

OSPF – Introduction

The IETF Routing Master Part 1

(C) Herbert Haas 2005/03/11

Linus Torvalds in kernel/sched.c

"Open Shortest Path First"

- Official (IETF) successor of RIP
 - RIP is slow
 - RIP is unreliable
 - RIP produces too much routing traffic
 - RIP only allows 15 hop routes
- OSPF is a link-state routing protocol
 - Inherently fast convergence
 - Designed for large networks
 - Designed to be reliable

bad Voodoo...

OSPF Background

- OSPF is the IGP recommended by the IETF
- Open" means "not proprietary"
- Dijkstra's Shortest Path First algorithm is used to find the best path
- OSPF's father: John Moy
 - Version 1: RFC 1131
 - Version 2: RFC 2328 (244 pages !!!)
 - And a lot of additional OSPF related RFCs available...

Dijkstra's SPF Algorithm

- Used in graph theory
- Very efficient
- Calculates all paths to all destinations at once
- Creates a (loop-free) tree with local router as source
- See SPF section for more details

Edsger W. Dijkstra (1930-2002)

OSPF Ideas

- Metric: "Cost" = 10⁸/BW (in bit/s)
 - Therefore easily configurable per interface
- OSPF Routers exchange real topology information
 - Stored in dedicated topology databases
- Now Routers have a "roadmap"
 - Instead of signposts (RIP)
- Incremental updates
 - NO updates when there is NO topology change

What is Topology Information?

- The smallest topological unit is simply the information element ROUTER-LINK-ROUTER
- So the question is: Which router is linked to which other routers?

OSPF Topology Database

• every router maintains a topology database

- is like a "network roadmap"
- describes the whole network !!
- note: RIP provides only "signposts"

• database is based on a graph

- where each knot stands for a router
- where each edge stands for a subnet
 - connecting the routers
 - path-costs are assigned to the edges
- where the actual router uses the graph as root
 - to calculate shortest paths to all subnets

OSPF Domain

2005/03/11

Shortest Paths regarding Router R6

Creating the Database

- until now an a priori existing consistent database in every router has been assumed
- in fact, the basic means for creating and maintaining the database are the so-called

link states

- a link state stands for a local neighbourhood between two routers
 - the link state is created by these two routers
 - other routers are notified about this link state via a broadcast-mechanism ("traffic-news")
 - link states are verified continuously

How are Link States used?

- adjacent routers declare themselves as neighbours by setting the link state up (or down otherwise)
 - the link-state can be checked with hello messages
- every link state change is published to all routers of the OSPF domain using <u>Link State</u> <u>Advertisements (LSAs)</u>
 - is a broadcast mechanism
 - LSAs are much shorter than routing tables
 - because LSAs contain only the actual changes
 - that's why distance vector protocols are much slower
 - whole topology map relies on LSAs

- The routing updates are actually link state updates
 - Parts of link state database are exchanged
 - Instead of parts of routing table (RIP)
- Applying the SPF algorithm on the link state database, each router can create routing table entries by its own

- All OSPF messages are carried within the IP payload ("raw IP")
 Protocol number 89
- Error recovery and session management is covered by OSPF itself
- Multicast address 224.0.0.5
 - "All OSPF routers"

LSA Broadcast Mechanism

• LSA must be distributed safely to all routers within an area (domain)

- consistency of the topology-database depends on it
- every LS-update is acknowledged explicitly (using LS-ack) by the neighbour-router
- if a LS-ack stays out, the LS-update is repeated (timeout)
- if the LS-ack fails after several trials, the adjacencyrelation is cleared
- this method assures a reliable distribution of LSAs

2005/03/11

- LSA's are small packets, forwarded by each router without much modifications through the whole OSPF area (!)
- Much faster than RIP updates
 - RIP must receive, examine, create, and send
- Convergence time
 - Detection time + LSA flooding + 5 seconds before computing the topology table = "a few seconds"

OSPF Overview

- Large networks: "Divide and conquer" into <u>areas</u>
 - LSA-procedures inside each area
 - But distance-vector updates between areas
- Additional complexity because of performance optimizations
 - Limit number of adjacencies in a multi-access network OSPF
 - Limit scope of flooding through "Areas"
 - Deal with stub areas efficiently
 - Learn external routes efficiently
 - Realized through different LSA types
- Fast convergence, almost no routing traffic in absence of topology changes