

RIP Version 2

The Classless Brother

(C) Herbert Haas 2005/03/11

- Need for subnet information and VLSM
- Need for Next Hop addresses for each route entry
- Need for external route tags
- Need for multicast route updates
- RFC 2453

- RIPv1 used DA=broadcast
 - Seen by each IP host
 - Slows down other IP stations
- RIPv2 uses DA=224.0.0.9
 - Only RIPv2 routers will receive it

Command	Version	Unused or Routing Domain	
Address Family Identifier		Route Tag	
IP Address			
Subnet Mask			
Next Hop			
Metric			
Address Family Identifier		Route Tag	
	IP Add	dress	
	IP Ado Subnet	dress t Mask	
	IP Ado Subnet Next	dress t Mask Hop	
	IP Add Subnet Next Met	dress t Mask Hop tric	

Up to 25 route entries

Version and Routing Domain

- RIPv1 used version "1"
- RIPv2 uses version "2" (*surprise*)
- According RFC the next two bytes are unused
- However, some implementations carry the routing domain here
 - Simply a process number

- RIPv2 is a classless routing protocol
- For each route a subnet mask is carried
- Discontinuous Subnetting and VLSM is supported

Identifies a better next hop address than implicitly given (SA)

- Only if one exists (better metric)
- 0.0.0.0 if the sender is next hop
- Especially useful on broadcast multiaccess network for peering
 - Indirect routing on a broadcast segment would be ...silly.

- To distinguish between internal routes (learned via RIP) and external routes (learned from other protocols)
- Typically AS number is used
 - Not used by RIPv2 process
 - External routing protocols may use the route tag to exchange information across a RIP domain

Next Hop and Route Tag

Authentication

- Hackers might send invalid routing updates
- RIPv2 introduces password protection as authentication
- Initially only Authentication Type 2 defined
 - 16 plaintext characters (!)
- RFC 2082 proposes keyed MD-5 authentication (Type 3)
 - Multiple keys can be defined, updates contain a key-id
 - And a unsigned 32 bit sequence number to prevent replay attacks
- Cisco IOS supports MD5 authentication (Type 3, 128 bit hash)

Authentication

Command	Version	Unused or Routing Domain	
0xFFFF		Authentication Type	
Password			
Address Family Identifier		Route Tag	
IP Address			
Subnet Mask			
Next Hop			
Metric			

Up to 24 route entries

- Cisco's implementation offers key chains
 - Multiple keys (MD5 or plaintext)
 - Each key is assigned a lifetime (date, time and duration)
- Can be used for migration
 - Key management should rely on Network Time Protocol (NTP)

RIPv1 Inheritance (1)

- All timers are the same
 - UPDATE
 - INVALID
 - HOLDDOWN
 - FLUSH
- Same convergence protections
 - Split Horizon
 - Poison Reverse
 - Hold Down
 - Maximum Hop Count (also 16 !!!)

RIPv1 Inheritance (2)

- Same UDP port 520
- Also maximum 25 routes per update
 - Equally 512 Byte payloads

RIPv1 Compatibility

- RIPv1 Compatibility Mode
 - RIPv2 router uses broadcast addresses
 - RIPv1 routers will ignore header extensions
 - RIPv2 performs route summarization on address class boundaries
 - **Disable:** (config-router)# no auto-summary
- RIPv1 Mode
 - RIPv2 sends RIPv1 messages
- RIPv2 Mode
 - Send genuine RIPv2 messages

Classful Routing

- routing protocols like RIP, IGRP cannot carry subnetmask information in routing updates
- this has several consequences
 - if a given class A, B or C address is subnetted the subnetmask must be constant in the whole area
 - no variable length subnet mask (VLSM) can be used
 - if a routing update is sent to an interface with an network number different to the subnetted network
 - only the major class A, B or C network number will be announced
 - route summarization will be performed on class boundaries
 - hence a subnetted area must be contiguous
 - classful routing

Classful Routing

Discontiguous Subnetting Classful

Routing Table Lookup (Classful)

• assumption:

- IP datagram with a given IP address is received by a classful router
- IP address is interpreted as class A, B or C
 - the major net is determined
- next a lookup in the routing table for the major net is performed
 - if there is no entry the IP datagram will be discarded
- if there is a match the IP address is compared to every known subnet of this major network
 - if there is no such subnet the IP datagram will be discarded

Routing Table Lookup (Classful) cont.

• hence a problem may arise with default routing

 if the major network is known by the router, but the subnet does not exist, the IP datagram will be discarded even if a default route exists

• therefore

- subnetted area must be contiguous
- all subnets of a given major net must be reachable using only paths with these subnet-IDs

• remark:

 Cisco's configuration command *ip classless* will change such an behavior in case of default routing to the behavior of classless routing even if classful routing is used

Classful route match (1/2)

- 1) If the classful network number is NOT listed in the routing table, use the default route if available (otherwise discard the packet)
- 2) If the classful network number is listed in the routing table:
 - If the listed network number is NOT subnetted and matches the IP-packet's destination address then use this route
 - If this network is subnetted, then lookup the corresponding subnet; if no subnet matches then *discard the packet* (even if a default route exists!)

Example:

IP Packet DA = 10.35.72.26 → SA = ...

Routing Table:

10.0.0.0/8 is	subnetted, 4 subnets:
10.22.0.0/16	via 172.17.7.19
10.31.0.0/16	via 172.17.8.31
10.34.0.0/16	via 172.18.1.254
10.35.0.0/16	via 192.186.176.254
0.0.0/0	via 172.19.41.254

Classful route match (2/2)

- 1) If the classful network number is NOT listed in the routing table, use the default route if available (otherwise discard the packet)
- 2) If the classful network number is listed in the routing table:
 - If the listed network number is NOT subnetted and matches the IP-packet's destination address then use this route
 - If this network is subnetted, then lookup the corresponding subnet; if no subnet matches then *discard the packet* (even if a default route exists!)

Example:

IP Packet DA = 10.35.72.26 SA = ...

Routing Table:

10.0.0/8 is	subnetted, 4 subnets:
10.22.0.0/16	via 172.17.7.19
10.31.0.0/16	via 172.17.8.31
10.34.0.0/16	via 172.18.1.254
0.0.0/0	via 172.19.41.254

DISCARD THE PACKET (!)

Classless Routing

 routing protocols like RIPv2, OSPF, elGRP can carry subnet mask information in routing updates

this has several advantages

- variable length subnet mask (VLSM) can be used
 - subnetting of a given address can be done according to the number of hosts required on a certain subnet
 - more efficient use of address space ⇒ sub-subnetting
- route summarization can be performed on any address boundary and not only on class boundaries
 - a routing update contains prefix (relevant part of IP address) and length (number of ones used in subnetmask)
 - supernetting
 - actual subnetmask is smaller than natural subnetmask of given class

Classless Routing

Discontiguous Subnetting Classless

Routing Table Lookup (Classless)

• assumption:

- IP datagram with a given IP address is received by a classless router
- IP address is not interpreted as class A, B or C
- a lookup in the routing table for the best match for this IP address is performed
 - IP prefixes of the routing table are compared with the given IP address bit by bit from left to right
 - IP datagram is passed on to the network which matches best
 - "Longest Match Routing Rule"
 - result: IP addresses with any kind of subnetting can be used independent from the underlying network topology

Classless routing: Longest match

- The subnet mask of each route entry tells how many bits must be compared with the IP-packet's destination address
- The router takes the route with the longest match

Example:

IP Packet DA = 10.35.72.26 SA = ...

Routing Table:

10.0.0.0/8	via	172.16.1.1
10.22.0.0/16	via	172.17.7.19
10.31.0.0/16	via	172.17.8.31
10.34.0.0/16	via	172.18.1.254
10.35.0.0/16	via	192.186.176.254
10.35.64.0/19	via	192.186.177.254
10.35.192.0/19	via	172.19.54.1

VLSM Example (1)

- First step 6 bit subnetting of 172.16.0.0
 - 172.16.0.0 with 255.255.252.0 (172.16.0.0 / 22)
 - subnetworks:
 - 172.16.0.0
 - 172.16.4.0
 - 172.16.8.0
 - 172.16.12.0
 - 172.16.16.0

.

- 172.16.248.0
- 172.16.252.0
- 64 subnetworks each of them capable of addressing 1022 IP systems

VLSM Example (2)

next step sub-subnetting

- basic subnet 172.16.4.0 255.255.252.0 (172.16.4.0 / 22)

- sub-subnetworks with mask 255.255.255.252 (/ 30):

- 172.16.4.0 / 30
- 172.16.4.4 / 30
 - 172.16.4.4 net-ID
 - 172.16.4.5 first IP host of subnet 172.16.4.4
 - 172.16.4.6 last IP host of subnet 172.16.4.4
 - 172.16.4.7 directed broadcast of subnet 172.16.4.4
- 172.16.4.8 / 30
- 172.16.4.12 / 30
-
- 172.16.4.252 / 30
- 64 sub-subnetworks each of them capable of addressing 2 IP systems

VLSM Example (3)

- next step sub-subnetting
 - basic subnet 172.16.8.0 255.255.252.0 (172.16.8.0 / 22)
 - sub-subnetworks with mask 255.255.255.0 (/24):
 - 172.16.8.0 / 24
 - 172.16.9.0 / 24
 - 172.16.9.0 net-ID

- 172.16.9.1 first IP host of subnet 172.16.9.0
- 172.16.9.254 last IP host of subnet 172.16.9.0
- 172.16.9.255 directed broadcast of subnet 172.16.9.0
- 172.16.10.0 / 24
- 172.16.11.0 / 24
- 4 sub-subnetworks each of them capable of addressing 254 IP systems

VLSM Example (4)

• no sub-subnetting for basic subnet 172.16.12.0

- 172.16.12.0 with 255.255.252.0 (172.16.12.0 / 22)

- 172.16.12.0 net-ID

- 172.16.12.1 first IP host of subnet 172.16.12.0
- 172.16.15.254 last IP host of subnet 172.16.12.0
- 172.16.15.255 directed broadcast of subnet 172.16.12.0

one subnetwork capable of addressing 1022 IP systems

VLSM Classless

- Most important: RIPv2 is classless
 - Subnet masks are carried for each route
- Multicasts and next hop field increase performance
- But still not powerful enough for large networks

Quiz

- What is a routing domain?
- Why is "infinity" still 16?