across a network—without any modification of the source codes!


By default, a modern operating system assigns the IP address 127.0.0.1 to the local loopback interface.

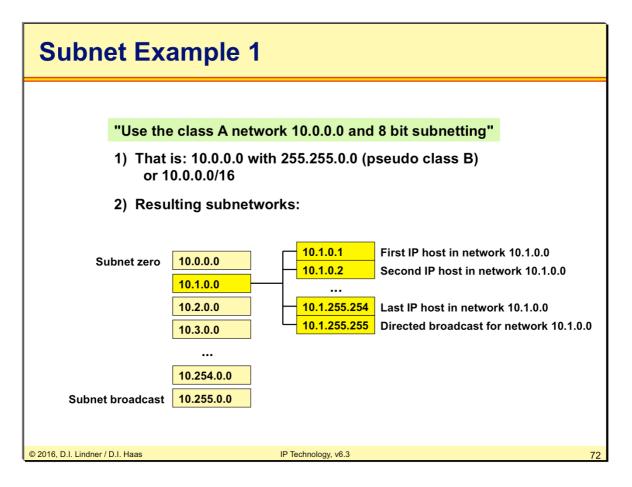



So-called RFC 1918 addresses are class A, B, and C address blocks which can be used for internal purposes. Such addresses must not be used in the Internet. All gateways connected to the Internet should filter packets that contain these private addresses. Furthermore these addresses must not be used in Internet routing updates.

Because of those rigid filter policies, it is relatively safe to utilize RFC 1918 addresses in local networks—everybody in the Internet knows which addresses must be filtered.





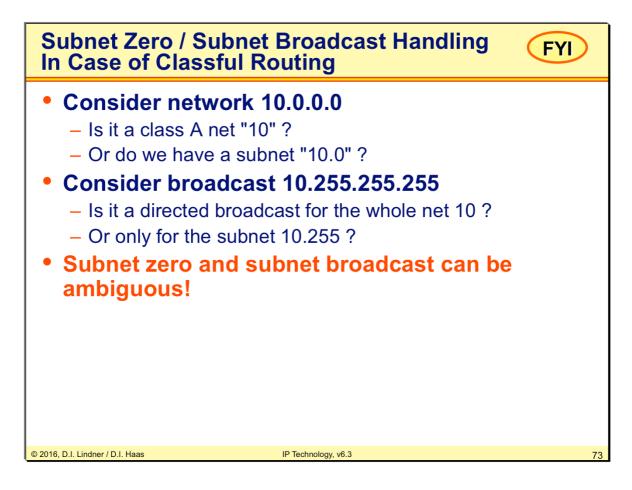

The example above shows a "limited broadcast" (all ones in net-part and host-part). Only the hosts in Net 10 receive this datagram.



In this example a datagram to the Network 192.168.1.0 is sent but the host-ID is set to "allones". As routers do not care about the host IDs, this datagram is forwarded according its destination network number, and only the last router is responsible for direct delivery.

When the last router examines the (destination-) host-ID of the datagram, it notices that this is a broadcast address and transforms the whole address into a limited broadcast address (255.255.255.255). Finally the router can send this datagram into the local network without issuing an ARP request.

Note that directed broadcasts are not recommended anymore as they can be abused for denial-of-service (DoS) attacks. Typically, directed broadcasts are filtered by the firewall. IPv6 does not provide broadcasts at all!

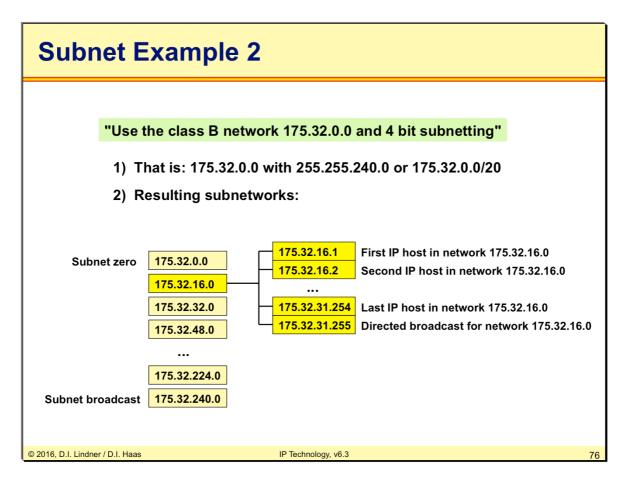



The example above shows how to subnet a class A network—in our case network 10. Here we use a 16-bit subnet mask allowing us to define  $2^8 - 2$  subnets, because the natural subnet mask of a class A network is 8 bits in length.

The diagram above shows the total range of subnetworks including the "forbidden" ones, that is subnet zero and the subnet broadcast. Explanation about that in the following FYI slide.

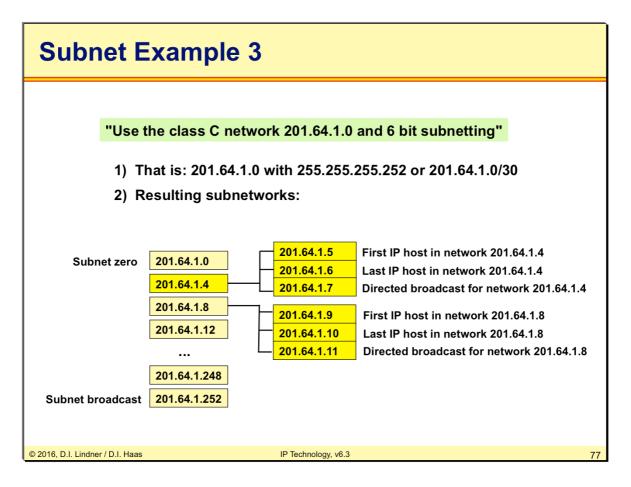
In case of classful routing -> do not use subnet zero and subnet broadcast for IP addressing. These address ranges are wasted.

In case of classless routing you can use subnet zero and subnet broadcast for IP addressing without any restrictions.



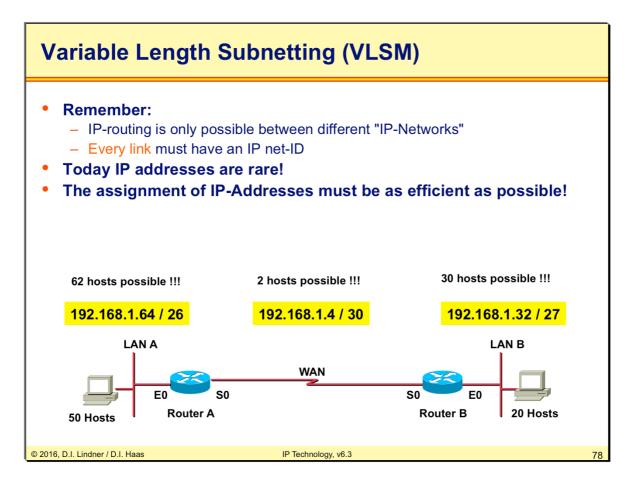

The older routing protocols, such as RIPv1 or IGRP, specifies routes in routing updates as a single 32-bit address with no information about subnet mask. The class of an address defines what is NET-ID and Host-ID. A simple convention was then followed. If the host field contained all 0 bits, then the address was a network route that matched every address within that classful network, the equivalent of a /8, /16, or /24 prefix, depending on the address class. Any 1 bits in the host field caused it to be interpreted as a host route, matching only the exact address specified, the equivalent of /32 prefix. This is why the all-zeros address is reserved - it was used by the routing protocols to match the entire classful network.

With the advent of subnetting this schema was undermined, but the designers of subnetting decided against any changes to the format of the routing protocols. This meant that there was still only a single 32-bit address to work with, though its interpretation became much more complex. Addresses in foreign networks (classful networks not directly attached to the router processing the information) were interpreted as before. Addresses in local networks were processed using the subnet mask programmed into the router. The address was first split into its three fields. If both subnet and host fields were all 0s, it was a network route, as before. An address with 1 bits in the subnet field, but all 0 bits in the host field was a subnet route, matching all addresses within that subnet. Finally, addresses with 1 bits in the host field were interpreted as host routes, as before. This lead to more reserved addresses - both the all-0s subnet and the all-0s host in each subnet were reserved.


| Subnet Mask -> Exam 1                               |             |             |    |  |
|-----------------------------------------------------|-------------|-------------|----|--|
| Class A address                                     |             |             |    |  |
| Subnet mask                                         | 255.255.0.0 | )           |    |  |
| IP- Address                                         | 10.3.49.45  |             |    |  |
| ? Net-ID, ? Host-ID                                 |             |             |    |  |
|                                                     | Net-ID =    | 10.3.0.0    |    |  |
|                                                     | Host-ID =   | 0.0.49.45   |    |  |
| 65534 IP hosts                                      |             |             |    |  |
| range: 10.3.0.1 -> 10.3.255.254                     |             |             |    |  |
| 10.3.0.0 -> network itself                          |             |             |    |  |
| 10.3.255.255 -> directed broadcast for this network |             |             |    |  |
| © 2016, D.I. Lindner / D.I. Haas                    | IP Techn    | ology, v6.3 | 74 |  |

| Subnet Mask -> Exam 2            |                                           |    |  |  |
|----------------------------------|-------------------------------------------|----|--|--|
| Class B add                      | ress                                      |    |  |  |
| Subnet mask                      | 255.255.255.192                           |    |  |  |
| IP- Address                      | 172.16.3.144                              |    |  |  |
| ? Net-ID, ? Ho                   | ost-ID                                    |    |  |  |
| address binary                   | 10101110 . 00010000 . 00000011 . 10010000 |    |  |  |
| mask (binary)                    | 11111111 . 11111111 . 11111111. 11000000  |    |  |  |
| logical AND (bit by              | bit)                                      |    |  |  |
| net-id                           | 10101100 . 00010000 . 00000011 . 10000000 |    |  |  |
| Net<br>Hos                       | st-ID = 0.0.0.16                          |    |  |  |
| © 2016, D.I. Lindner / D.I. Haas | IP Technology, v6.3                       | 75 |  |  |




In case of classful routing -> do not use subnet zero and subnet broadcast for IP addressing. These address ranges are wasted.

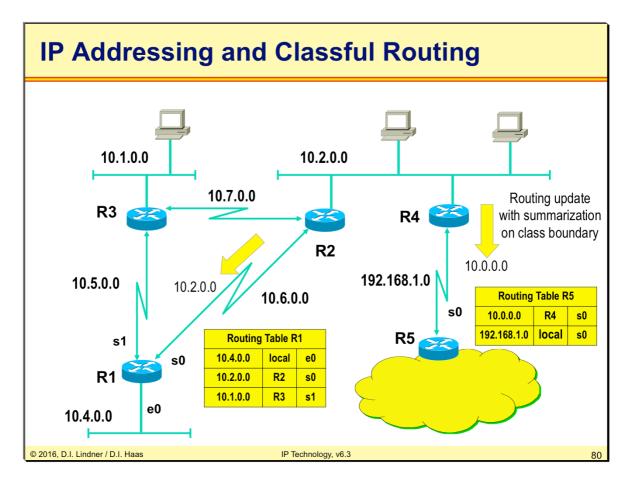
In case of classless routing you can use subnet zero and subnet broadcast for IP addressing without any restrictions.



In case of classful routing -> do not use subnet zero and subnet broadcast for IP addressing. These address ranges are wasted.

In case of classless routing you can use subnet zero and subnet broadcast for IP addressing without any restrictions.




With earlier limitation, an organization is locked into a fixed number of fixed subnets. That is called classful routing. VLSM supports more efficient use of an organization's IP address space. VLSM was created in 1987. RFC 1009 defined how a subnetted network could use more than one subnet mask.

A short address design history:

| 1980 | Classful Addressing (RFC 791)                         |  |
|------|-------------------------------------------------------|--|
| 1985 | Subnetting (RFC 950)                                  |  |
| 1987 | VLSM (RFC 1009)                                       |  |
| 1993 | CIDR (Classless Interdomain Routing, RFC 1517 – 1520) |  |

If you have to understand IP addressing issues from the scratch please study the next chapter about "Classful versus Classless" issues. This chapter is not part of the exam !!!

| Agenda                                                                                                                                                                                                                                                                                                                                                                                      |                     |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|
| <ul> <li>Introduction         <ul> <li>Short History of the Internet (</li> <li>Basic Principles</li> </ul> </li> <li>IP         <ul> <li>IP Protocol</li> <li>IP QoS</li> <li>Addressing</li> <li>Classful versus Classless (n</li> </ul> </li> <li>IP Forwarding         <ul> <li>Principles</li> <li>ARP</li> <li>ICMP</li> <li>PPP</li> </ul> </li> <li>First Hop Redundancy</li> </ul> |                     |  |  |  |
| <ul> <li>Proxy ARP, IDRP</li> <li>HSRP</li> <li>VRRP (not part of the exam!)</li> </ul>                                                                                                                                                                                                                                                                                                     | )                   |  |  |  |
| © 2016, D.I. Lindner / D.I. Haas IP T                                                                                                                                                                                                                                                                                                                                                       | Technology, v6.3 79 |  |  |  |



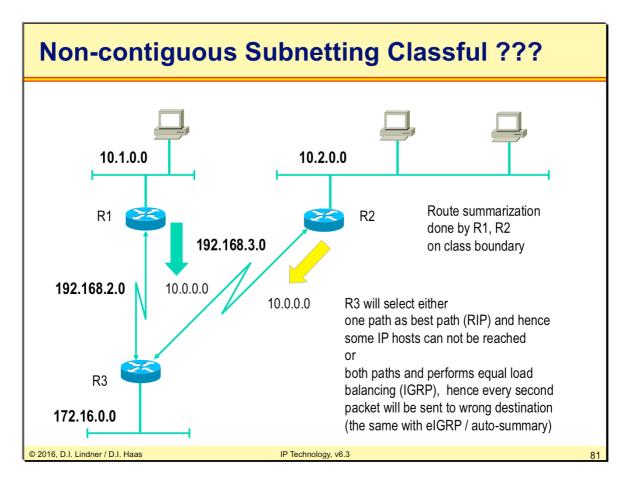
Routing protocols like RIPv2, IGRP can not carry subnetmask information in routing updates. This has several consequences.

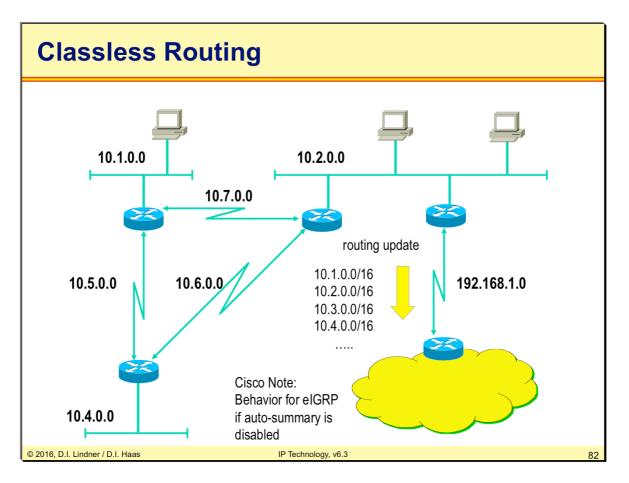
1. If a given class A, B or C address is subnetted the subnetmask must be constant in the whole subnetted area (no variable length subnet mask (VLSM) can be used).

2. If a routing update is sent to an interface with an network number different to the subnetted network only the major class A, B or C network number will be announced. So called route summarization will be performed on class boundaries hence a subnetted area must be contiguous.

This behavior is called classful routing.

The routing table lookup in classful networks is done is such a way (assumption: an IP datagram with a given IP address is received by a classful router):


1. IP address is interpreted as class A, B or C and the major net is determined


2. Next the lookup for the major net in the routing table is performed. If there is no entry the IP datagram will be discarded.

3. If there is a match the IP address is compared to every known subnet of this major network. If there is no such subnet the IP datagram will be discarded.

Hence a problem may arise with default routing: If the major network is known by the router, but the subnet does not exist, the IP datagram will be discarded even if a default route exists. Therefore subnetted area must be contiguous -> all subnets of a given major net must be reachable using only paths (networks) with these subnet-IDs.

Remark: Cisco's configuration command *ip classless* will change such an behavior in case of default routing to the behavior of classless routing even if classful routing is used.



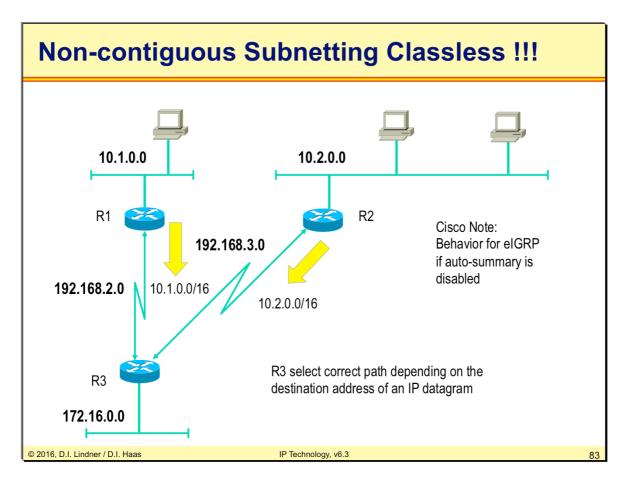


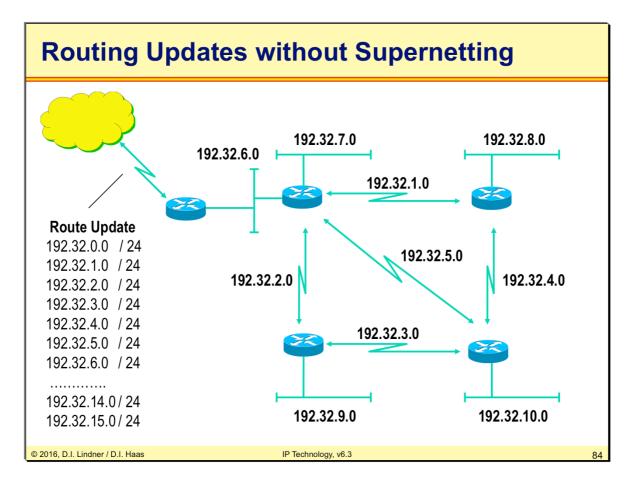
Routing protocols like RIPv2, OSPF, eIGRP can carry subnet mask information in routing updates. This has several advantages:

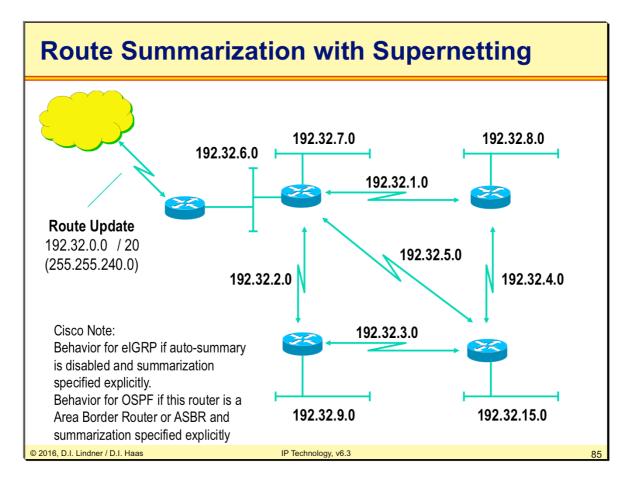
1. Variable length subnet mask (VLSM) can be used and subnetting of a given address can be done according to the number of hosts required on a certain subnet. More efficient use of address space.

2. Route summarization can be performed on any address boundary and not only on class boundaries. A routing update contains prefix (relevant part of IP address) and length (number of ones used in subnetmask) and allows supernetting (actual subnetmask is smaller than natural subnetmask of given class).

This behavior is called classless routing.

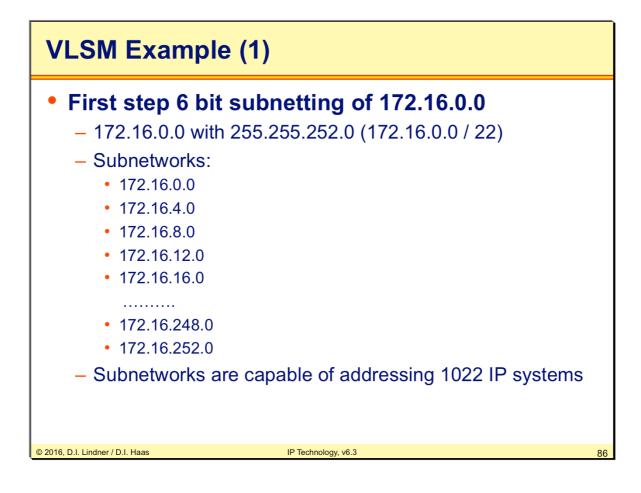

The routing table lookup in classless networks is done is such a way (assumption: an IP datagram with a given IP address is received by a classless router):

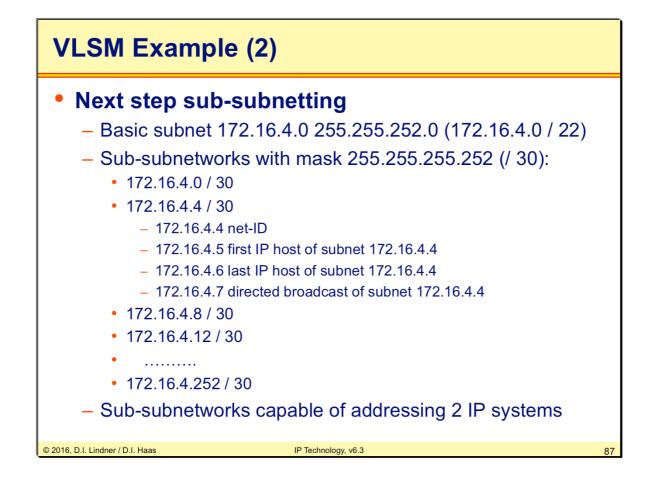

1. IP address is not interpreted as class A, B or C

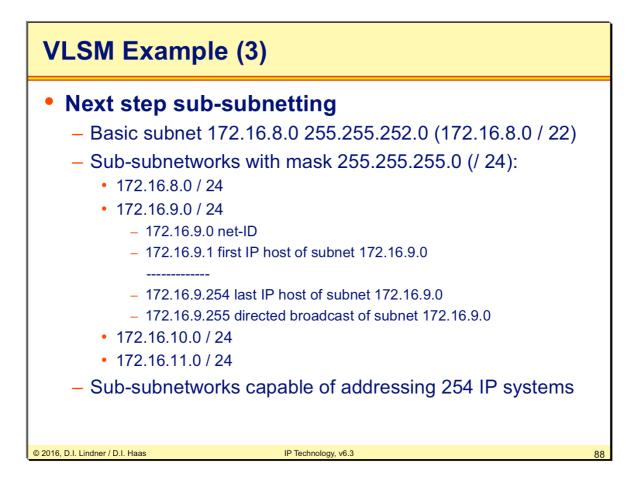

2. A lookup in the routing table for the best match for this IP address is performed. IP prefixes of the routing table are compared with the given IP address bit by bit from left to right.

3. IP datagram is passed on to the network which matches best -> "Longest Match Routing Rule"

Result: IP addresses with any kind of subnetting can independently be used from the underlying network topology without any constrains concerning non-contiguous of subnetted area.

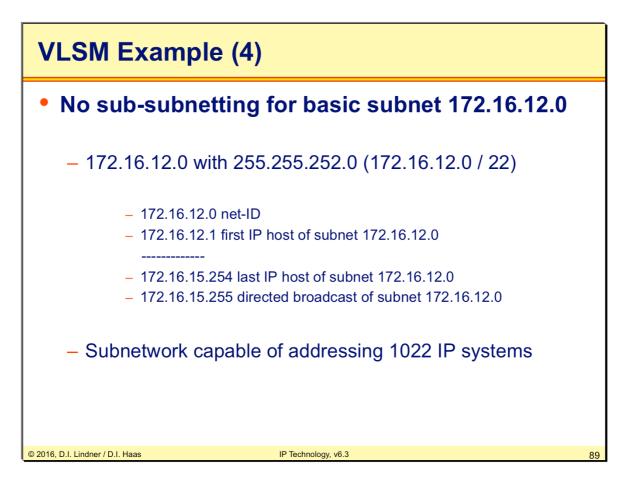


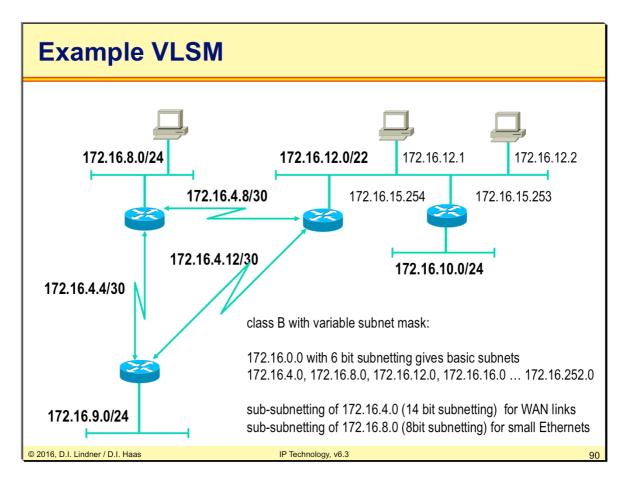



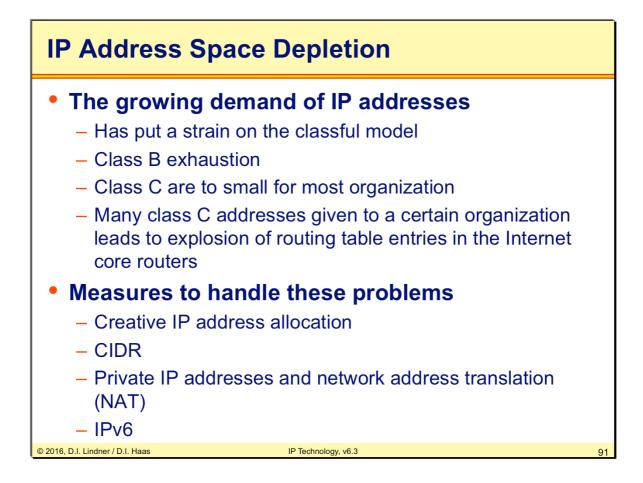




Datenkommunikation 384.081

L09 - IP Technology (v6.3)




Datenkommunikation 384.081

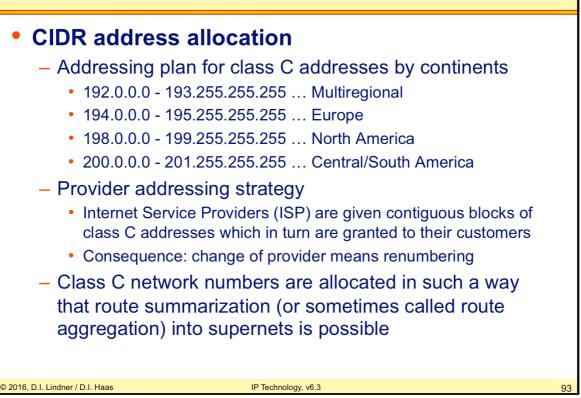
L09 - IP Technology (v6.3)







# CIDR


# Classless Interdomain Routing (CIDR)

- Address assignment and aggregation (route summarization) strategy
- Temporary solution to overcome depletion of IP address space and explosion of routing tables in the Internet core routers
- Basic ideas
  - Classless routing (prefix, length)
  - Supernetting
  - Coordinated address allocation
    - until 1992 IP addresses had no relation at all to the networks topology

© 2016, D.I. Lindner / D.I. Haas

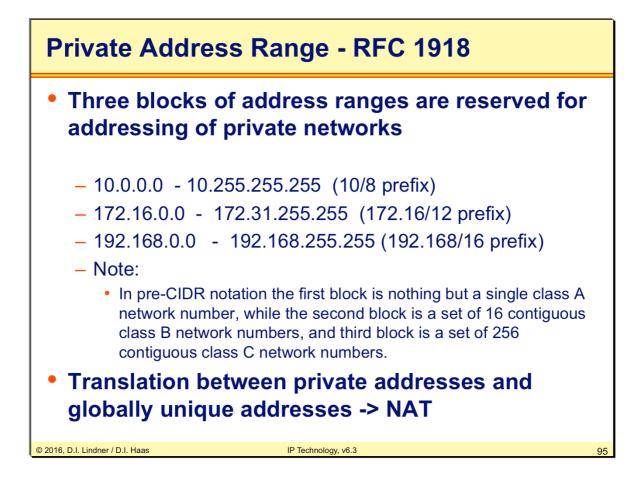
IP Technology, v6.3

# CIDR

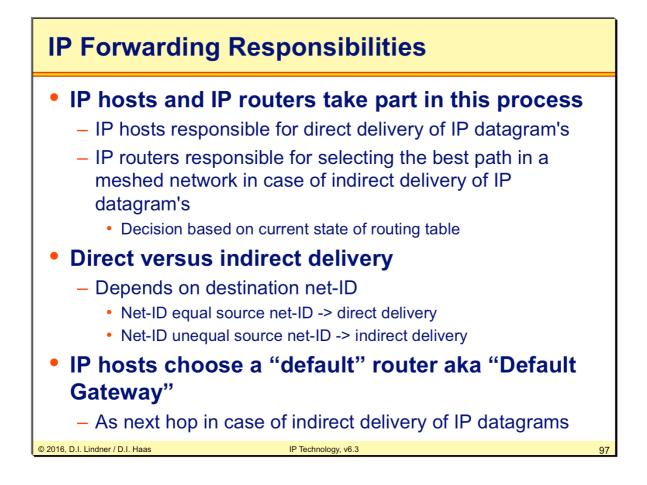


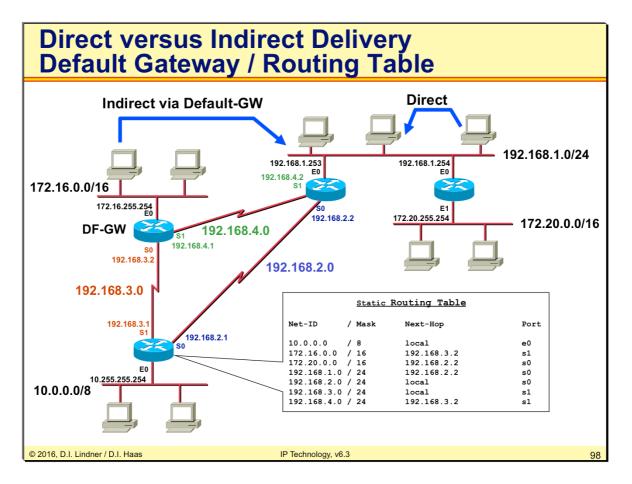
# CIDR

# Definitions of terms often used interchangeably


- CIDR block
  - is the <prefix, length> notation
- Supernets
  - have a prefix length shorter than the networks natural mask
- Aggregates
  - indicate any summary route

# In order to implement CIDR


- Classless routing protocols between routing domains must be used
  - BGP-4 as interdomain routing protocol
- Classless routing within a routing domain
  - RIPv2, OSPF, elGRP


© 2016, D.I. Lindner / D.I. Haas

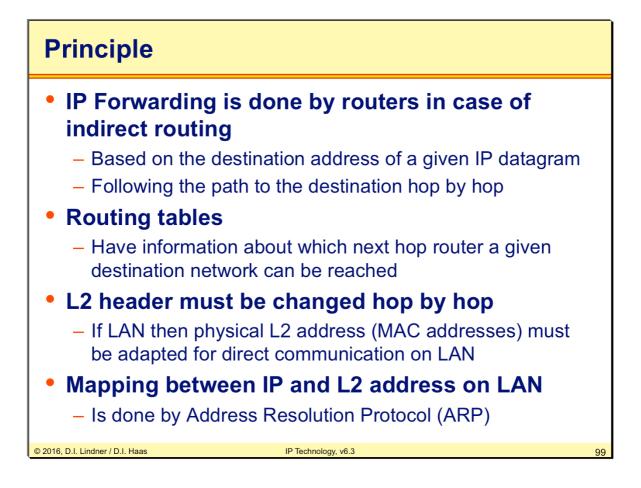
IP Technology, v6.3



| Agenda                                                                                                                                                                                                                                                                                                                                                                 |                   |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|
| <ul> <li>Introduction <ul> <li>Short History of the Internet (i</li> <li>Basic Principles</li> </ul> </li> <li>IP <ul> <li>IP Protocol</li> <li>IP QoS</li> <li>Addressing</li> <li>Classful versus Classless (not</li> </ul> </li> <li>IP Forwarding <ul> <li>Principles</li> <li>ARP</li> <li>ICMP</li> <li>PPP</li> </ul> </li> <li>First Hop Redundancy</li> </ul> |                   |  |  |  |
| <ul> <li>Proxy ARP, IDRP</li> <li>HSRP</li> <li>VRRP (not part of the exam!)</li> </ul>                                                                                                                                                                                                                                                                                |                   |  |  |  |
| © 2016, D.I. Lindner / D.I. Haas IP Te                                                                                                                                                                                                                                                                                                                                 | chnology, v6.3 96 |  |  |  |






Routing table contains signpost as for every known (or specified) destination network: net-ID / subnet-mask

next hop router (and next hop MAC address in case of LAN) outgoing port

In the picture above there is small network, and a good example of a routing table. For example a host in network 10 want to send a datagram to a user in network 192.168.1. The destination address  $\neq$  local address so the router must do a forward decision. The router compare the destination address with his routing table and found the right match (192.168.1.0/24 192.168.2.2 1 s0). Now he sends out the datagram via port s0 to the next hop, the router with the IP-Address of 192.168.2.2. This router is directly connected to the network 192.168.1.0. After an ARP-request the datagram is delivered to the right user.

Note that also simple workstations and PCs maintain routing tables—but not for routing passthrough packets, rather locally originated datagrams should be routed to the most reasonable next hop. Typically, the routing table consists only of a single entry, which is the default gateway for this host. But also additional entries can be made, indicating other gateways for some dedicated routes.

Additionally, an ARP cache must be maintained by a host. The ARP cache stores layer-2 MAC addresses and associated IP addresses of interfaces to which communication had occurred recently. Any ARP result is stored in this cache, thus subsequent packets to the same destination do not invoke the ARP each time. Per default the ARP cache is flushed after 20 minutes. Of course this value can be configured individually—even by DHCP.



Note that also simple workstations and PCs maintain routing tables—but not for routing passthrough packets, rather locally originated datagrams should be routed to the most reasonable next hop. Typically, the routing table consists only of a single entry, which is the default gateway for this host. But also additional entries can be made, indicating other gateways for some dedicated routes.

Additionally, an ARP cache must be maintained by a host. The ARP cache stores layer-2 MAC addresses and associated IP addresses of interfaces to which communication had occurred recently. Any ARP result is stored in this cache, thus subsequent packets to the same destination do not invoke the ARP each time. Per default the ARP cache is flushed after 20 minutes. Of course this value can be configured individually—even by DHCP.

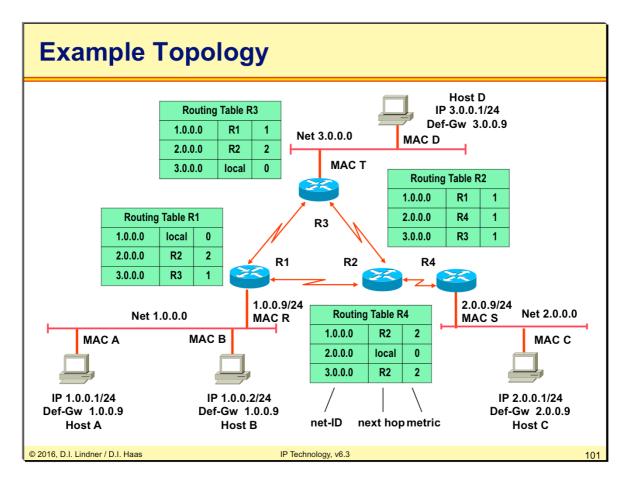
# **IP Routing Paradigm**

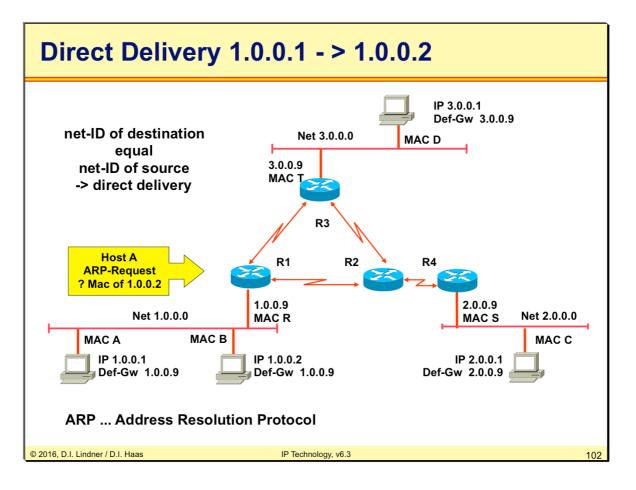
# Destination Based Routing

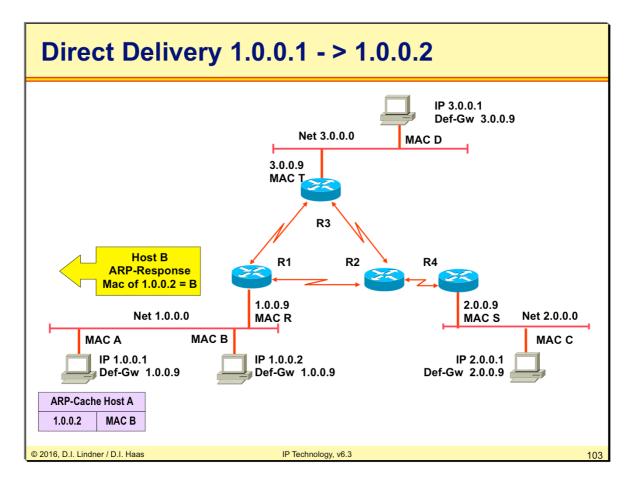
Source address is not taken into account for the forward decision

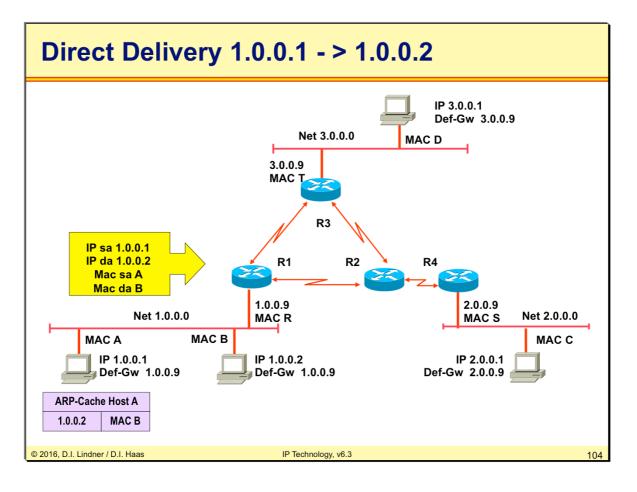
# Hop by Hop Routing

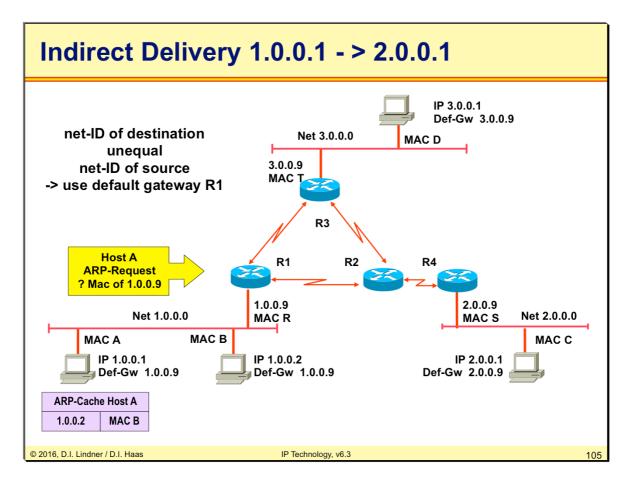
 IP datagrams follow the path, which is pointed by the current state of the routing tables

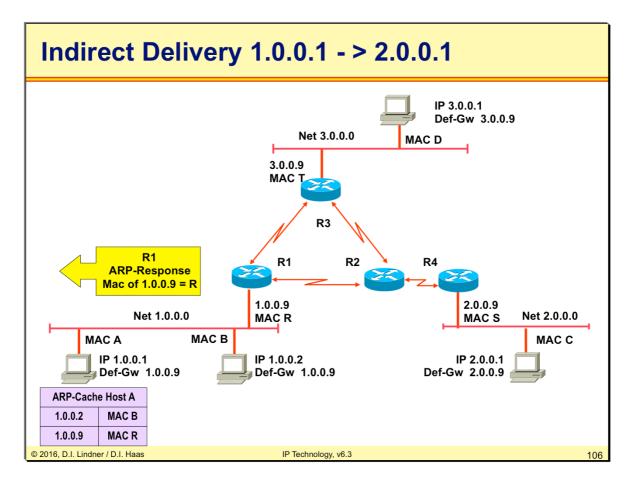

# Least Cost Routing

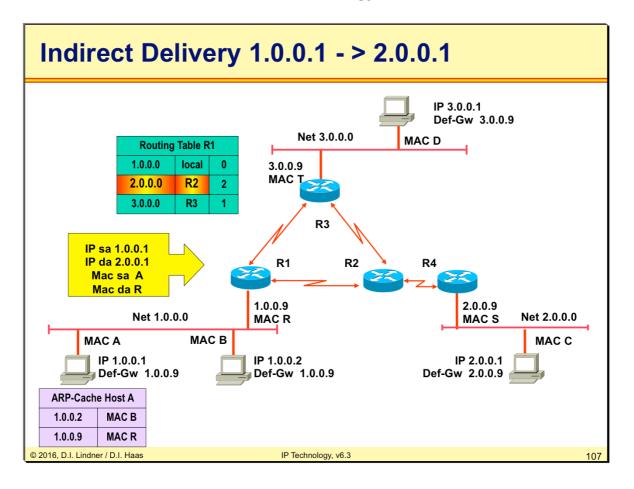

- Normally only the best path is considered for forwarding of IP datagrams
- Alternate paths will not be used in order to reach a given destination

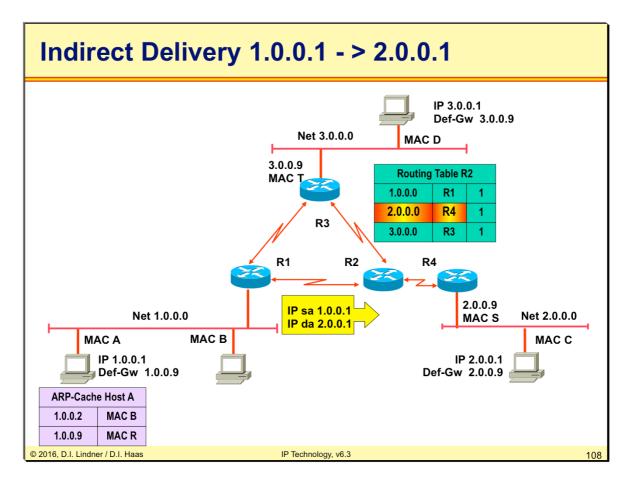

© 2016, D.I. Lindner / D.I. Haas

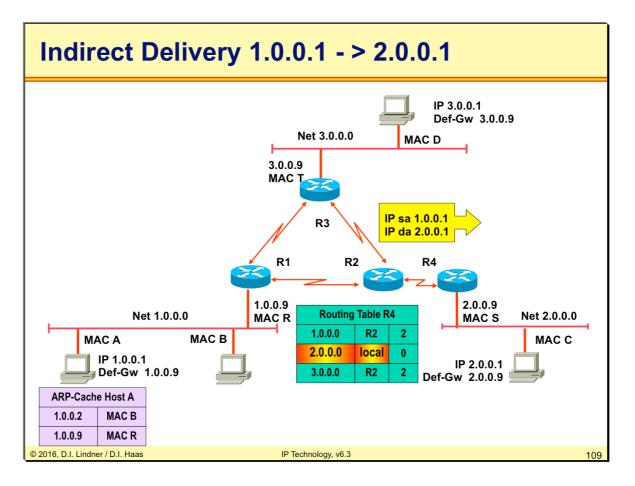

IP Technology, v6.3

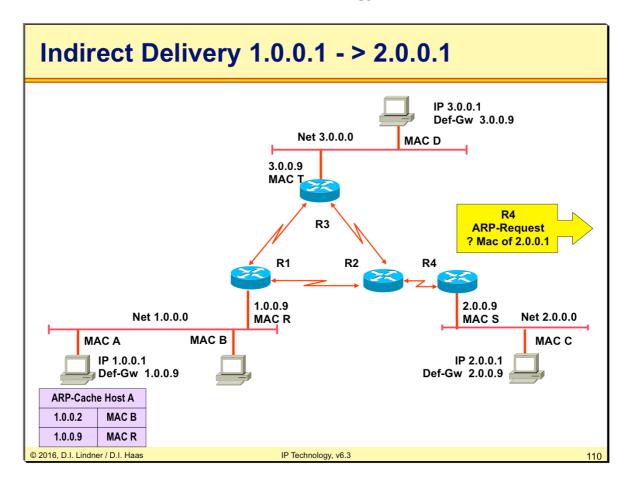

100

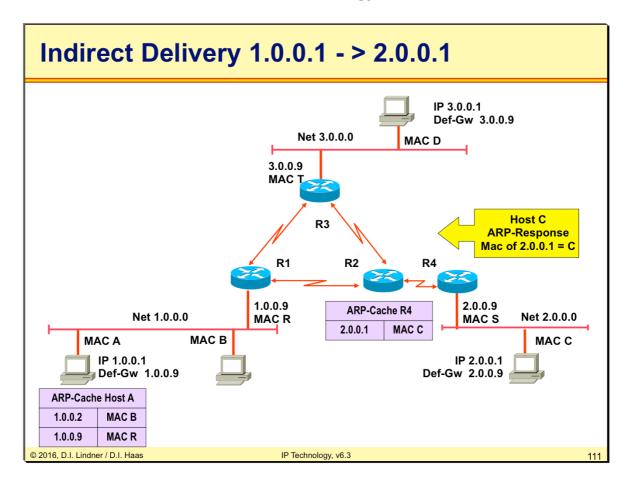


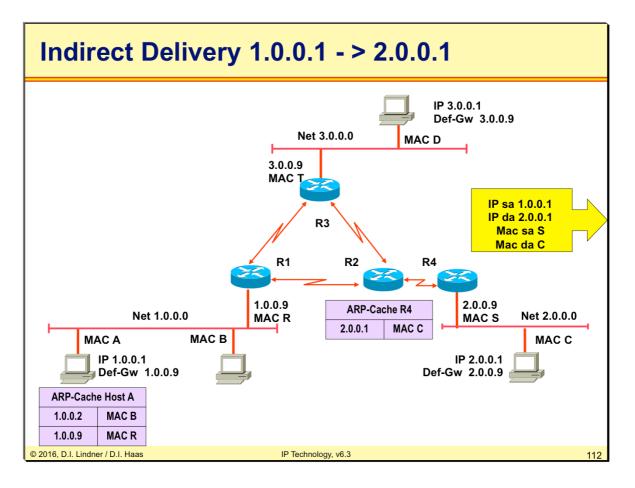



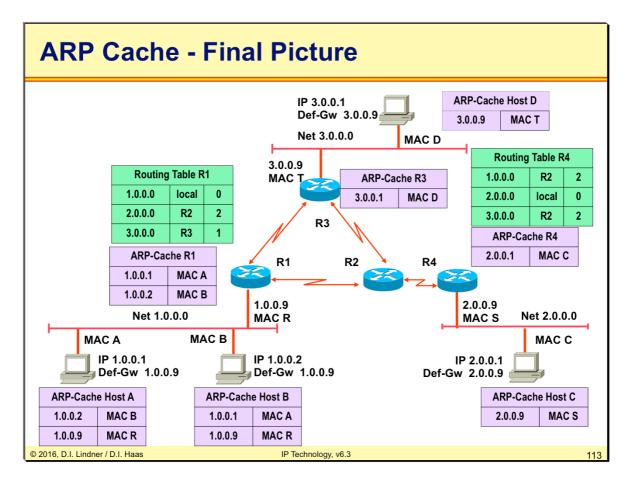



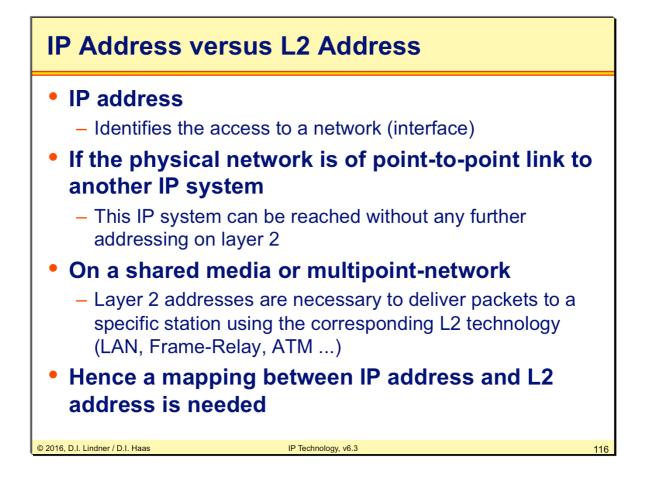



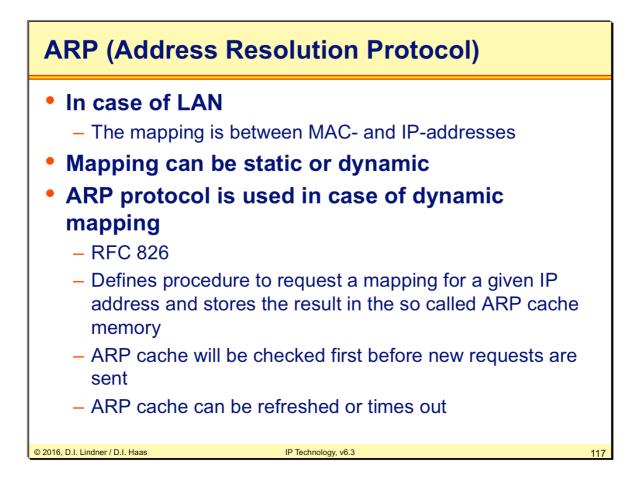










| Agenda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Introduction <ul> <li>Short History of the Internet (not part of the exam!)</li> <li>Basic Principles</li> </ul> </li> <li>IP <ul> <li>IP Protocol</li> <li>IP QoS</li> <li>Addressing</li> <li>Classful versus Classless (not part of the exam!)</li> </ul> </li> <li>IP Forwarding <ul> <li>Principles</li> <li>ARP</li> <li>ICMP</li> <li>PPP</li> </ul> </li> <li>First Hop Redundancy <ul> <li>Proxy ARP, IDRP</li> <li>HSRP</li> <li>VRRP (not part of the exam!)</li> </ul> </li> </ul> |
| © 2016, D.I. Lindner / D.I. Haas IP Technology, v6.3 114                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| TCP/IP Protocol Suite        |                                                                                                                                                   |               |              |               |     |                 |      |      |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|---------------|-----|-----------------|------|------|
| Application                  | SMTP                                                                                                                                              | HTTP<br>HTTPS | FTP          | Telnet<br>SSH | DNS | DHCP<br>(BootP) | TFTP | etc. |
| Presentation                 | (US-ASCII and MIME)                                                                                                                               |               |              |               |     |                 |      |      |
| Session                      | ( RPC )                                                                                                                                           |               |              |               |     |                 |      |      |
| Transport                    | TCP<br>(Transmission Control Protocol)<br>UDP<br>(User Datagram<br>Protocol)                                                                      |               |              |               |     |                 |      |      |
| Network                      | ICMP<br>IP (Internet Protocol)                                                                                                                    |               |              |               |     |                 |      |      |
| Link                         | IP transmission over                                                                                                                              |               |              |               |     |                 |      |      |
| Physical                     | ATM         IEEE 802.2         X.25         FR         PPP           RFC 1483         RFC 1042         RFC 1356         RFC 1490         RFC 1661 |               |              |               |     |                 |      |      |
| t                            | /                                                                                                                                                 |               |              |               |     |                 |      |      |
| 16, D.I. Lindner / D.I. Haas |                                                                                                                                                   | IP Tech       | nology, v6.3 |               |     |                 |      |      |



On a multipoint network every station needs a layer-2 address. When IP packets should be sent to a local destination the sender must first determine the corresponding layer-2 address. A multipoint network is also known as a shared medium. It could be a broadcast domain (like Ethernet) or not (like Frame-Relay or ATM). Therefore the layer-2 address could be a MAC address, a DLCI (Frame-Relay) or similar. In this chapter we only focus on Ethernet only.



| ARP F                                                                                                                                                                                                                              | ormat   |                               |                         |                   |                              |          |     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------|-------------------------|-------------------|------------------------------|----------|-----|--|
|                                                                                                                                                                                                                                    |         |                               |                         |                   |                              |          |     |  |
| preamble                                                                                                                                                                                                                           | DA      | SA                            | 0x806                   |                   | ARP-N                        | Nessage  | CRC |  |
| Ethernet II                                                                                                                                                                                                                        | Frame   |                               |                         |                   |                              |          |     |  |
|                                                                                                                                                                                                                                    |         | C                             | )                       | 8                 | 1                            | 6 24     | 32  |  |
|                                                                                                                                                                                                                                    |         |                               | Hardware                |                   | Protoco                      | 1        |     |  |
| Example ARP Request (Ethernet / IP):                                                                                                                                                                                               |         |                               | hlr<br>(Hardware Ad     |                   | pin<br>(Layer 3 Addr length) | Operatio | n   |  |
| Hardware: 6 (IEEE802.x)<br>Protocol: 0x0800 (IP)                                                                                                                                                                                   |         |                               | Source Hardware Address |                   |                              |          |     |  |
| Protocol: 0x0800 (IP)<br>hln: 6 (MAC Address in Bytes)<br>pln: 4 (IP Address in Bytes)<br>Operation: 1 (ARP Request)<br>Source HW Addr: hex: 00 60 97 bc 88 f1<br>Source IP Addr: 192.168.1.1<br>Dest HW Addr: hex: ff ff ff ff ff |         | Source HW Addr                |                         | Source IP Address |                              |          |     |  |
|                                                                                                                                                                                                                                    |         | Source IP Address Dest HW Add |                         |                   | ddr                          |          |     |  |
|                                                                                                                                                                                                                                    |         | Destination Hardware Address  |                         |                   |                              |          |     |  |
| Dest IP Addr: 192.168.1.254                                                                                                                                                                                                        |         |                               | Destination IP Address  |                   |                              |          |     |  |
|                                                                                                                                                                                                                                    |         |                               |                         |                   |                              |          |     |  |
| © 2016, D.I. Lindner / D.                                                                                                                                                                                                          | I. Haas |                               | IP Tec                  | hnology, v        | 6.3                          |          | 1   |  |

ARP messages are carried within Ethernet II frames or SNAP encapsulation using type field 0x806. ARP has been designed to support different layer 3 protocols (IP is just one of them).

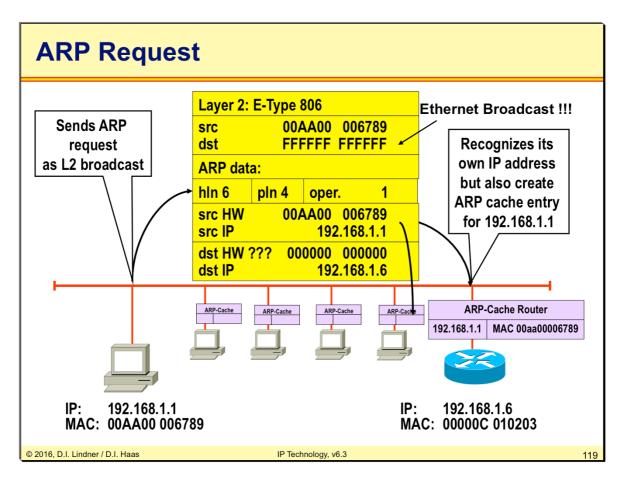
Hardware: Defines the type of network hardware, e.g.:

| 1  | Ethernet DIX |
|----|--------------|
| 6  | 802.x-LAN    |
| 7  | ARCNET       |
| 11 | LocalTalk    |

Protocol: Identifies the layer 3 protocol (same values as for Ethertype, e.g. 0x800 for IP)

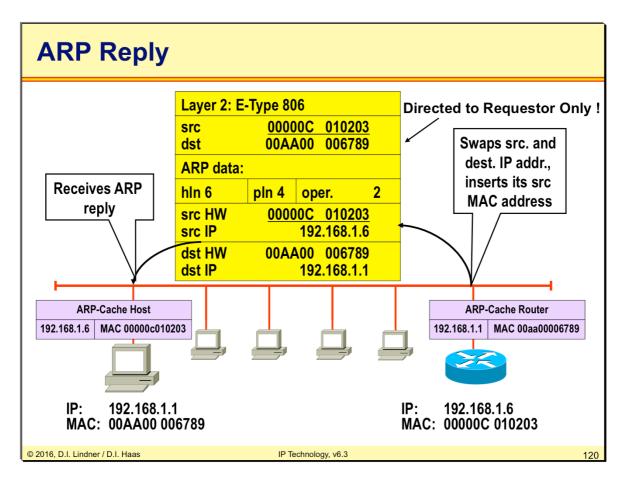
hin: Length of hardware address in bytes

pln: Length of layer 3 address in bytes


#### **Operation:**

- 1 .... ARP Request
- 2 .... ARP Response
- 3 .... RARP Request
- 4 .... RARP Response

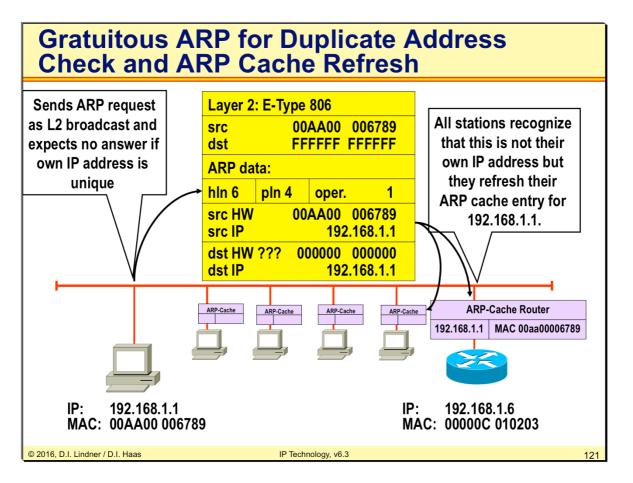
#### Addresses:


Hardware addresses: MAC addresses (source and destination). IP addresses: layer 3 addresses (source and destination).

ARP request and responses are not forwarded by routers (only L2 messages)



Operation of ARP:


Station A (192.168.1.1) wants to send an IP datagram to station B (192.168.1.6) but doesn't know the MAC address (both are connected to the same LAN). A sends an ARP request in form of a MAC broadcast (destination = FF, source = Mac\_A), ARP request holds IP address of B. Station B and all other stations connected to the LAN see the ARP request with its IP address: B and all other stations store the newly learned mapping (source MAC- and IP-address of A) into their ARP caches.



Now station B sees sends an ARP response as a directed MAC frame (SA=Mac\_B, DA=Mac\_A).The ARP response holds MAC address of station B. A stores the MAC- / IP-address mapping for station B in its ARP cache.

For subsequent IP datagrams from A to B or from B to A the MAC addresses are taken from the ARP cache (no further ARP request / response are necessary).

Entries in the ARP cache are deleted if they aren't used for a defined period (usually 20 minutes), this aging mechanism allows for changes in the network and saves table space.



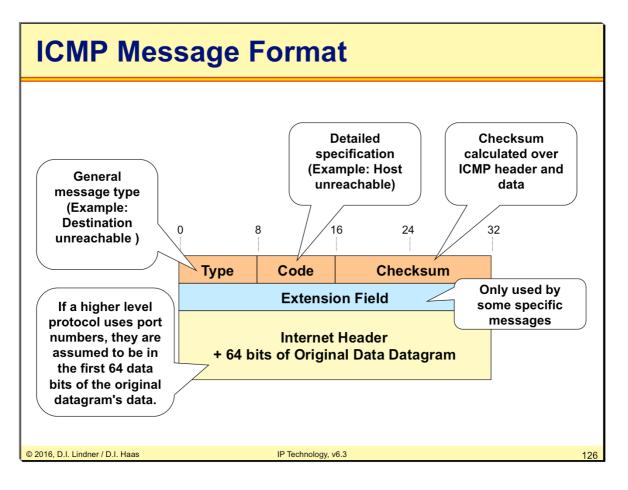
Gratuitous ARP is an ARP request where an IP station asks for address resolution of its own IP address.

This is typically used:

1. For detecting duplicate IP addresses on the connected LAN.

2. For refreshing the ARP caches of the other IP systems before the ARP caches times out.

3. For actualizing the ARP caches of the other IP systems in case the IP systems has changed the MAC address (e.g. change of Ethernet card).

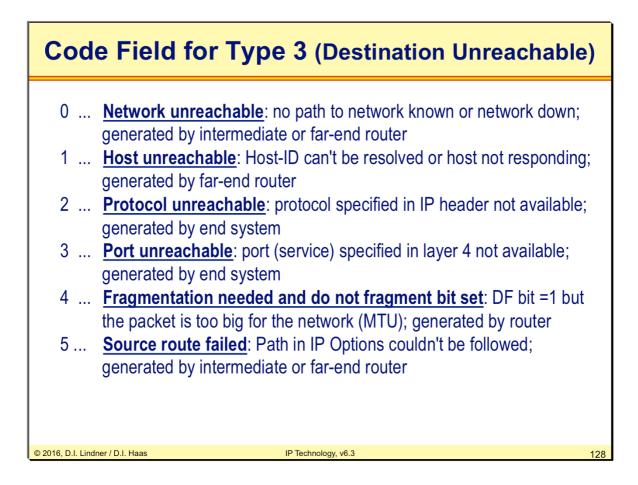

| Agenda                                                                                                                                                                                                                                                                                                                                                                           |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <ul> <li>Introduction <ul> <li>Short History of the Internet (not part of the exam!)</li> <li>Basic Principles</li> </ul> </li> <li>IP <ul> <li>IP Protocol</li> <li>IP QoS</li> <li>Addressing</li> <li>Classful versus Classless (not part of the exam!)</li> </ul> </li> <li>IP Forwarding <ul> <li>Principles</li> <li>ARP</li> <li>ICMP</li> <li>PPP</li> </ul> </li> </ul> |     |
| <ul> <li>First Hop Redundancy         <ul> <li>Proxy ARP, IDRP</li> <li>HSRP</li> <li>VRRP (not part of the exam!)</li> </ul> </li> </ul>                                                                                                                                                                                                                                        |     |
| © 2016, D.I. Lindner / D.I. Haas IP Technology, v6.3                                                                                                                                                                                                                                                                                                                             | 122 |

| CP/IP Prot                  | tocol S                                                                    | uite          |              |               |     |                 |      |      |
|-----------------------------|----------------------------------------------------------------------------|---------------|--------------|---------------|-----|-----------------|------|------|
| Application                 | SMTP                                                                       | HTTP<br>HTTPS | FTP          | Telnet<br>SSH | DNS | DHCP<br>(BootP) | TFTP | etc. |
| Presentation                | (US-ASCII and MIME)                                                        |               |              |               |     |                 |      |      |
| Session                     | ( RPC )                                                                    |               |              |               |     |                 |      |      |
| Transport                   | TCP<br>(Transmission Control Protocol)                                     |               |              |               |     |                 |      |      |
| Network                     | ICMP<br>IP (Internet Protocol)                                             |               |              |               |     |                 |      |      |
| Link                        | IP transmission over                                                       |               |              |               |     |                 |      |      |
| Physical                    | ATM IEEE 802.2 X.25 FR PPP<br>RFC 1483 RFC 1042 RFC 1356 RFC 1490 RFC 1661 |               |              |               |     |                 |      |      |
| 6, D.I. Lindner / D.I. Haas |                                                                            | IP Tech       | nology, v6.3 |               |     |                 |      |      |

## **ICMP (RFC 792) Datagram service of IP** - Best effort -> IP datagrams can be lost If network cannot deliver packets the sender must be informed somehow ! Reasons: no route, TTL expired, ... ICMP (Internet Control Message Protocol) - Enhances network reliability and performance by carrying error and diagnostic messages ICMP must be supported by every IP station - Implementation differences! Analysis of ICMP messages - Network management systems or can give valuable hints for the network administrator © 2016, D.I. Lindner / D.I. Haas IP Technology, v6.3 124

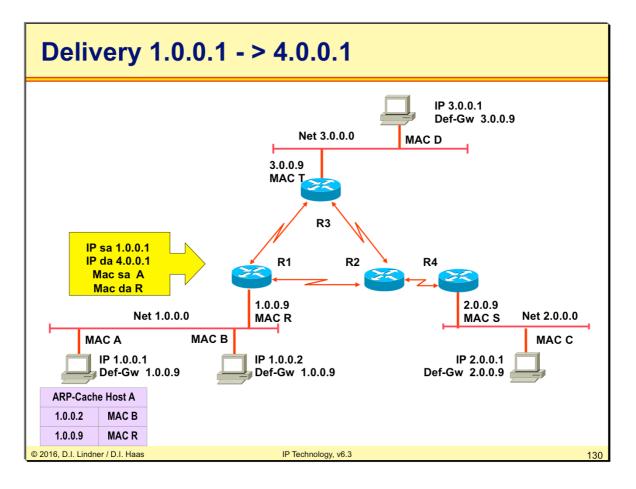
# ICMP

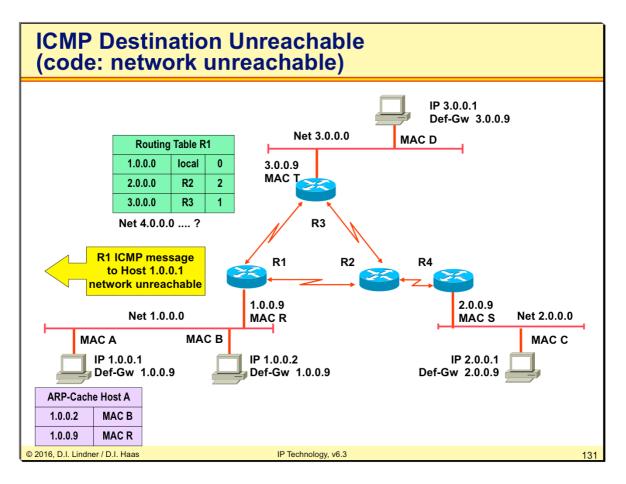
| <ul> <li>Principle of ICMP operation</li> </ul>                                                                                                                                                                                     |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <ul> <li>IP station (router or destination), which detects any<br/>transmission problems, generates an ICMP message</li> <li>ICMP message is addressed to the originating station<br/>(sender of the original IP packet)</li> </ul> |     |
| <ul> <li>ICMP messages are sent as IP packets</li> <li>Protocol field = 1, ICMP header and code in the IP data area</li> </ul>                                                                                                      |     |
| <ul> <li>If an IP datagram carrying an ICMP message<br/>cannot be delivered</li> </ul>                                                                                                                                              |     |
| <ul> <li>No additional ICMP error message is generated to avoid<br/>an ICMP avalanche</li> </ul>                                                                                                                                    |     |
| <ul> <li>– "ICMP must not invoke ICMP"</li> </ul>                                                                                                                                                                                   |     |
| <ul> <li>Exception: PING command (Echo request and echo response)</li> </ul>                                                                                                                                                        |     |
| © 2016, D.I. Lindner / D.I. Haas IP Technology, v6.3                                                                                                                                                                                | 125 |

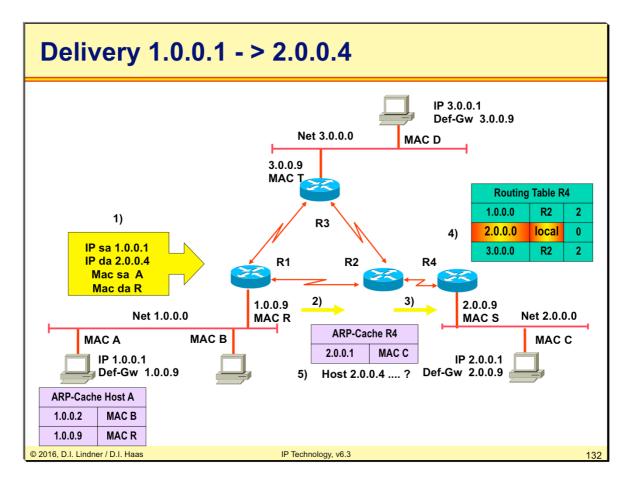


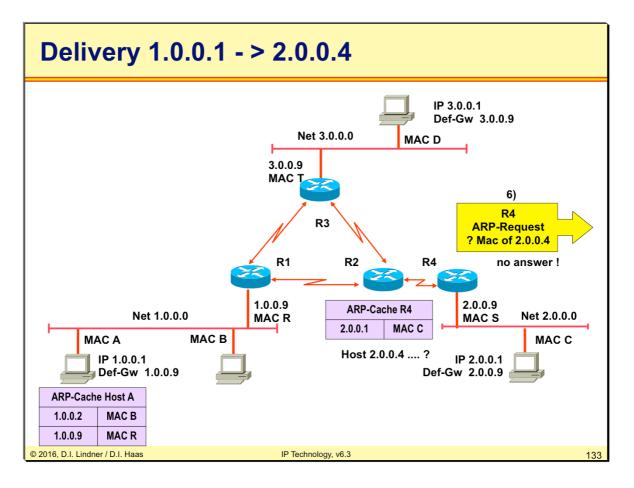

# **ICMP Message Types**

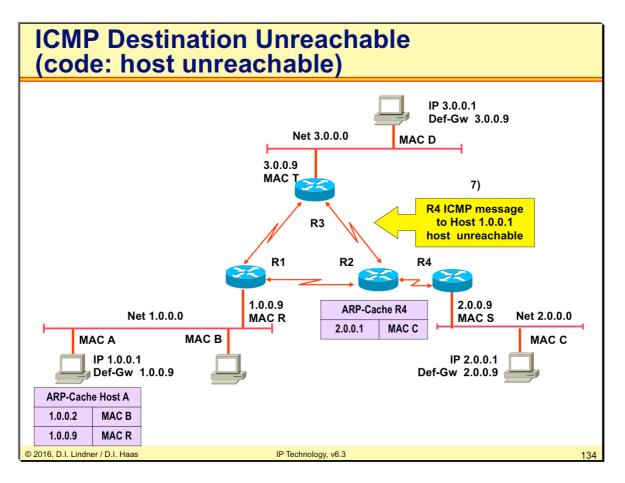
| 0                         | Echo Reply ("Ping Response")                   |   |
|---------------------------|------------------------------------------------|---|
| 3                         | Destination Unreachable                        |   |
|                           | Reason specified in Code field of ICMP message |   |
| 4                         | Source Quench (decrease data rate of sender)   |   |
|                           | Theoretical Flow Control Possibility of IP     |   |
| 5                         | Redirect (use different router)                |   |
|                           | More information in Code field of ICMP message |   |
| 8                         | Echo Request ("Ping Request")                  |   |
| 11                        | Time Exceeded                                  |   |
|                           | code = 0 time to live exceeded in transit      |   |
|                           | code = 1 reassembly timer expired              |   |
| 12                        | Parameter Problem (IP header)                  |   |
| 13/14                     | Time Stamp Request / Time Stamp Reply          |   |
| 15/16                     | Information Request / Reply                    |   |
|                           | e.g. finding the Net-ID of the network         |   |
| 17/18                     | Address Mask Request / Reply                   |   |
|                           |                                                |   |
|                           |                                                |   |
| 2016, D.I. Lindner / D.I. | Haas IP Technology, v6.3                       | 1 |

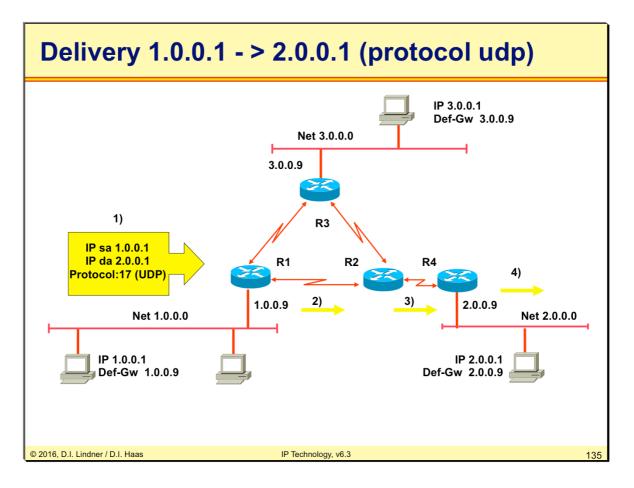

#### Using ICMP Types:

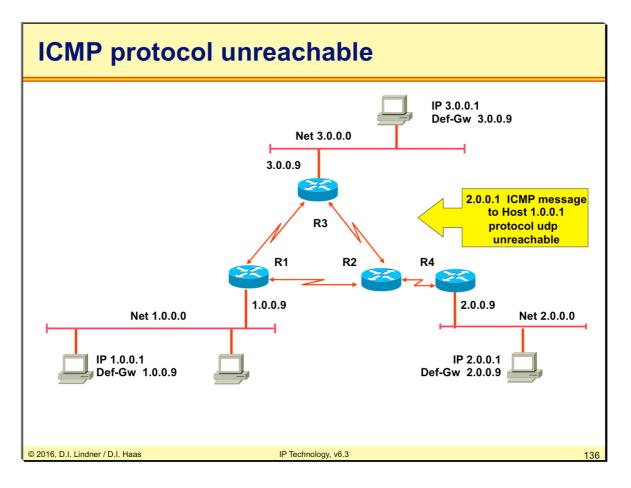

| -         |                                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------|
| 0, 8      | "PING" testing whether an IP station (router or end system) can be reached and is operational   |
| 3, 11, 12 | Signaling errors concerning reachability, TTL / reassembly timeouts and errors in the IP header |
| 4         | Flow control (only possibility to signal a possible buffer overflow)                            |
| 5         | Signaling of alternative (shorter) routes to a target                                           |
| 13 - 18   | Diagnosis or management                                                                         |

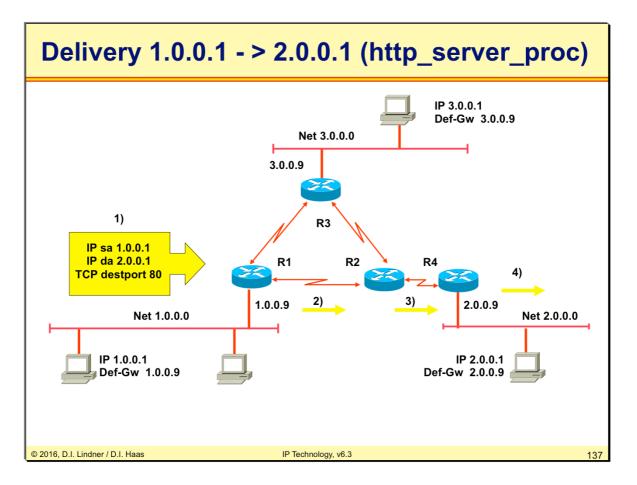




| Code Field                                                                      | for Type 3 (Destination Unreachable                              | e)  |
|---------------------------------------------------------------------------------|------------------------------------------------------------------|-----|
|                                                                                 | g additional codes are defined in RFC1122 (Host<br>its) page 38: |     |
| 7 Destination<br>8 Source host<br>9 Communica<br>10 Communica<br>11 Network unr |                                                                  |     |
| © 2016, D.I. Lindner / D.I. Haas                                                | IP Technology, v6.3                                              | 129 |


Nowadays most of those messages are blocked by host firewalls (e.g. Microsoft Windows7 firewall) in order not to give to much information to an attacker.



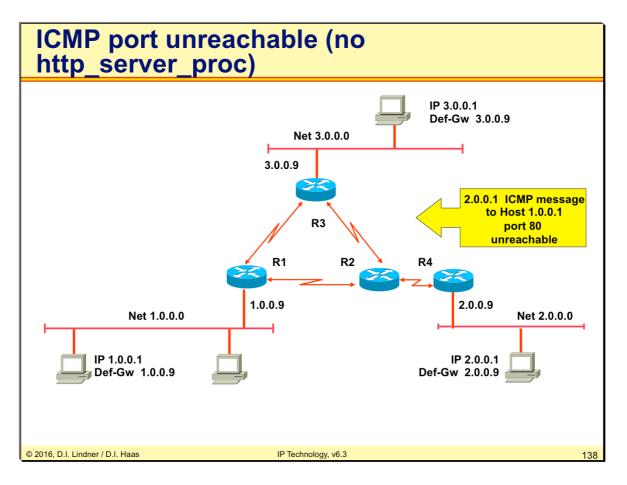



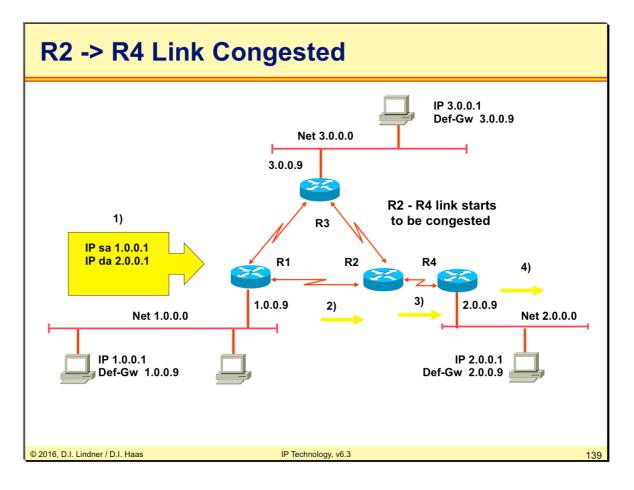



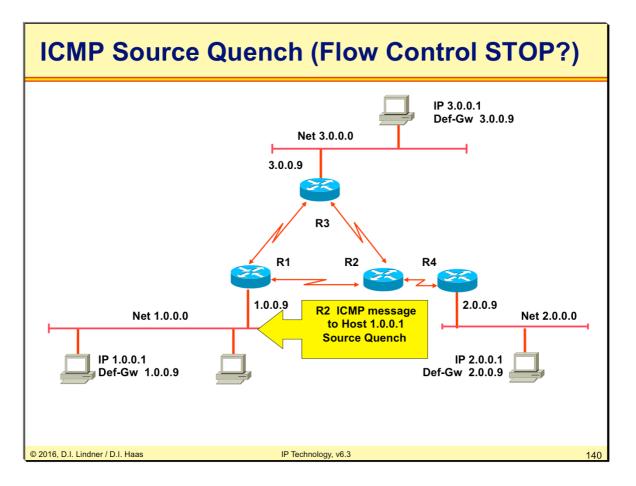




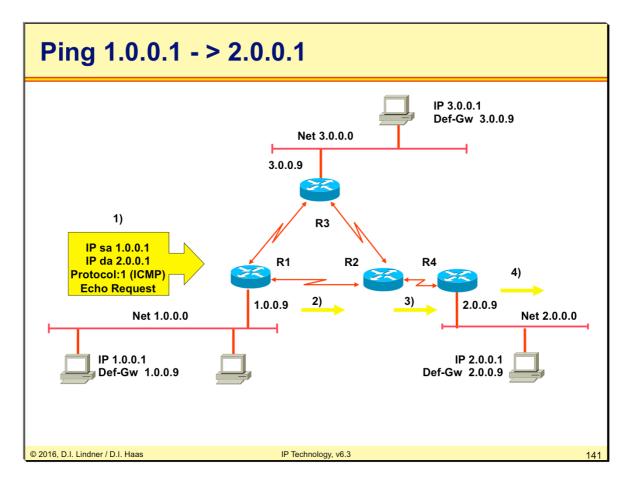


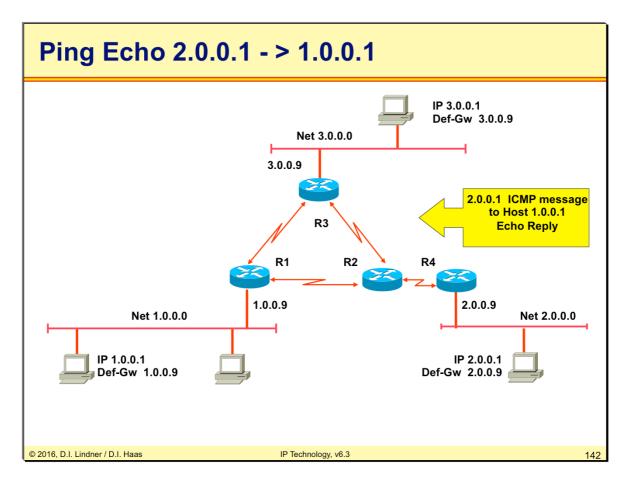


Remark:

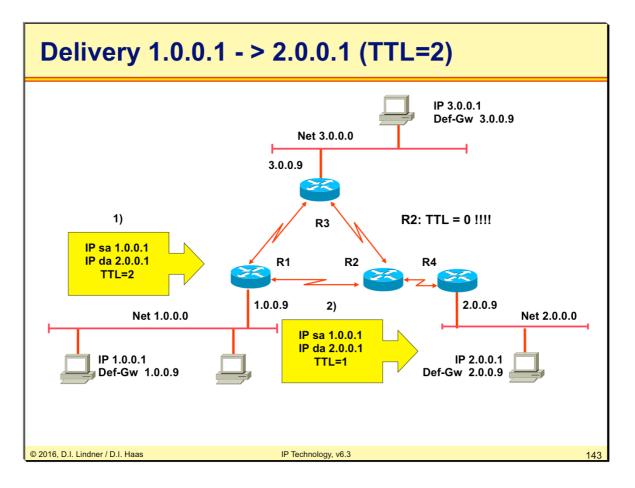
Usually such an request will usually lead to an TCP RESET/ACK response if server is not listening !!!!

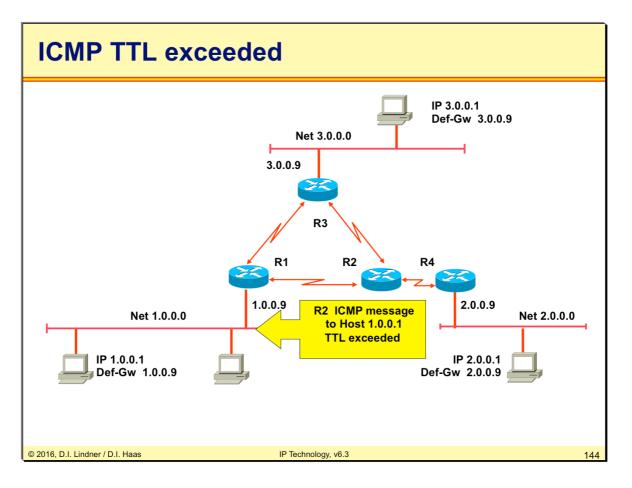

But look to RFC 1122 page 38!!!









Think about stations which are good Internet citizens reducing their traffic load and others which do not care about a source quench message. Guess who will get more performance?




PING - Packet Internet Groper:

Checks the reachability of an IP station several times in a sequence and measures answer time for each trial. In case the station is reachable you get an indication about the round-tripdelay in the network. If station is not reachable the trial times out after e.g. two seconds.







| Traceroute                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <ul> <li>Using ICMP TTL exceed messages <ul> <li>The current route, a datagram will take through the network, can be find</li> </ul> </li> <li>Just generate IP messages <ul> <li>With increasing values for TTL</li> </ul> </li> <li>You will find the route <ul> <li>Hop by hop</li> </ul> </li> <li>Two types of messages generated by of trace route CLI commands: <ul> <li>ICMP-Echo</li> <li>UDP</li> </ul> </li> </ul> |     |
| © 2016, D.I. Lindner / D.I. Haas IP Technology, v6.3                                                                                                                                                                                                                                                                                                                                                                          | 145 |

UDP segment and manipulation of the TTL field (time to live) of the corresponding IP header is used to generate ICMP error messages TTL exceeded or UDP port not reachable. UDP segments with undefined port numbers (> 30000) are used. A simple ICMP Echo requests with TTL manipulation may not work because either after reaching the final IP host no TTL exceeded message will be generated by the destination host (this is done by routers only) or it might be blocked by the host firewall of the destination.

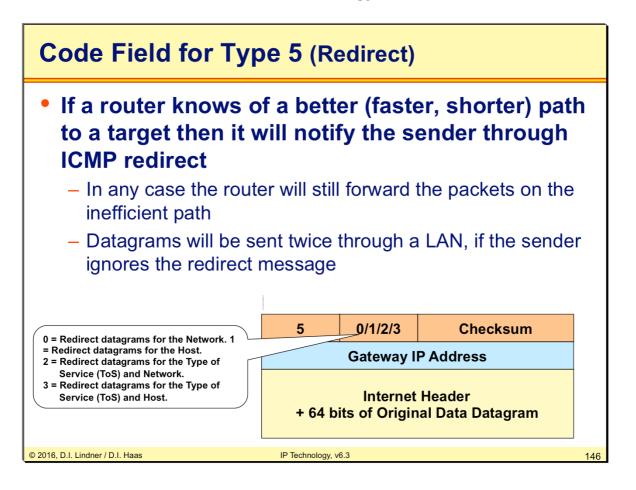
Traceroute operation example:

UDP datagram with TTL=1 is sent for three times UDP datagram with TTL=2 is sent for three times

.....

The routers in the path generate ICMP time exceeded messages because TTL reaches 0.

If the UDP datagram arrives at the destination, an ICMP port unreachable message is generated.


From the source addresses (= router address) of the ICMP error messages the path can be reconstructed.

The IP addresses are resolved to names by using DNS.

tracert 140.252.13.65

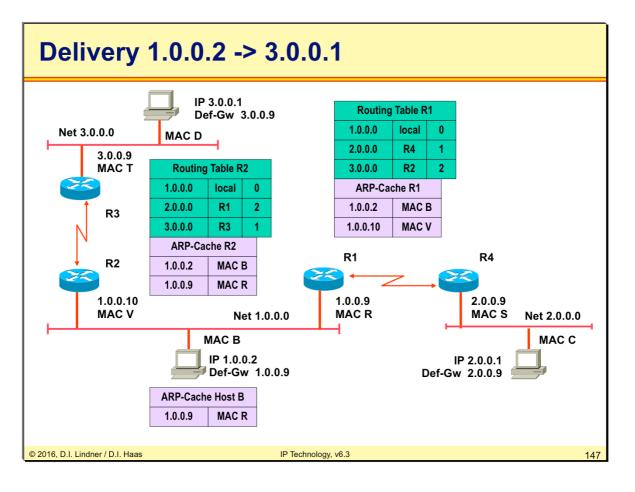
| 1 ny-providerx-int-99 (139.128.3.99)  | 20ms | 10ms  | 10ms  |
|---------------------------------------|------|-------|-------|
| 2 sf-providery-int-23 (172.252.12.21) | 20ms | 10ms  | 10ms  |
| 2 www.example.com (140.252.13.65)     | *    | 120ms | 120ms |

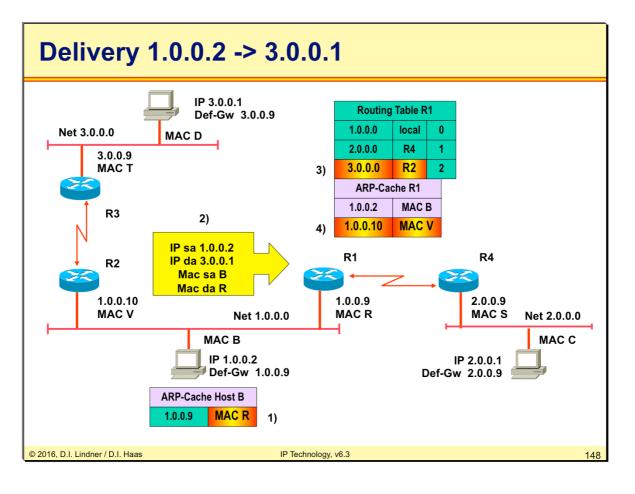
Output of "\*", if no answer arrives within 5 seconds.

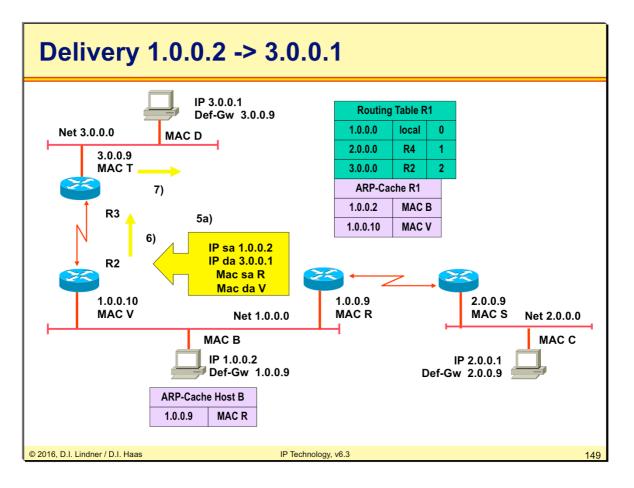


Rules:

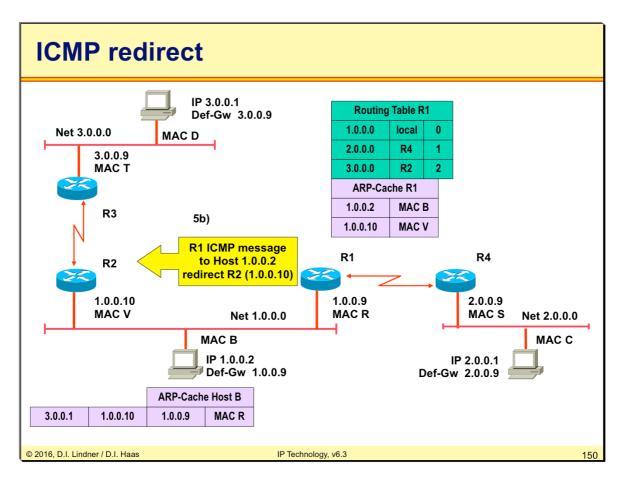
The interface on which the datagram comes into the router is the same interface on which the same datagram gets routed out.


The subnet/network of the source IP address is the same subnet/network of the next-hop IP address of the routed packet.

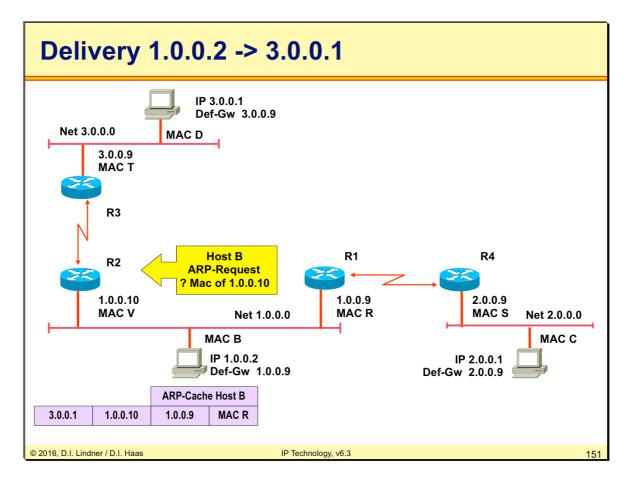

The datagram is not source-routed.

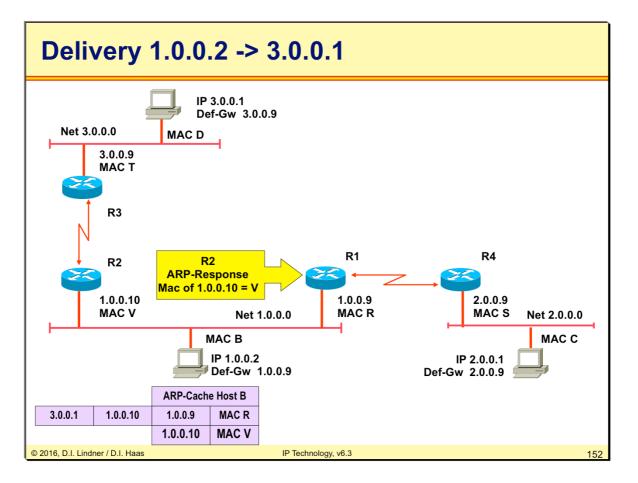

The kernel is configured to send redirects.

By default, Cisco routers send ICMP redirects. It can be disabled by the interface subcommand "no ip redirects".

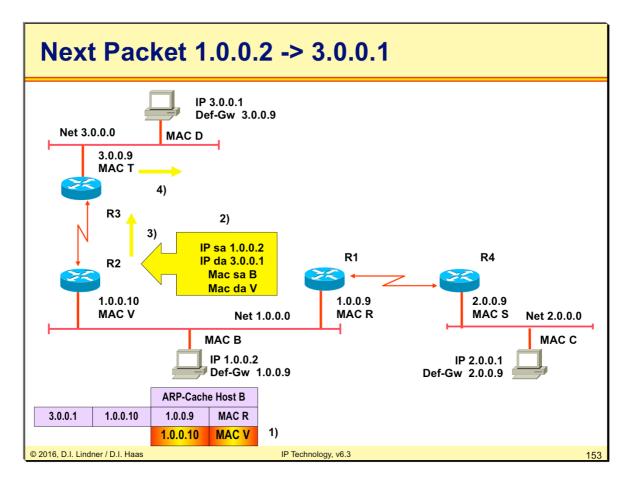

It might be dangerous to listen and react to ICMP redirect messages in an Internet cafe. It could be a Man-in-the Middle attack.





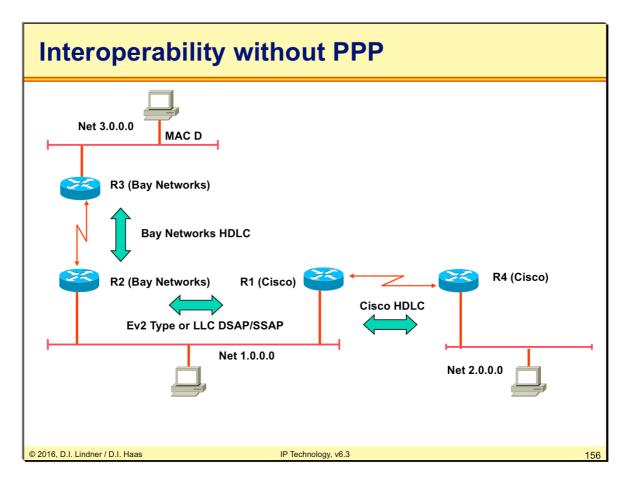

IP datagram is forwarded on the same interface as it was received -> redirect would be nice to avoid sending this datagram twice on net 1.0.0.0.




Message 5b is sent to IP 1.0.0.2 !!!





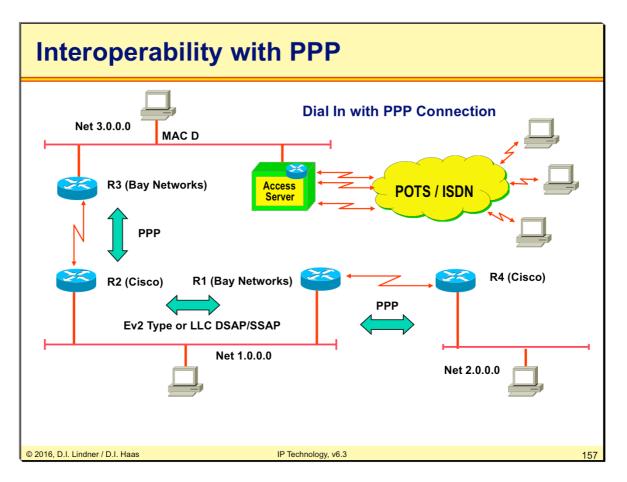

ARP response is sent to IP 1.0.0.2



Next datagram of 1.0.0.0 is now sent to the correct (nearer) router.

| Agenda                                                                                                                                                                                                                                                                                                                                                                           |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <ul> <li>Introduction <ul> <li>Short History of the Internet (not part of the exam!)</li> <li>Basic Principles</li> </ul> </li> <li>IP <ul> <li>IP Protocol</li> <li>IP QoS</li> <li>Addressing</li> <li>Classful versus Classless (not part of the exam!)</li> </ul> </li> <li>IP Forwarding <ul> <li>Principles</li> <li>ARP</li> <li>ICMP</li> <li>PPP</li> </ul> </li> </ul> |     |
| <ul> <li>First Hop Redundancy         <ul> <li>Proxy ARP, IDRP</li> <li>HSRP</li> <li>VRRP (not part of the exam!)</li> </ul> </li> </ul>                                                                                                                                                                                                                                        |     |
| © 2016, D.I. Lindner / D.I. Haas IP Technology, v6.3                                                                                                                                                                                                                                                                                                                             | 154 |

| TCP/IP Protocol Suite          |                                                                                                                                                   |               |              |               |     |                 |      |      |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|---------------|-----|-----------------|------|------|
| Application                    | SMTP                                                                                                                                              | HTTP<br>HTTPS | FTP          | Telnet<br>SSH | DNS | DHCP<br>(BootP) | TFTP | etc. |
| Presentation                   | (US-ASCII and MIME)                                                                                                                               |               |              |               |     |                 |      |      |
| Session                        | Routing Protocols ( RPC )                                                                                                                         |               |              |               |     |                 |      |      |
| Transport                      | TCP<br>(Transmission Control Protocol)<br>UDP<br>(User Datagram<br>Protocol)                                                                      |               |              |               |     |                 |      |      |
| Network                        | ICMP IP (Internet Protocol)                                                                                                                       |               |              |               |     |                 |      |      |
|                                | IP transmission over                                                                                                                              |               |              |               |     |                 |      |      |
| Physical                       | ATM         IEEE 802.2         X.25         FR         PPP           RFC 1483         RFC 1042         RFC 1356         RFC 1490         RFC 1661 |               |              |               |     |                 |      |      |
|                                |                                                                                                                                                   |               |              |               |     |                 |      |      |
| 2016, D.I. Lindner / D.I. Haas |                                                                                                                                                   | IP Tech       | nology, v6.3 |               |     |                 |      | 1    |



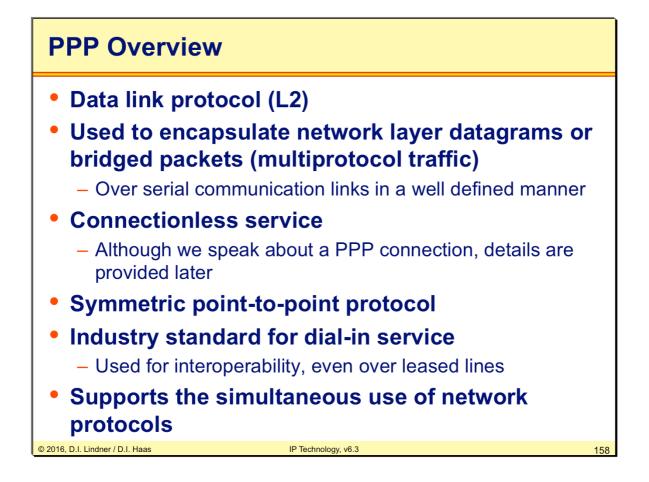

Reasons for PPP (Point-to-Point Protocol)

Communication between router of different vendors on a LAN was possible from the very beginning. Remember: Ethernet V2 Protocol Type field or LLC-DSAP/SSAP fields carry information about the protocol stack (e.g. IP or IPX or SNA or NetBEUI or AppleTalk).

Communication between router of different vendors on a serial line was not possible because of the proprietary "kind of HDLC" encapsulation method used by different vendors.

PPP standardizes multiprotocol encapsulation on a serial line. Interoperability was the one main focus at the first stage.




After the interoperability issue was solved PPP focuses on providing dial-in connectivity for IP systems. PPP connections between IP hosts (PCs) and access-servers allow working from remote in the same way as if the IP host would be directly connected to a LAN.

PPP became a standardized dial-in method for all kind of access-technology:

First modems and POTS (Plain Old Telephone Network) were used in order to establishing a PPP connection between IP host (PC) and an access server, later ISDN with PPP over transparent B-channel was introduced.

Nowadays ADSL (Asymmetric Digital Subscriber Line) or VDSL technology uses variants of PPP in order to connect your home network to your ISP (Internet service provider). PPPoE (PPP over Ethernet) and PPPoA (PPP over ATM) are these variants allowing your home network to be bridged or tunneled over ATM to the access server of the ISP.

In Dial-In VPN technology developed by Microsoft and Cisco we can find PPP tunneling over IP networks allowing a kind of Virtual Private Network (VPN) functionality to be established over the non-trusted Internet. So with Microsoft PPTP (Point-to-Point Tunneling Protocol), Cisco L2F (L2 Forwarding Protocol) and L2TP (Layer2 Tunneling Protocol, IETF-RFC) you will can see these PPP tunneling techniques in action.



The Point-to-Point Protocol (PPP) provides a standard method for transporting multi-protocol datagrams over point-to-point links.

| PPP Components                                                                |
|-------------------------------------------------------------------------------|
| <ul> <li>HDLC framing and encapsulation (RFC 1662)</li> </ul>                 |
| <ul> <li>Bitstuffing for synchronous serial lines</li> </ul>                  |
| <ul> <li>Modified bytestuffing for asynchronous serial</li> </ul>             |
| <ul> <li>Only connectionless service used (UI frame)</li> </ul>               |
| <ul> <li>Link Control Protocol (LCP, RFC 1661)</li> </ul>                     |
| <ul> <li>Establishes and closes the PPP connection / PPP link</li> </ul>      |
| <ul> <li>Tests the link for quality of service features</li> </ul>            |
| <ul> <li>Negotiation of parameters</li> </ul>                                 |
| <ul> <li>Configures the PPP connection / PPP link</li> </ul>                  |
| <ul> <li>Family of Network Control Protocols (NCPs, div. RFCs)</li> </ul>     |
| <ul> <li>Configures and maintains network layer protocols</li> </ul>          |
| <ul> <li>NCPs exist for IP, OSI, DECnet, AppleTalk, Novell</li> </ul>         |
| <ul> <li>NCPs are started after PPP link establishment through LCP</li> </ul> |
|                                                                               |
| © 2016, D.I. Lindner / D.I. Haas IP Technology, v6.3 159                      |
|                                                                               |

PPP consists of three main components:

1. A method for encapsulating multi-protocol datagrams taken from good old HDLC in connectionless mode.

2. A Link Control Protocol (LCP) for establishing, configuring, and testing the data-link connection.

3. A family of Network Control Protocols (NCPs) for establishing and configuring different network-layer protocols.

Some more details ...

HDLC is basis for encapsulation but only framing and error detection are necessary; hence simple unnumbered information frames (UI) are sufficient.

PPP supports full-duplex links only.

PPP Frame = IP Datagram + 2-8 bytes extra header (extra header consists of HDLC header and PPP header)

#### Overhead:

Only 8 additional octets are necessary to form the encapsulation when used with the default HDLC framing. In environments where bandwidth is at an issue, the encapsulation and framing may be shortened to 2 or 4 octets.

Bytestuffing on asynchronous lines:

If the flag byte (126) occurs in the data field it has to be escaped using the escape byte 125, while byte 126 is transmitted as a two byte sequence (125, 94) and the escape byte itself is transmitted as (125, 93). Hence bytestuffing is data dependent overhead!

| PPP Frame Format |                    |                             |              |              |           |                   |                  |
|------------------|--------------------|-----------------------------|--------------|--------------|-----------|-------------------|------------------|
| Floa             | Adress             | Control                     | Protocol     | Inform       | ation     | 500               | Flog             |
| Flag<br>0111111  | Address 0 11111111 |                             | 16 Bits      | iniorni<br>  |           | FCS<br>16 Bit CRC | Flag<br>01111110 |
| (126)            | (255)              | (003 =<br>HDLC<br>UI frame) |              | Up to 1500 b |           |                   | (126)            |
| • Sor            | ne protoco         | ol fields (he               | x values)    |              |           |                   |                  |
| _                | 0021               | Internet Prote              |              | 0027         | DECnet    | Phase 4           |                  |
| _                | 0029               | AppleTalk                   |              | 002B         | Novell IF | Х                 |                  |
| _                | 8021               | IP Control Pr               | otocol       | 8027         | DECnet    | Control Protoco   | bl               |
| _                | 8029               | AppleTalk Co                | ontrol Prot. | 802B         | IPX Con   | trol Protocol     |                  |
| _                | C021               | Link Control                | Protocol     | C023         | Authenti  | cation Protocol   |                  |
| -                | C223               | Authenticatio               | n CHAP       |              |           |                   |                  |
|                  |                    |                             |              |              |           |                   |                  |

Flag: HDLC flag

Address: 11111111 means all stations. PPP does not assign individual station addresses on L2.

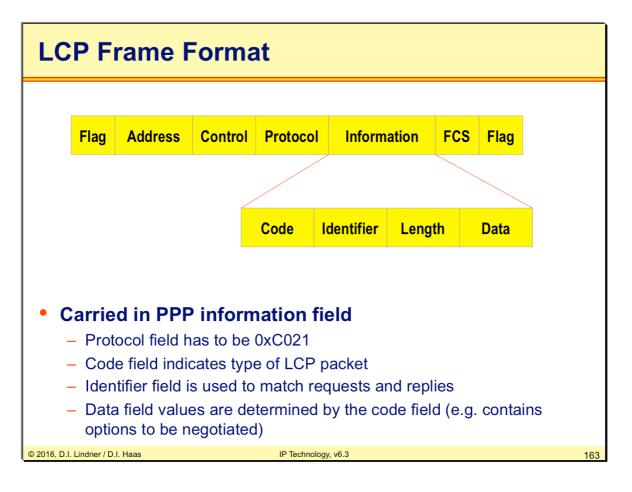
Protocol: The True PPP Field

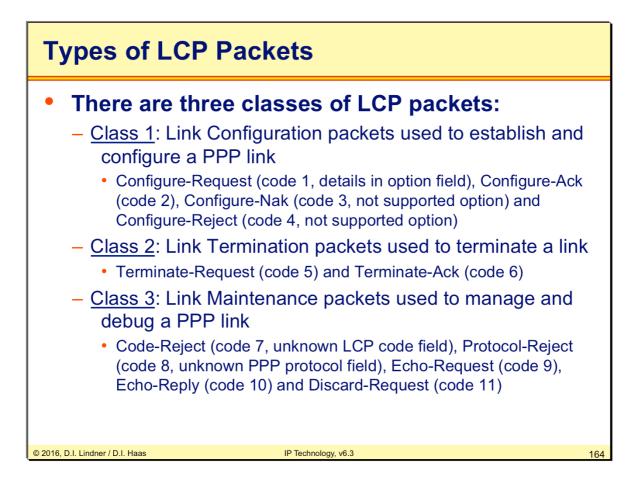
The most important field is the protocol field, which has two octets and its value identifies the datagram encapsulated in the information field of the packet.

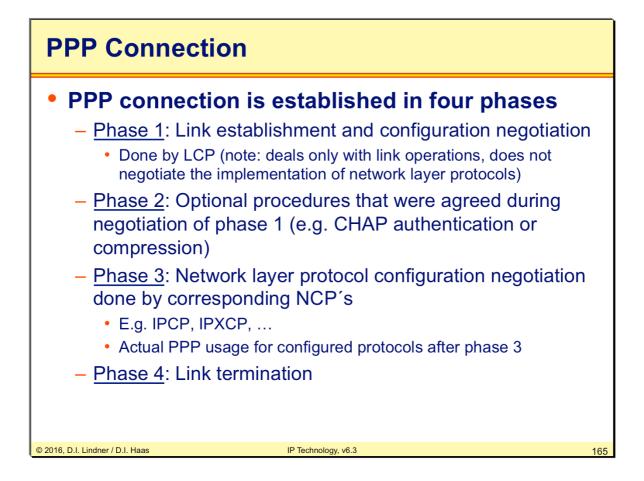
#### PPP Header Compression:

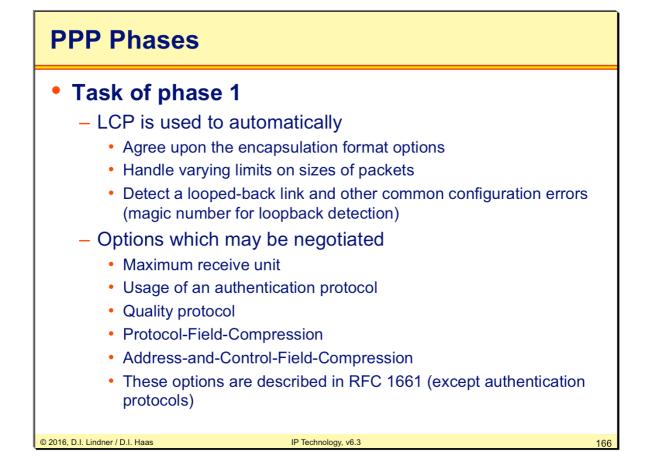
If protocol field compression is enabled, the protocol field is reduced from 2 to 1 byte. Since the first two bytes are always constant, that is the address byte (always 255) and the control byte (always 003), PPP also supports address-and-control-field-compression, which omits these bytes.

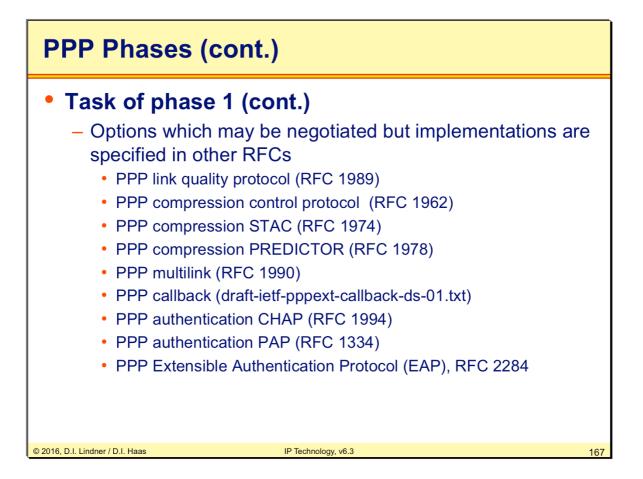
| Protocol Field                                                                                                                                                        |                                                                     |      |                                           |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------|-------------------------------------------|--|--|--|
| 0xxx - 3xxxL3 protocol type4xxx - 7xxxL3 protocol type without associated NCPs8xxx - bxxxAssociated NCPs for protocols in range 0xxx - 3xxxcxxx - fxxxLCP, PAP, CHAP, |                                                                     |      |                                           |  |  |  |
| 0021                                                                                                                                                                  | IP                                                                  |      | Important Examples                        |  |  |  |
| 002b                                                                                                                                                                  | Novell IPX                                                          |      |                                           |  |  |  |
| 002d                                                                                                                                                                  | Van Jacobson Compressed TCP/IP                                      | c021 | Link Control Protocol (LCP)               |  |  |  |
| 002f                                                                                                                                                                  | Van Jacobson Uncompressed TCP/IP c023 Password Auth. Protocol (PAP) |      |                                           |  |  |  |
| 8021                                                                                                                                                                  | IP-NCP (IPCP)                                                       | c025 | Link Quality Report                       |  |  |  |
| 802b                                                                                                                                                                  | IPX-NCP (IPXCP)                                                     | c223 | Challenge Handshake Auth. Protocol (CHAP) |  |  |  |
|                                                                                                                                                                       |                                                                     |      |                                           |  |  |  |
|                                                                                                                                                                       |                                                                     |      |                                           |  |  |  |

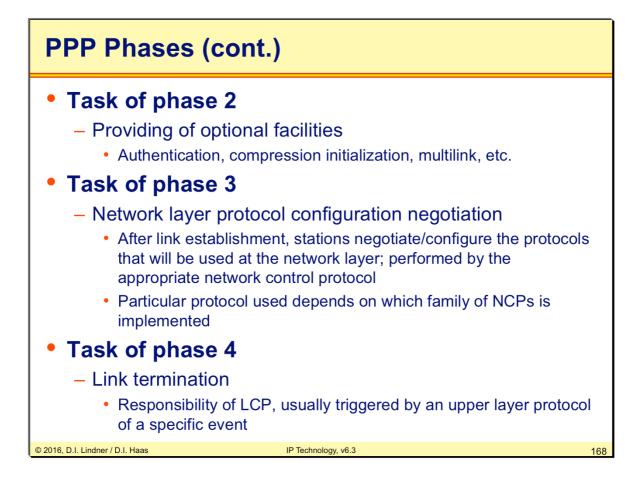

Protocol Field Values:

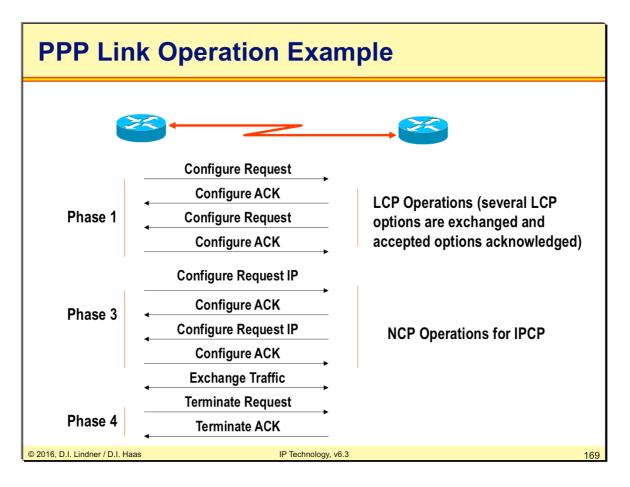

Protocol field values in the "0\*\*\*" to "3\*\*\*" range identify the network-layer protocol of specific packets, and values in the "8\*\*\*" to "b\*\*\*" range identify packets belonging to the associated Network Control Protocols (NCPs), if any. Protocol field values in the "4\*\*\*" to "7\*\*\*" range are used for protocols with low volume traffic which have no associated NCP. Protocol field values in the "c\*\*\*" to "f\*\*\*" range identify packets as link-layer Control Protocols (such as LCP).

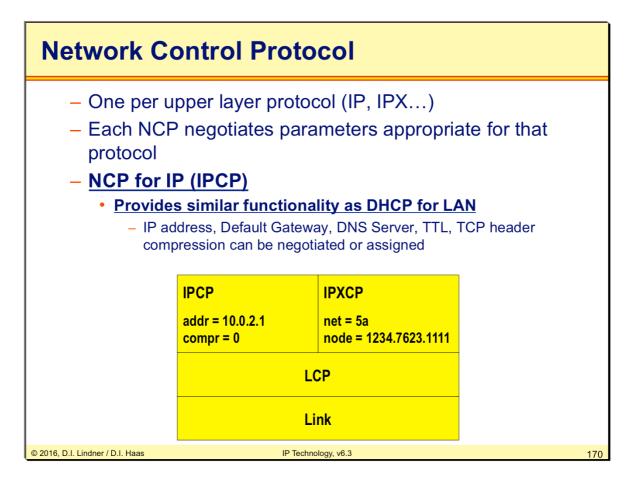

All these numbers are controlled by the IANA (see RFC-1060).


| LCP Tasks                                                    |                                                                                                                     |     |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----|
| <ul><li>Setup, configure,</li><li>Supports various</li></ul> | of PPP connection<br>, test and terminate PPP connection<br>s environments<br>onfiguration options to be negotiated |     |
|                                                              | rmat options                                                                                                        |     |
| © 2016, D.I. Lindner / D.I. Haas                             | IP Technology, v6.3                                                                                                 | 162 |


In order to be sufficiently versatile to be portable to a wide variety of environments, PPP provides a Link Control Protocol (LCP). The LCP is used to automatically agree upon the encapsulation format options, handle varying limits on sizes of packets, authenticate the identity of its peer on the link, determine when a link is functioning properly and when it is defunct, detect a looped-back link and other common misconfiguration errors, and terminate the link.











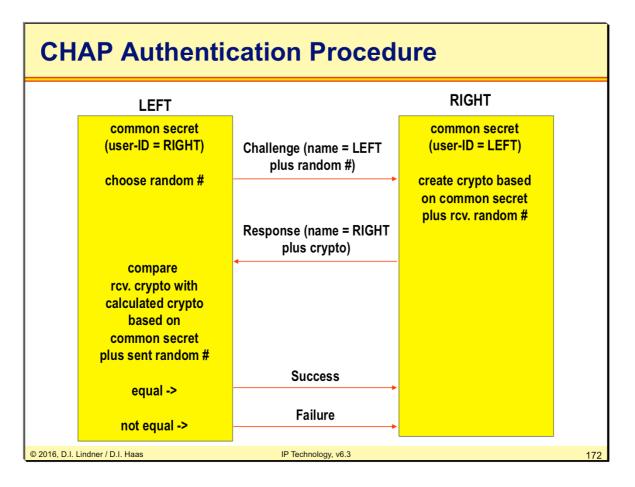



Point-to-Point links tend to exacerbate many problems with the current family of network protocols. For instance, assignment and management of IP addresses, which is a problem even in LAN environments, is especially difficult over circuit-switched point-to-point links (such as dial-up access servers). These problems are handled by a family of Network Control Protocols (NCPs), which each manage the specific needs required by their respective network-layer protocols.

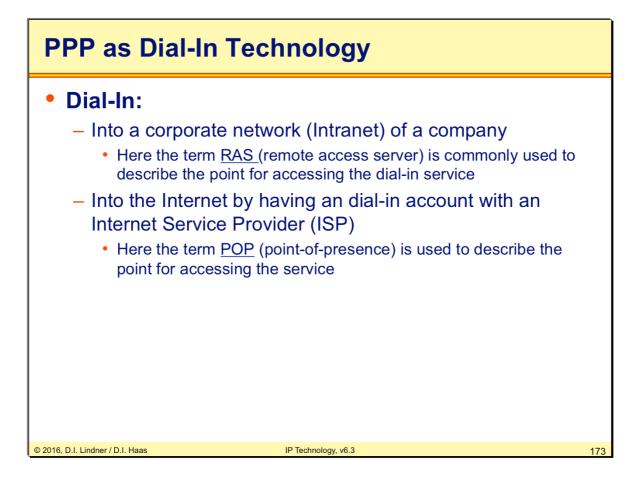
NCPs have been developed for all important network layer protocols such as IP, which uses the IP Control Proocol (IPCP).

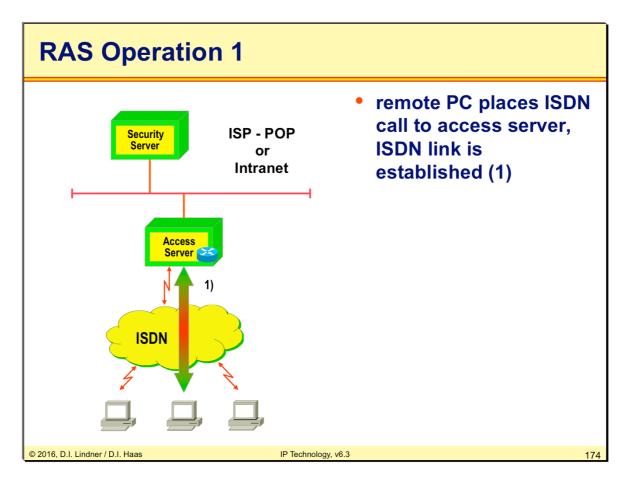
There are also NCPs designed to enable compression and authentication.

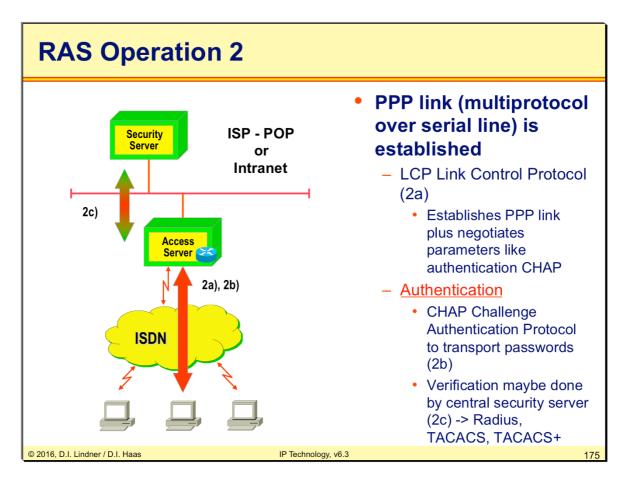
# **CHAP Authentication RFC 1994**

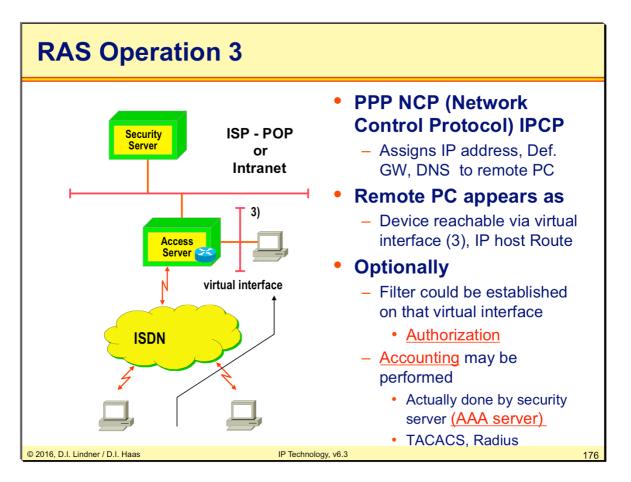

#### Challenge Authentication Protocol

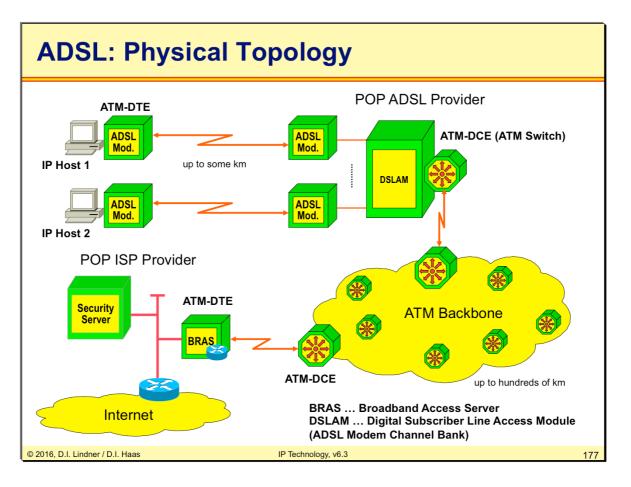
- Follows establishment of LCP
- Identifies user
- Three way handshake procedure
- One way authentication only
- Station which starts the three way handshake proofs authentication of other station
- Cryptographic hash function (e.g. keyed MD5) is applied to random numbers used (hopefully) only once
  - Network snooping does not reveal any passwords
  - Offline dictionary attacks are possible
- Overcomes weaknesses of PAP (Password Authentication Protocol) which used transmission of cleartext passwords (!!!)
- Three way handshake have to be performed in both directions
  - If two way authentication is necessary

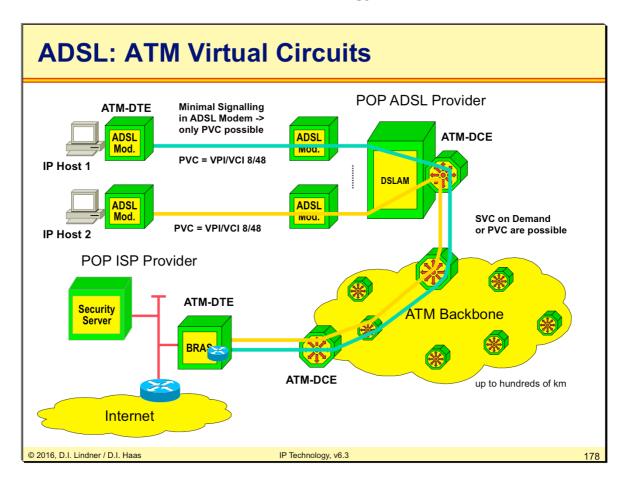

© 2016, D.I. Lindner / D.I. Haas

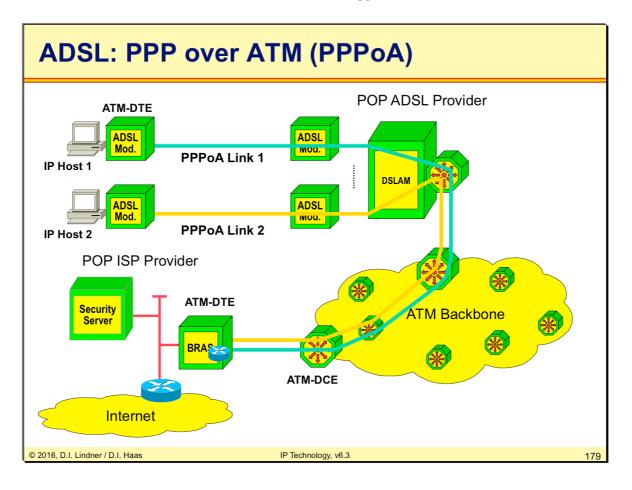

IP Technology, v6.3

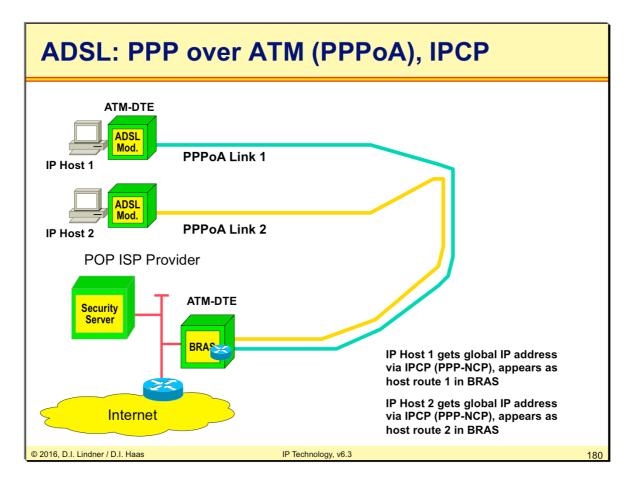

171

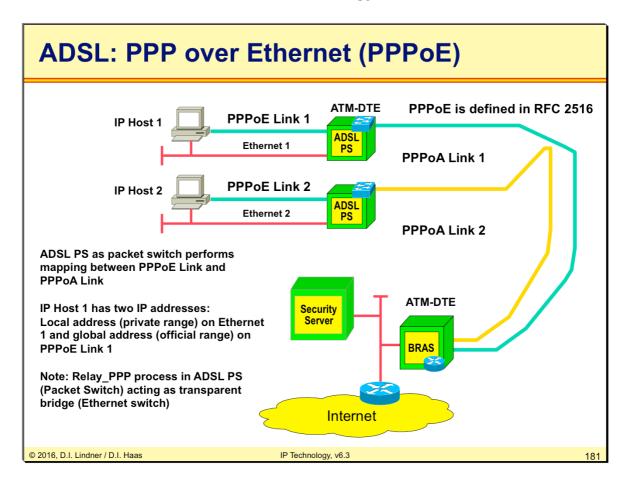


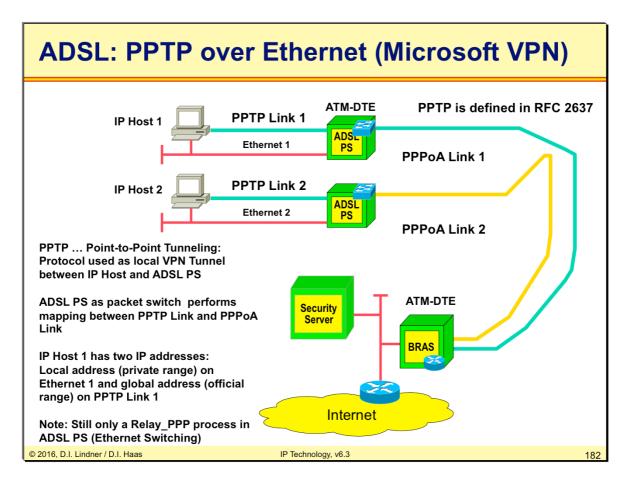


After PPP link successfully installed by LCP the local station sends a challenge message to remote station. The challenge contain random number and own user-id. Remote station replies with value using one way hash function (e.g. MD5) based on crypto negotiated (pre-shared secret configured already) for this user-id. Response is compared with LEFT stations own calculation of random number with same crypto. If equal a success messages is sent to remote station (if unequal a failure message is sent). Thee way Handshake is complete. Now LEFT has verified that RIGHT knows the secret hence RIGHT is successfully identified (one-way authentication). For the other direction the same procedure takes place in the other direction. After additional three messages we can reach two-way authentication (LEFT is successfully identified by right).

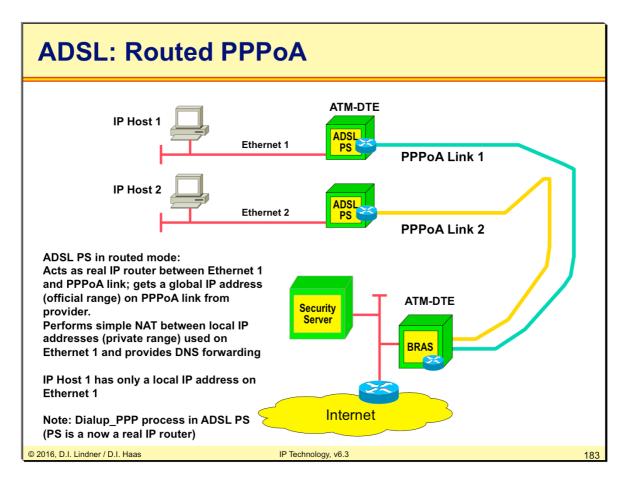


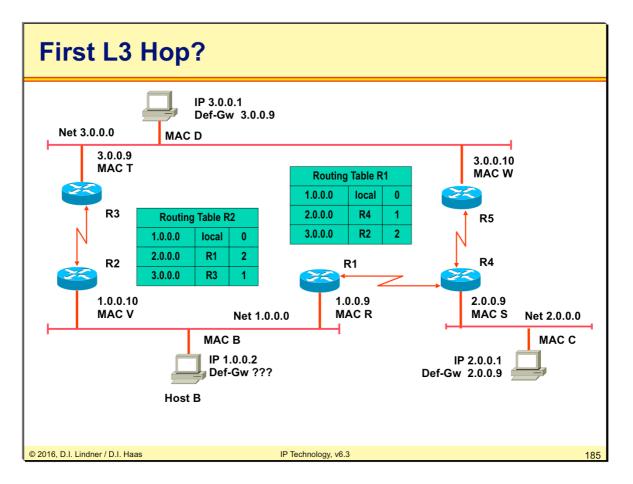



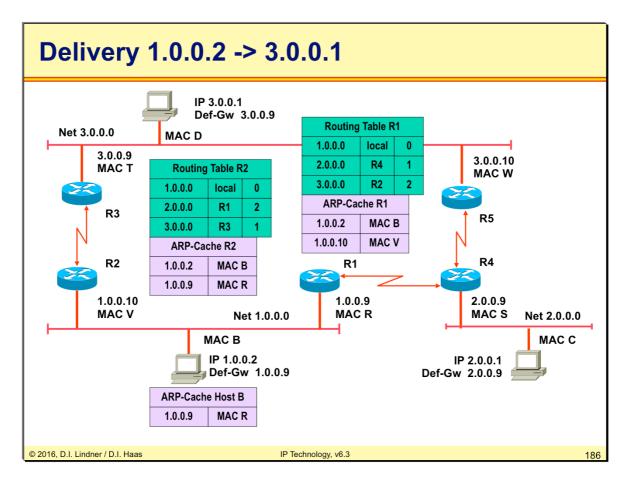





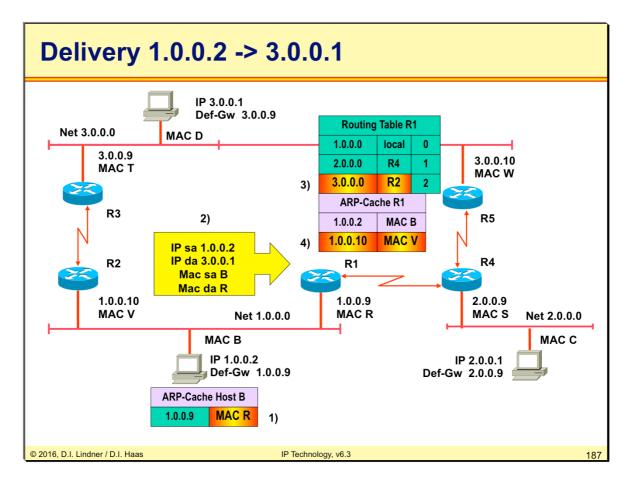



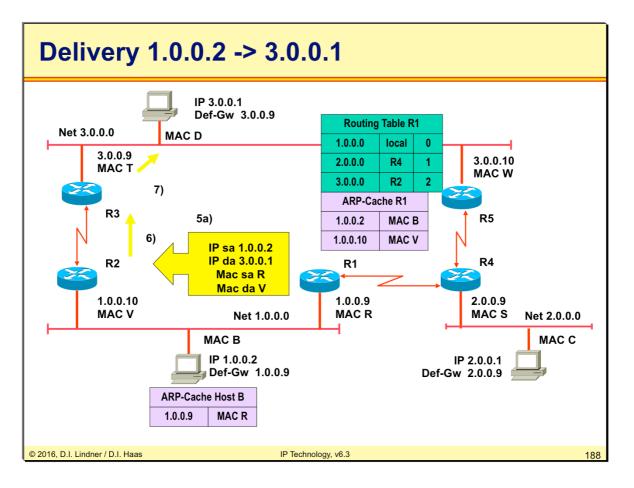


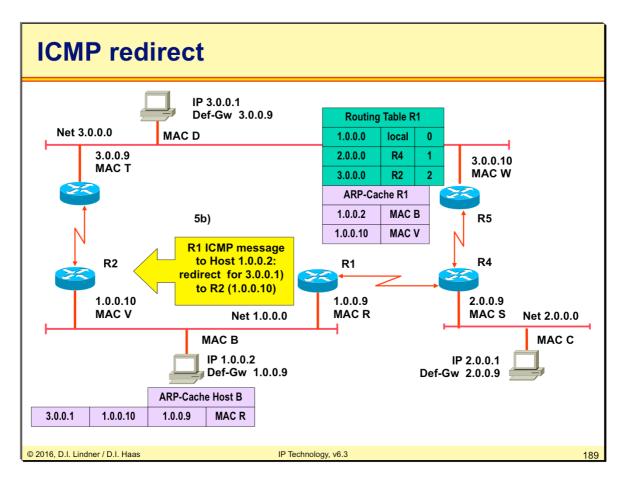



| Agenda                                                                                                                                                                                                                                                                                                                                                                              |                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| <ul> <li>Introduction         <ul> <li>Short History of the Interr</li> <li>Basic Principles</li> </ul> </li> <li>IP         <ul> <li>IP Protocol</li> <li>IP QoS</li> <li>Addressing</li> <li>Classful versus Classles</li> </ul> </li> <li>IP Forwarding         <ul> <li>Principles</li> <li>ARP</li> <li>ICMP</li> <li>PPP</li> </ul> </li> <li>First Hop Redundance</li> </ul> | s (not part of the exam!) |
| <ul> <li>First Hop Redundancy</li> <li>Proxy ARP, IDRP</li> <li>HSRP</li> <li>VRRP (not part of the example</li> </ul>                                                                                                                                                                                                                                                              |                           |
| © 2016, D.I. Lindner / D.I. Haas                                                                                                                                                                                                                                                                                                                                                    | IP Technology, v6.3 184   |

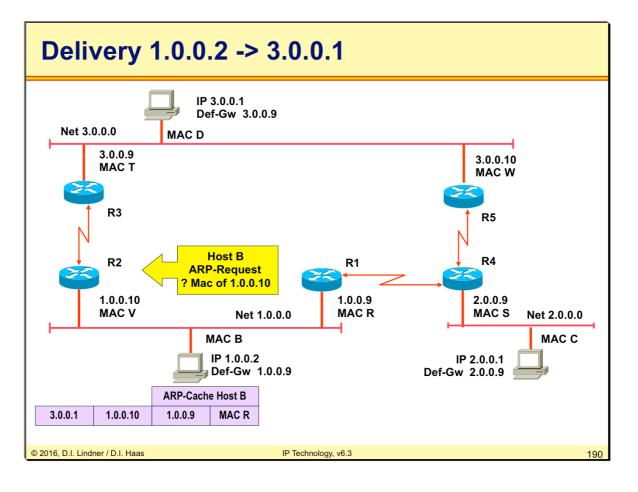


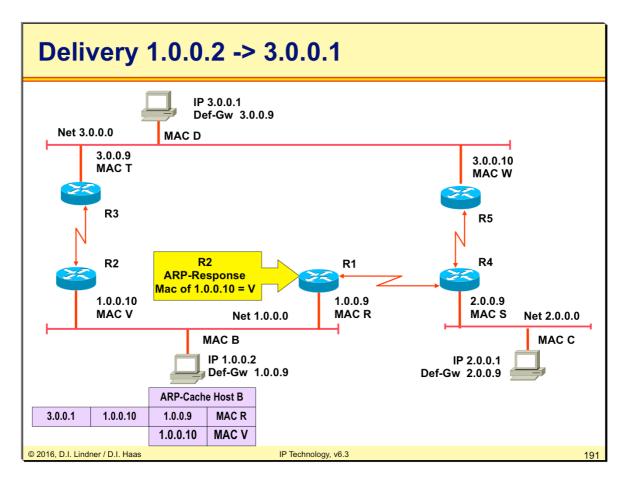


The drawing shall outline the basic problem in case of redundancy of local routers. If only the IP address one default gateway is configurable in the end system B, which one should be configured? As long as both default gateways R1 and R2 are available there is no problem when host B takes the wrong (more far away) default gateway in order to reach a destination network. Remember that in such a case a router will forward the IP datagram to the other router and will sent a ICMP redirect message to host B. But what if the router which is configured as default-gateway is not any longer powered-on? Then host B can not reach foreign networks in case of indirect delivery.



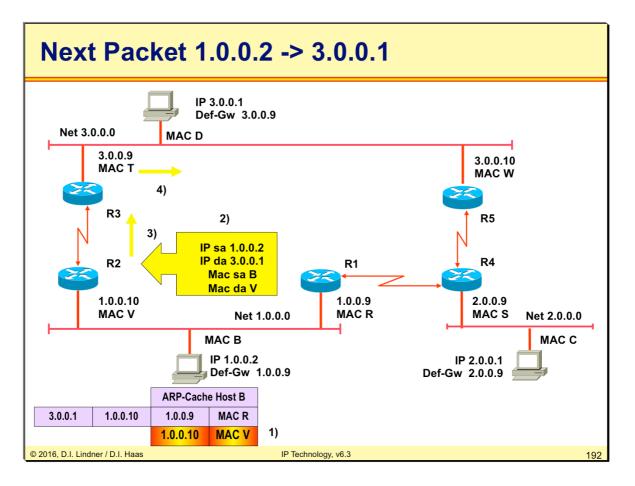

Assume IP host 1.0.0.2 selects router R1 1.0.0.9 as one and only default-router.

Picture shows that ARP caches are already filled with appropriate mappings of L2 and L3 addresses.

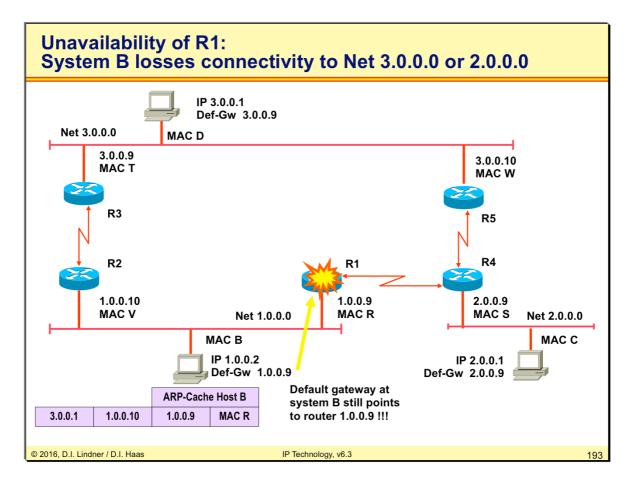


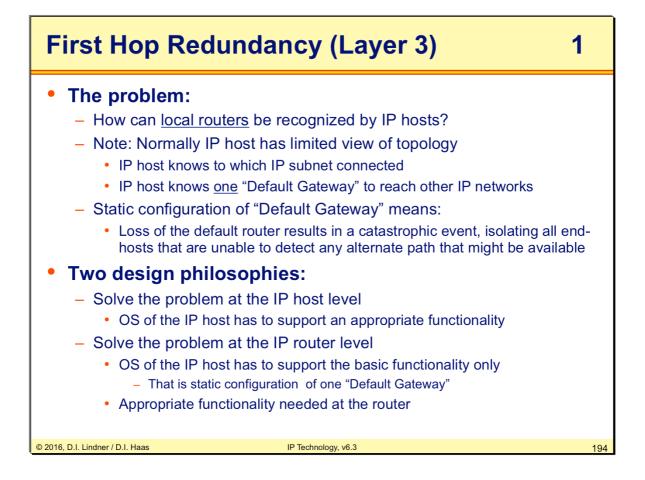

At router R1 the IP datagram is forwarded on the same interface as it was received -> redirect would be nice to avoid sending this datagram twice on net 1.0.0.0.

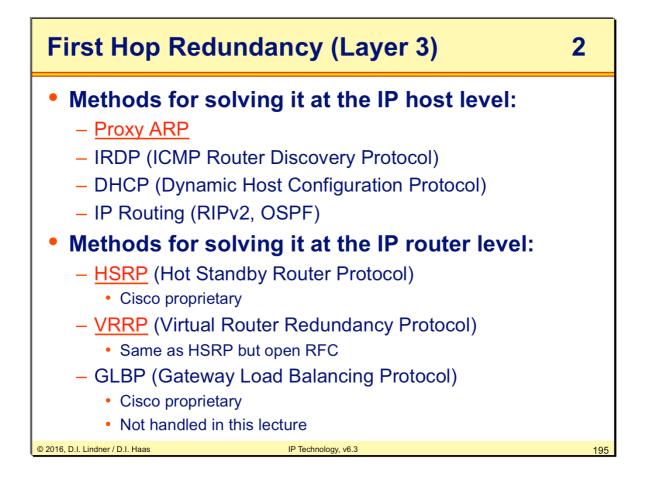



Message 5b is sent to IP 1.0.0.2 !!!







ARP response is sent to IP 1.0.0.2




Next datagram of 1.0.0.0 is now sent to the correct (nearer) router.



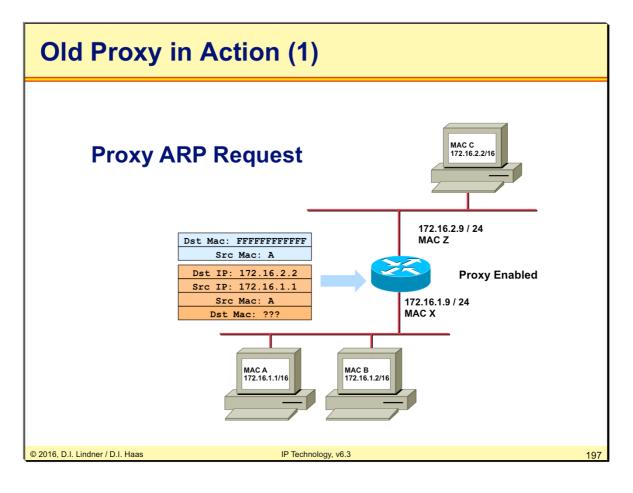
Imagine what happens when R1 is lost. IP host 1.0.0.2 can nor reach any foreign IP network anymore, because it still points to MAC R of 1.0.0.9. We have a black-hole problem. Even after ARP cache times out there is still no automatic possibility for IP host 1.0.0.2 to switch to router R2.

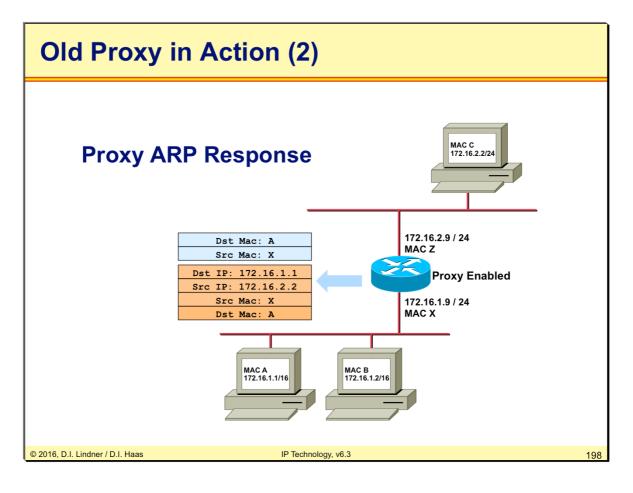


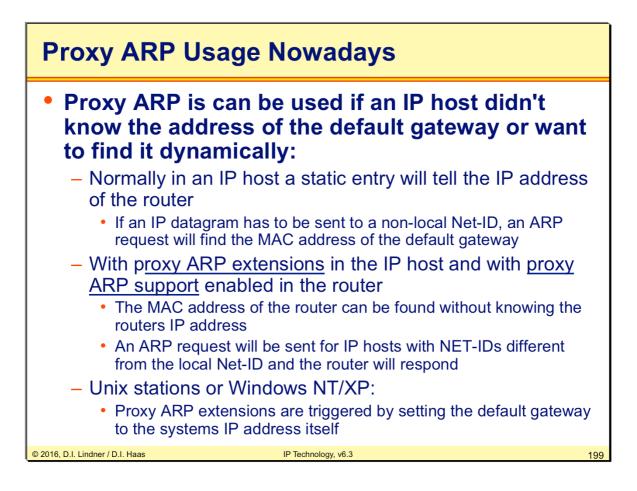


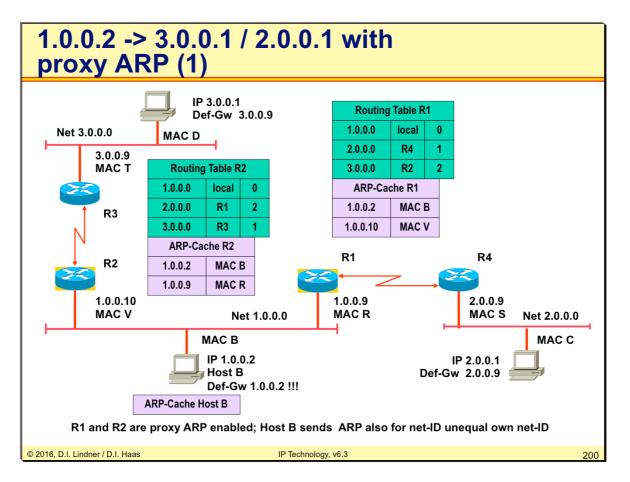
# Old Proxy ARP Usage

- Old method for migration from transparent bridging to IP routing
  - Two LANs connected by a transparent bridge (=broadcast domain) using a given IP Net-ID should be decoupled by a router
  - IP address were already assigned to the LAN segments in such a way that IP subnets can be built by the replacing router
  - Now by enabling proxy ARP gateway functionality on the router the host can still use their old subnet mask in order to communicate with all other stations
  - The proxy ARP gateway of the router will answer ARP requests
  - Term "proxy" means "instead of"
    - Some system is doing some function instead of the expected system


#### Replaced nowadays by usage of IP subnetting

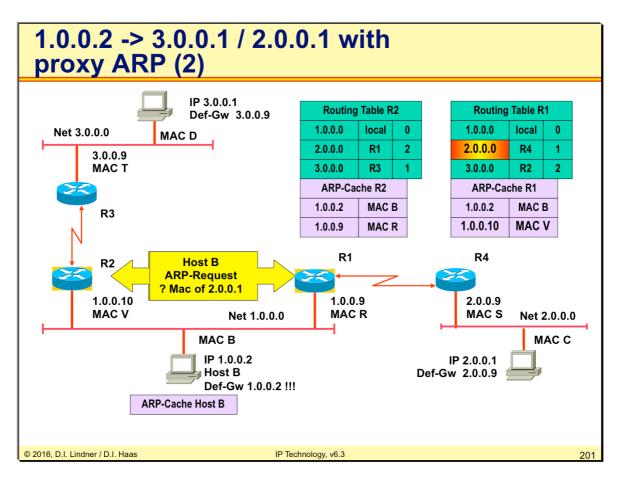

- on all systems


© 2016, D.I. Lindner / D.I. Haas

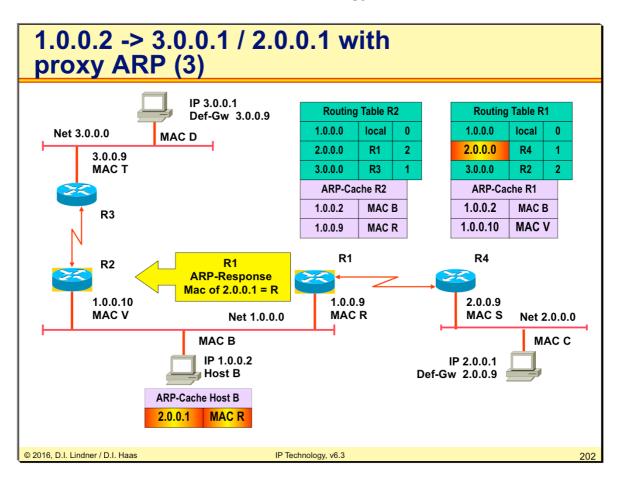

IP Technology, v6.3

196



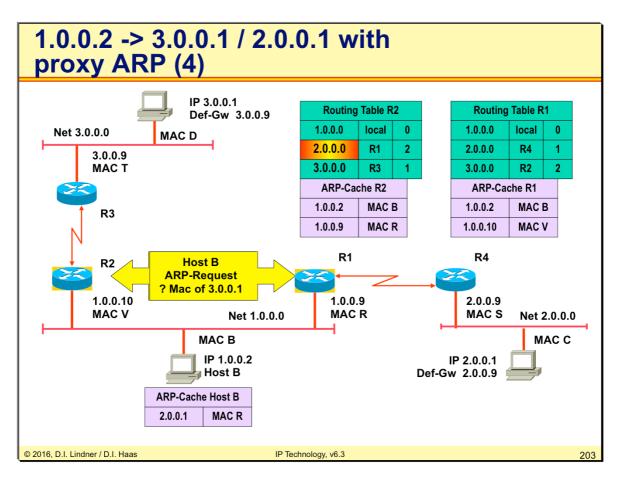




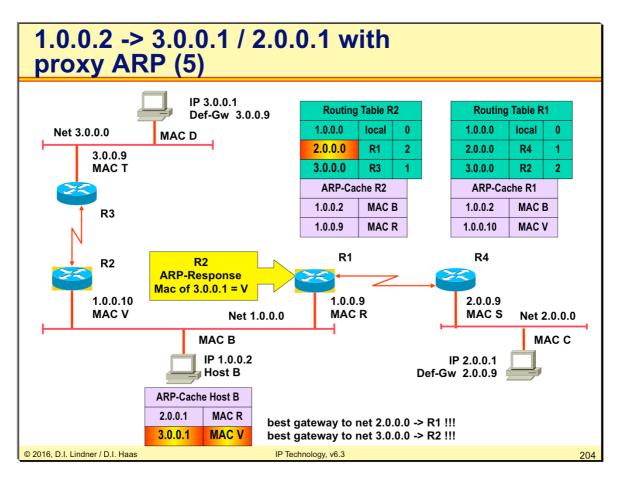




Router R1 and R2 are configured to support proxy ARP (acting as a proxy ARP gateway). Host B is configured to use proxy ARP extension by pointing to its own IP address as default gateway.

Cisco routers have proxy ARP gateway functionality enabled by default You have to turn it off, if you do not want it.

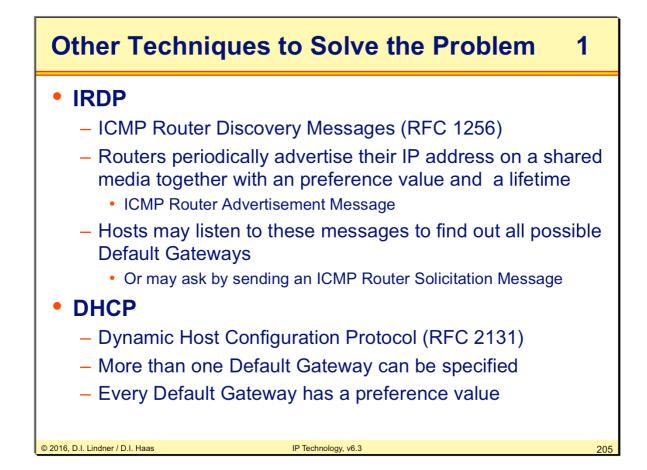


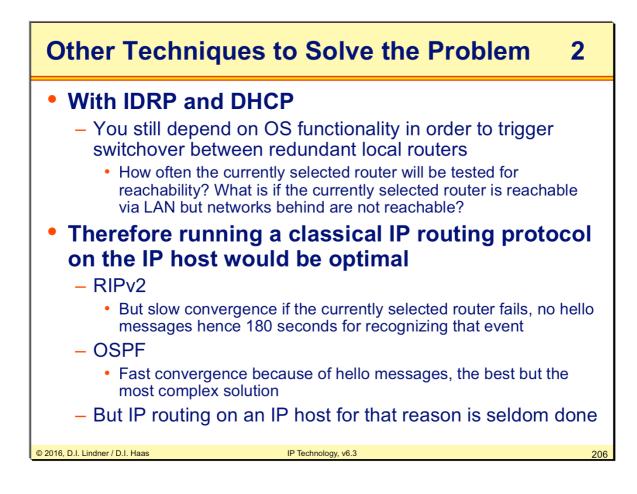

Request is sent to all systems on the given LAN (ARP request uses L2 broadcast addressing)!



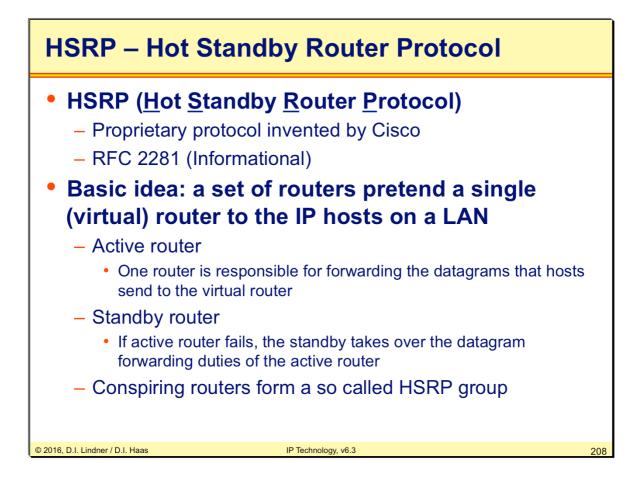

Response of R1 sent to Host B only (ARP reply uses L2 directed addressing)!

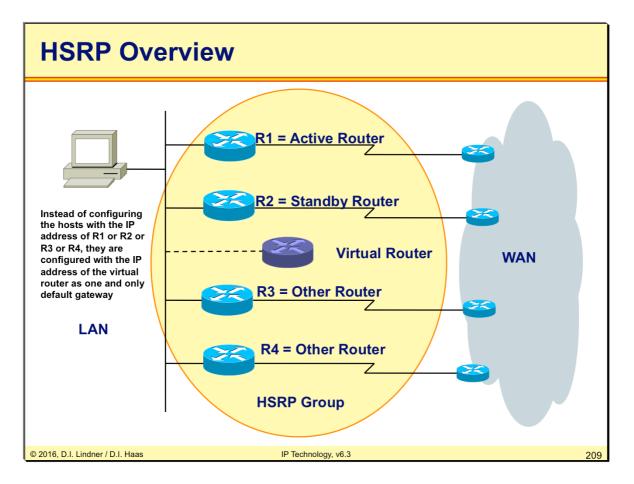
R2 will not answer the ARP request because a proxy ARP GW must not reply if the destination is reachable through the same interface. Either the destination is in same segment or another proxy ARP GW will reply, knowing a better route.



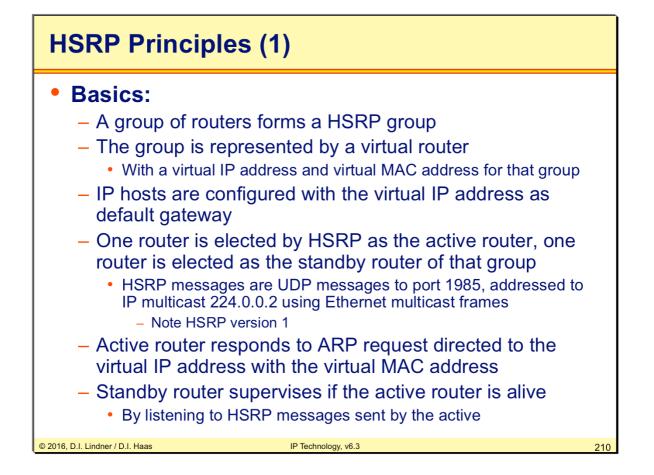


Request is sent to all systems on the given LAN (ARP request uses L2 broadcast addressing)!



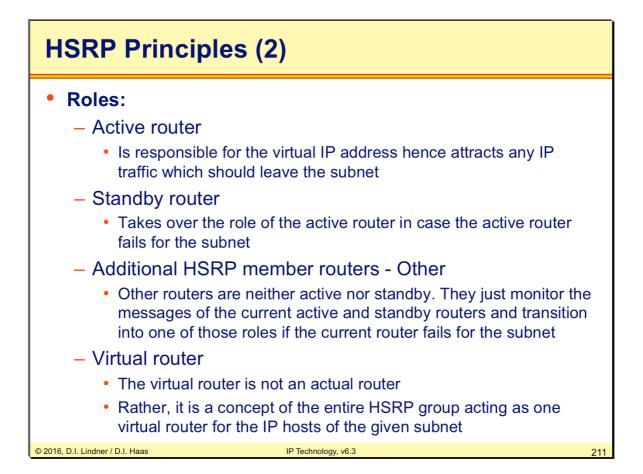

Response of R2 sent to Host B only (ARP reply uses directed addressing)!


By the way: Think about security. What will happen if ARP replies are spoofed by another machine on the LAN network - wanting to become Man-In-The-Middle. That was not in the design. Instead the standard says that if there are multiple proxy ARP GWs in the same subnet the requesting host should use the first ARP response it receives. The reason for that approach was the implementation of a simple load balancing service.

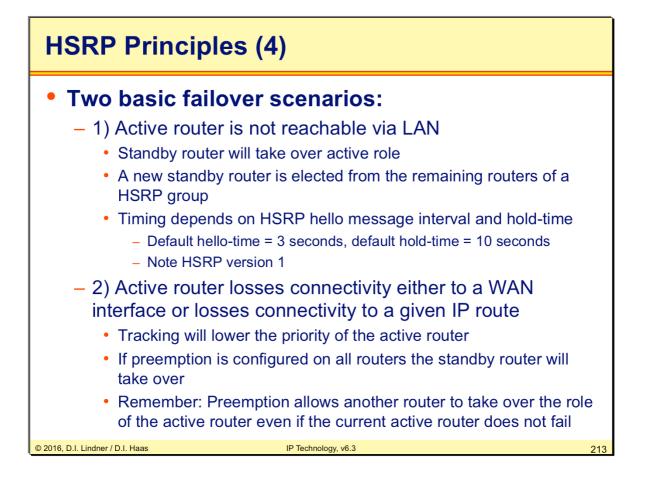





| Agenda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| <ul> <li>Basic Principles</li> <li>IP</li> <li>IP Protocol</li> <li>IP QoS</li> <li>Addressing</li> <li>Classful versus Class</li> <li>IP Forwarding</li> <li>Principles</li> <li>ARP</li> <li>ICMP</li> <li>PPP</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ernet (not part of the exam!)<br>less (not part of the exam!) |
| <ul> <li>First Hop Redundan         <ul> <li>Proxy ARP, IDRP</li> <li>HSRP</li> <li>VRRP (not part of the second sec</li></ul></li></ul> |                                                               |
| © 2016, D.I. Lindner / D.I. Haas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IP Technology, v6.3 207                                       |

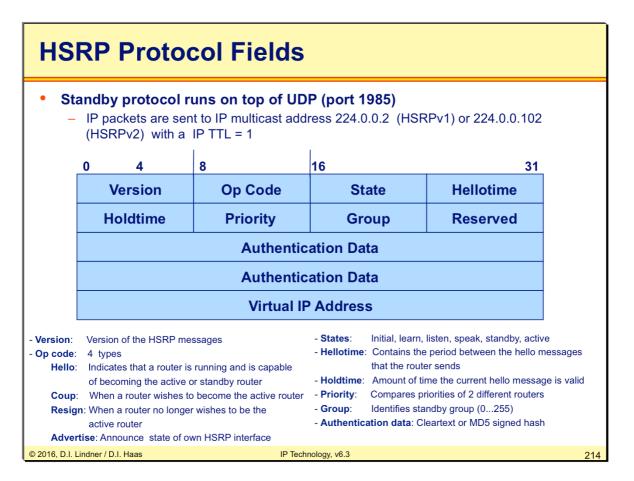






Router 1 is configured as the active router. It is configured with the IP address and the MAC address of the virtual router and listens to both virtual addresses (IP and MAC). The standby router, R2 is also configured with the IP address and MAC address of the virtual router (IP and MAC). If for any reason Router 1 stops, the HSRP routing protocol converges, and Router 2 assumes the duties of Router A and becomes the active router. Router 2 is now listening to the virtual IP address and the virtual MAC address. Additionally one of the other routers is elected to be the new standby router.



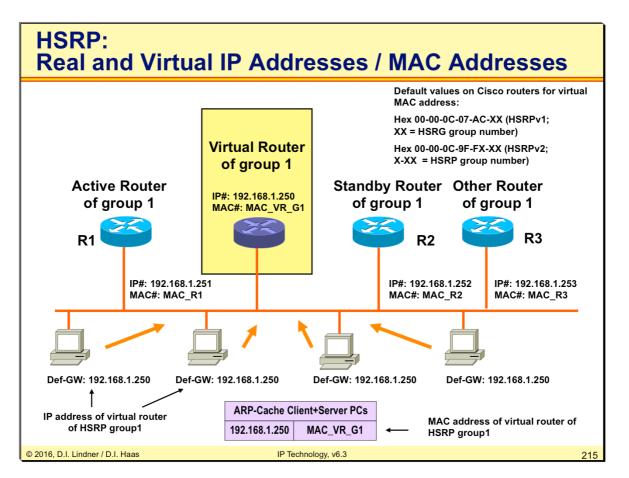
Note: Routers must be able to support more than one unicast MAC address on an Ethernet interface. The active router has to listen to its own MAC address and the MAC address of the virtual router, it represents. That is not the normal behavior of an Ethernet network card. Therefore new network hardware was necessary for routers in order to support HSRP.




| HSRP Principles (3)                                                                                                                    |  |
|----------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Roles (cont.):</li> </ul>                                                                                                     |  |
| <ul> <li><u>Active</u>, <u>Standby</u>, <u>Other</u> defined by HSRP priority</li> </ul>                                               |  |
| <ul> <li>Priority value can be configured</li> </ul>                                                                                   |  |
| <ul> <li>Default value is 100</li> </ul>                                                                                               |  |
| <ul> <li>The higher the better</li> </ul>                                                                                              |  |
| <ul> <li>Will become the active router after initialization</li> </ul>                                                                 |  |
| <ul> <li>If priority is equal than the higher IP address decides</li> </ul>                                                            |  |
| <ul> <li>Preemption allows to give up the role of the active router</li> </ul>                                                         |  |
| <ul> <li>When a router with higher priority is reported by HSRP messages</li> </ul>                                                    |  |
| <ul> <li>Preemption happens</li> </ul>                                                                                                 |  |
| <ul> <li>Either when the failed router comes back, a better router is<br/>activated or object tracking has changed priority</li> </ul> |  |
| © 2016, D.I. Lindner / D.I. Haas IP Technology, v6.3 21                                                                                |  |



Tracking options have to be configured – otherwise only failover scenario 1 will be supported by HSRP.


Connectivity loss to a WAN interface is detected by Cisco IOS basic tracking options, Connectivity loss to an IP route is detected by Cisco IOS enhanced tracking options. The presence of enhanced tracking options depends on IOS version.



HSRP Versions:

HSRP version 1: Second timers 256 groups (0 – 255) Virtual Mac Address: 00-00-0C-07-AC-XX (XX value = HSRP group number) IP multicast 224.0.0.2

HSRP version 2: Millisecond timers Hello-time 15 - 999 milliseconds Hold-time - 3000 millseconds 4096 groups (0-4095) -> Allow a HSRP group number to match the extended VLAN-ID Virtual Mac Address: 00-00-0C-9F-FX-XX (X-XX value = HSRP group number) IP multicast 224.0.0.102 -> To avoid conflicts with CGMP (Cisco Group Management Protocol, which uses 224.0.0.2)

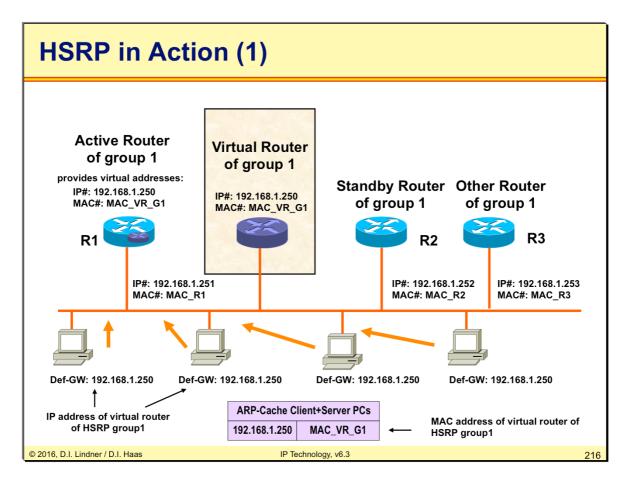


Some more HSRP details:

The <u>active router</u> assumes and maintains its active role through the transmission of hello messages (default 3 seconds, HSRP version 1.

The hello interval time defines the interval between successive HSRP hello messages sent by active and standby routers.

The router with the highest standby priority in the group becomes the active router.


The default priority for an HSRP router is 100.

When the preempt option is not configured, the first router to initialize HSRP becomes the active router.

The second router in the HSRP group to initialize or second highest priority is elected as the standby router.

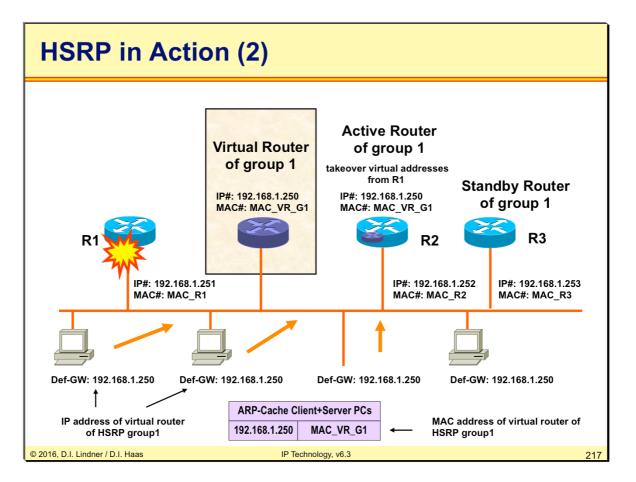
The function of the standby router is to monitor the operational status of the HSRP group and to quickly assume datagram-forwarding responsibility if the active router becomes inoperable.

The standby router also transmits hello messages to inform all other routers in the group of its standby router role and status.



Some more HSRP details:

The virtual router presents a consistent available router (default gateway) to the hosts .


The virtual router is assigned its own IP address and virtual MAC address. However, the active router acting as the virtual router actually forwards the packets.

Additional HSRP member routers - other routers :

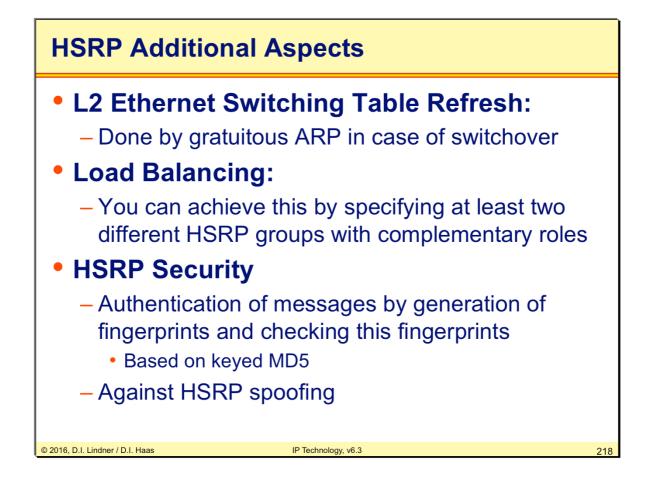
These routers in listen state monitor the hello messages but do not respond.

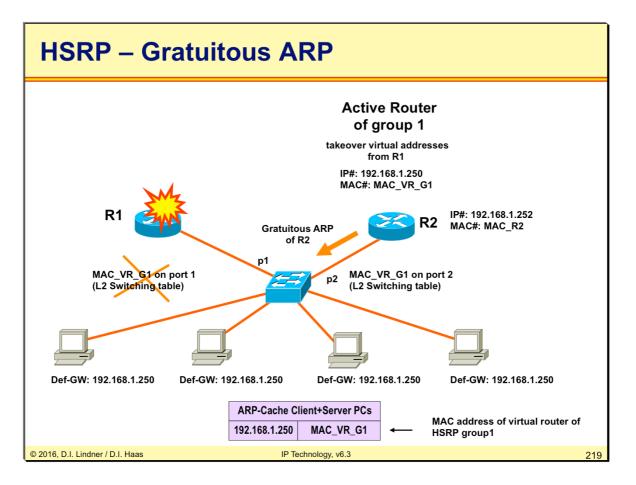
They forward any packets addressed to their own IP addresses.

They do <u>not</u> forward packets destined for the virtual router because they are not the active router.

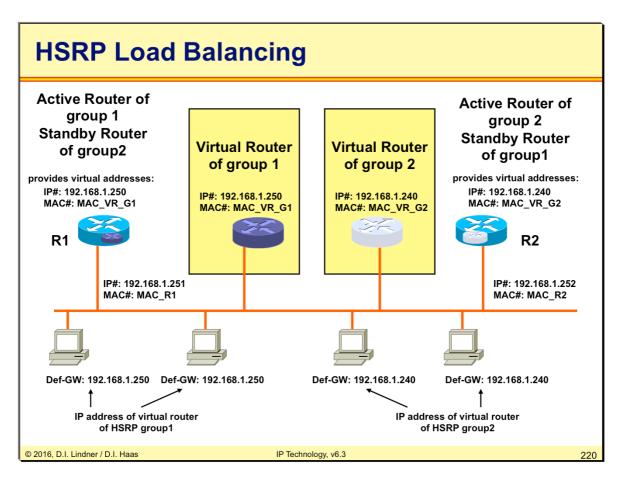


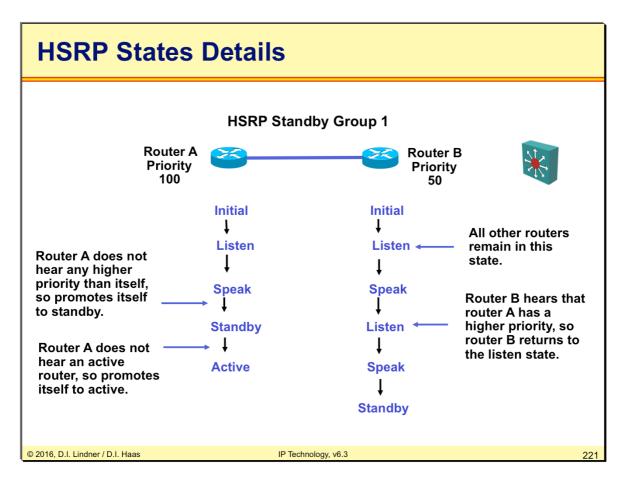
Some more HSRP details:


When the active router fails, the HSRP routers stop receiving hello messages from the active and the standby router assumes the role of the active router.


This occurs when the *holdtime* expires (default 10 seconds, HSRP version 1).

If there are other routers participating in the group, those routers then contend to be the new standby router.


Because the new active router assumes both the IP address and virtual MAC address of the virtual router, the end stations see no disruption in service.


The end-user stations continue to send packets to the virtual router's virtual MAC address and IP address where the new active router delivers the packets to the destination.



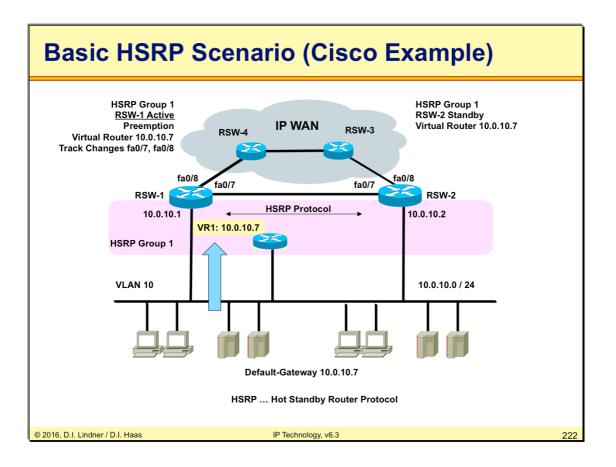


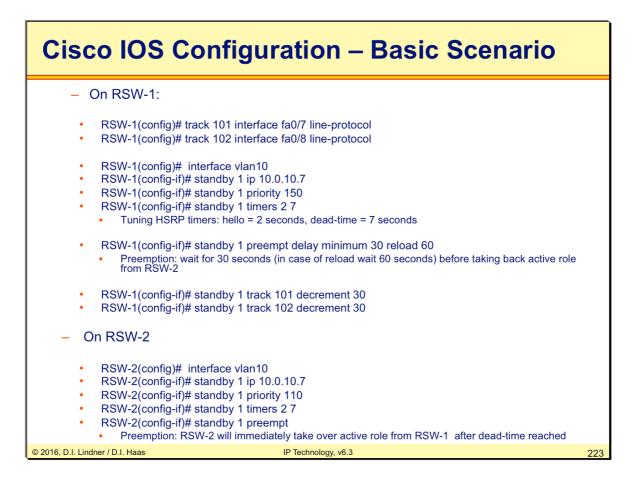
Gratuitous ARP has to be sent by router R2 in order to actualize the MAC address table of the underlying L2 Ethernet switches. Now port p2 points to the virtual Mac address MAC\_VR\_G1.

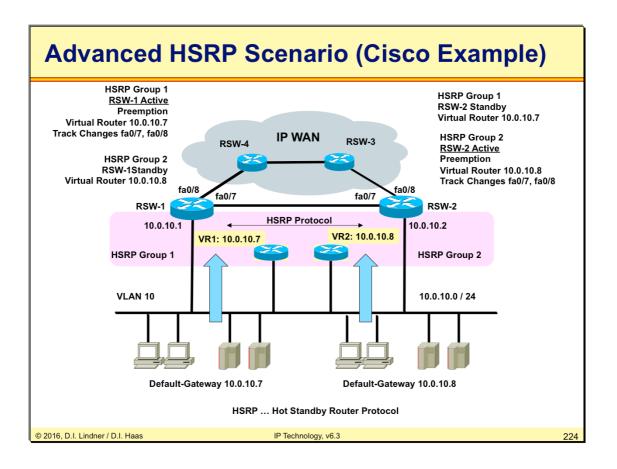




*Initial state*— All routers begin in the initial state. This state is entered via a configuration change or when an interface is initiated.


*Learn state*— The router has not determined the virtual IP address, and has not yet seen a hello message from the active router. In this state, the router is still waiting to hear from the active router.


*Listen state*— The router knows the virtual IP address, but is neither the active router nor the standby router. All other routers participating in the HSRP group besides the active or standby routers reside in this state.

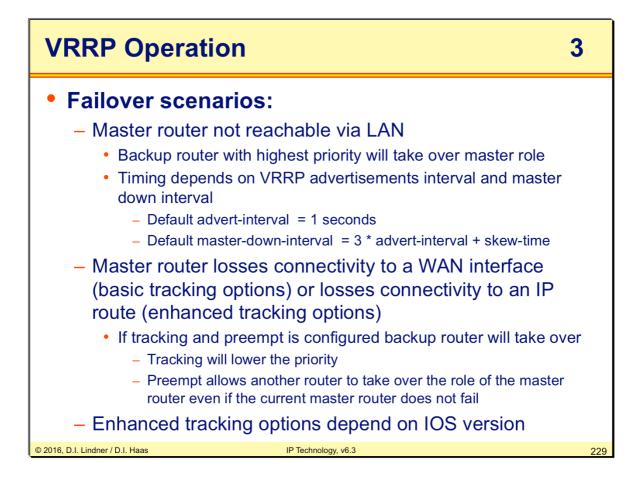

**Speak state**— HSRP routers in the speak state **send periodic hello messages and actively participate in the election of the active or standby router**. The router remains in the speak state unless it becomes an active or standby router.

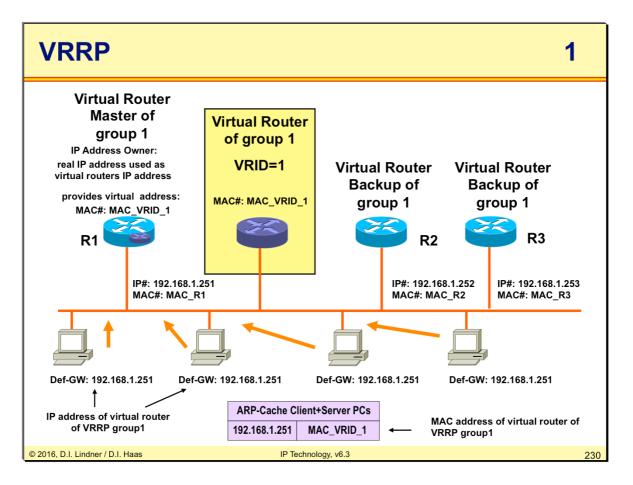
*Standby state*— In the standby state, the HSRP router is a **candidate to become the next active router** and sends periodic hello messages. There must be at least one standby router in the HSRP group.

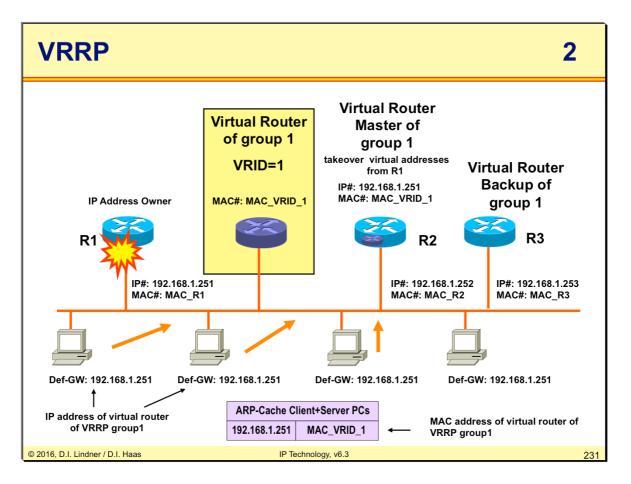
*Active state*— In the active state, the router is **currently forwarding packets** that are sent to the virtual MAC and IP address of the HSRP group. The active router also sends periodic hello messages.

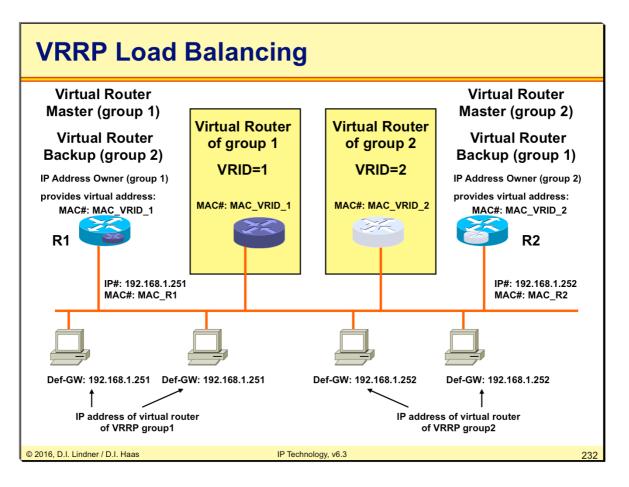




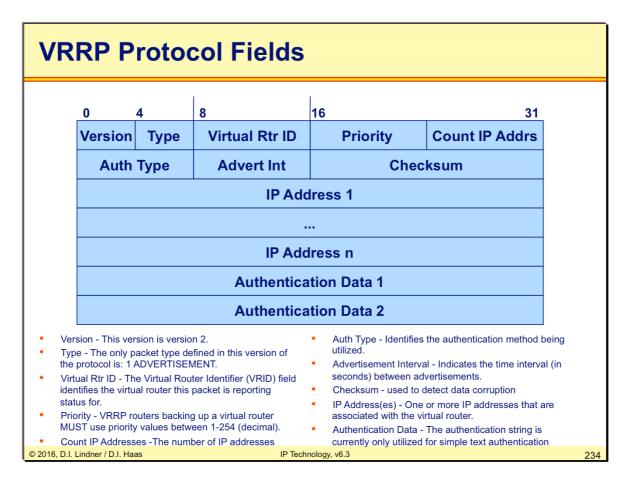




| isco IOS Configuration – Adv. Scenario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Iterface fa0/8 line-protocol<br>lan10<br>irsion 2<br>ip 10.0.10.7<br>priority 150<br>timers msec 300 msec 950<br>o = 300 milliseconds, dead-time = 950 milliseconds<br>preempt delay minimum 30 reload 60<br>track 101 decrement 30<br>track 102 decrement 30<br>? ip 10.0.10.8<br>priority 110<br>timers msec 300 msec 950 |  |
| <ul> <li>On RSW-2</li> <li>RSW-2(config)# track 101 ir<br/>RSW-2(config)# track 102 ir<br/>RSW-2(config)# track 102 ir<br/>RSW-2(config)# standby ve<br/>RSW-2(config-if)# standby '<br/>RSW-2(config-if)# standby '</li> </ul> | tterface fa0/8 line-protocol<br>lan10<br>rrsion 2<br>lip 10.0.10.7<br>priority 110<br>timers msec 300 msec 950<br>preempt<br>lip 10.0.10.8<br>priority 150<br>timers msec 300 msec 950<br>preempt delay minimum 30 reload 60<br>track 101 decrement 30                                                                      |  |
| D.I. Lindner / D.I. Haas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IP Technology, v6.3                                                                                                                                                                                                                                                                                                         |  |


| Agenda                                                                                                                                                                                                                                                                                                                           |                         |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| <ul> <li>Introduction <ul> <li>Short History of the Internet</li> <li>Basic Principles</li> </ul> </li> <li>IP <ul> <li>IP Protocol</li> <li>IP QoS</li> <li>Addressing</li> <li>Classful versus Classless</li> </ul> </li> <li>IP Forwarding <ul> <li>Principles</li> <li>ARP</li> <li>ICMP</li> <li>PPP</li> </ul> </li> </ul> |                         |  |
| <ul> <li>First Hop Redundancy         <ul> <li>Proxy ARP, IDRP</li> <li>HSRP</li> <li>VRRP (not part of the example)</li> </ul> </li> </ul>                                                                                                                                                                                      | m!)                     |  |
| © 2016, D.I. Lindner / D.I. Haas                                                                                                                                                                                                                                                                                                 | IP Technology, v6.3 226 |  |


| VRRP Operation 1                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>VRRP (<u>Virtual Router Redundancy Protocol</u>)</li> </ul>                                                                                              |
| <ul> <li>RFC 2338 (Standards Track)</li> </ul>                                                                                                                    |
| Principle:                                                                                                                                                        |
| <ul> <li>A group of routers forms a VRRP group</li> </ul>                                                                                                         |
| <ul> <li>The group is represented by a virtual router</li> </ul>                                                                                                  |
| • With is identified by a VRID ( <u>Virtual Router ID</u> ) and a virtual MAC address                                                                             |
| <ul> <li>One router is elected as the <u>virtual router master</u>, all other routers get the<br/>role of <u>virtual router backup</u> routers</li> </ul>         |
| <ul> <li>The real IP address of the virtual router master become the IP address of the virtual router for a given VRRP group</li> <li>IP address owner</li> </ul> |
| <ul> <li>Default Gateway of IP hosts is configured with the IP address of the virtual router for a given VRRP group</li> </ul>                                    |
| <ul> <li>Virtual router master responds to ARP request directed to the IP address of<br/>the virtual router with the virtual MAC address</li> </ul>               |
| <ul> <li>Backup routers supervise if master router is alive and take over the role of the<br/>master in case of failure</li> </ul>                                |
| <ul> <li>VRRP protocol using IP protocol number 112, IP multicast 224.0.0.18, and Ethernet<br/>multicast as destination address</li> </ul>                        |
| <ul> <li>Router must be able to support more than one unicast MAC address on an<br/>Ethernet interface</li> </ul>                                                 |
| © 2016, D.I. Lindner / D.I. Haas IP Technology, v6.3 227                                                                                                          |

| VRRP Operat                           | ion                                                                      | 2                |
|---------------------------------------|--------------------------------------------------------------------------|------------------|
| Roles of router                       | :                                                                        |                  |
| <ul> <li>Virtual router ma</li> </ul> | aster, virtual router backup defined by                                  | VRRP priority    |
| <ul> <li>Priority value ca</li> </ul> | an be configured                                                         |                  |
| Default value                         | is 100                                                                   |                  |
| <ul> <li>The higher the t</li> </ul>  | petter                                                                   |                  |
| <ul> <li>Will become t</li> </ul>     | he master after initialization                                           |                  |
| <ul> <li>If priority is ed</li> </ul> | qual than the higher IP address decides                                  |                  |
| · ·                                   | to give up the role of the master route<br>rity is activated or reported | er when a router |
| • e.g. a failed ro                    | outer comes back or tracking has changed                                 | d priority       |
| Load Balancing                        | <b>j</b> :                                                               |                  |
| <ul> <li>Specify at least</li> </ul>  | two different VRRP groups with comp                                      | ementary roles   |
| VRRP authentic                        | cation:                                                                  |                  |
| <ul> <li>Based on keyed</li> </ul>    | 1 MD5                                                                    |                  |
| <ul> <li>Against VRRP s</li> </ul>    | spoofing                                                                 |                  |
| © 2016, D.I. Lindner / D.I. Haas      | IP Technology, v6.3                                                      | 228              |










# <section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

