L48 - BGP Policies

		BGP Policy
		BGP Attributes in Detail
© 2006, D.I. Manfred Lindner	BGP Policies, v4.5	1

Agenda

- Introduction
- Next hop handling
- AS aggregation
- Preferences for outgoing traffic
- Preferences for incoming traffic
- Route origins
- Communities
- Routing decision details
- Routing policies

© 2006, D.I. Manfred Lindner

BGP Policies, v4.5

L48 - BGP Policies

BGP Routing Policy

• the power of BGP

- attributes and route filtering techniques
- combination of attribute manipulation and filtering can be used for desired routing behavior in the Internet
 - that makes it possible to implement a routing policy
- implementation of routing policies

• attributes

© 2006, D.I. Manfred Lindner

more or less simple parameters which can be modified to affect the BGP decision process

BGP Policies v4.5

BGP Routing Policy

• route filtering

- can be done on a prefix level
 - filtering NLRI information (IP prefix, length) of BGP routes
 - however, this approach is not really scalable
- or path level
 - filtering on attributes (e.g. AS number) of BGP routes
 - this is the usual way of expressing policies in the Internet

• routing policy

© 2006, D.I. Manfred Lindner

 is implemented in Input Policy and/or Output Policy Engines of a BGP router

BGP Po

© 2006, D.I. Manfred Lindner

Page 48 - 1

© 2006, D.I. Manfred Lindner

L48 - BGP Policies

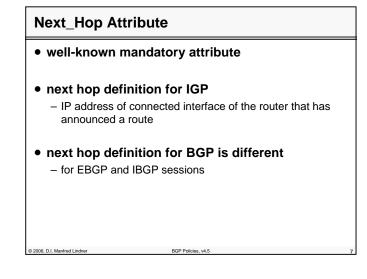
BGP Routing Policy

• Policy Engines

- can filter ("match") BGP routes based on the route description (attributes) or NLRI (prefix) of a given BGP route
 - a BGP route will be discarded or passed to other peers in case of a match
- can manipulate ("set") attributes of a BGP route or parameter of a BGP router
 - in order to implement a certain policy
 - a BGP route may be changed before it is passed on
- therefore a detailed understanding of BGP attributes is necessary

BGP Policies v4.5

Agenda


2006, D.I. Manfred Lindner

- Introduction
- Next hop handling
- AS aggregation
- Preferences for outgoing traffic
- Preferences for incoming traffic
- Route origins
- Communities
- Routing decision details
- Routing policies

2006, D.I. Manfred Lindner

BGP Policies, v4.5

L48 - BGP Policies

Next_Hop Attribute

• for EBGP sessions

 next hop is the IP address of neighboring router that announced the route

• exception of this rule:

- two EBGP routers are connected via multi-access media (LAN) but this LAN is used also for connectivity to AS internal routers
 - redirection to the corresponding IGP router
- special care necessary for NBMA in partially meshed topology

BGP Po

Cisco next-hop-self feature

© 2006, D.I. Manfred Lindner

© 2006, D.I. Manfred Lindner

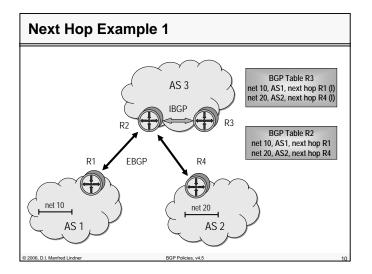
Page 48 - 3

© 2006, D.I. Manfred Lindner

L48 - BGP Policies

Next_Hop Attribute

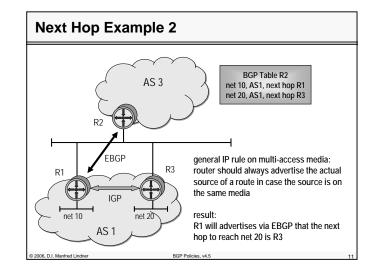
for IBGP sessions


- 1.) for routes originated inside the AS next hop is the IP address of the neighbor that announced the route
- 2.) for routes injected into the AS via EBGP next hop learned from EBGP is carried unaltered into IBGP

because of this IBGP behavior

- recursive IP lookup is necessary if next hop is not directly reachable
- reachability of next hop must be advertised via some IGP or static routing
 - next hop must be reachable via normal IP routing table

BGP Policies v4.5


2006 D I Manfred Lindner

© 2006, D.I. Manfred Lindner Page 48 - 5

Institute of Computer Technology - Vienna University of Technology

L48 - BGP Policies

Agenda

- Introduction
- Next hop handling
- AS aggregation
- Preferences for outgoing traffic
- Preferences for incoming traffic
- Route origins
- Communities

© 2006, D.I. Manfred Lindner

- Routing decision details
- Routing policies

© 2006, D.I. Manfred Lindner

BGP Pol

L48 - BGP Policies

AS_Path Attribute

- describes sequence of AS numbers (list) a route traversed to reach a destination
 - well-known mandatory attribute
 - originator of a route adds its own AS number when sending the route to its external BGP peers
 - each receiver adds its AS number to the beginning of the list before it passes the route to other external BGP peers
 - passing a route to an internal BGP peer leaves AS_Path intact
- used to ensure loop-free topology
- used to determine best route to a destination

BGP Policies v4

- shorter path is always preferred

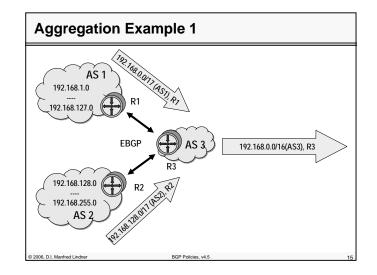
AS_Path Aggregation

• aggregation (summarization) of IP addresses

- can lead to loss of path information and hence to routing loops or sub-optimal routing
- information about origination of a route will be lost
- therefore the following attributes are introduced
 - Atomic_Aggregate attribute
 - Aggregator attribute
 - AS-Set

2006 D I Manfred Lindner

• but be very careful doing aggregation for another party


- try do avoid it

• in most cases it is a design problem but not a principle problem

2006, D.I. Manfred Lindner

BGP Policies, v4.5

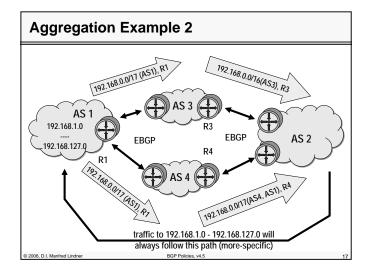
L48 - BGP Policies

How specific is a route?

- more specific = smaller set of destinations
 - longer prefix
- less specific = larger set of destinations
 - shorter prefix

© 2006, D.I. Manfred Lindner

- general IP routing rule:
- when overlapping routes are present in the routing table the more specific route shall take precedence
- routing rule of longest match prefix
- also used for BGP


© 2006, D.I. Manfred Lindner

Page 48 - 7

© 2006, D.I. Manfred Lindner

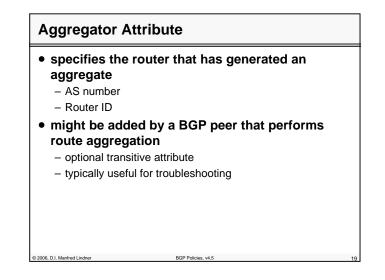
BGP Po

L48 - BGP Policies

Atomic_Aggregate Attribute

• if route aggregation done by an BGP router

- would cause a loss of information
- e.g. a certain AS number will not longer be seen in the path - then this BGP router must attach the Atomic_Aggregate
- attribute to this route description
- well-known discretionary attribute
- that specifies that some AS's may be missing from the AS_Path attribute
 - but does not specify which router was the aggregator – however can be done optionally by Aggregator attribute
 - also does not specify what AS numbers are missing


exception of this rule

- aggregate is described by AS-Set parameter

2006, D.I. Manfred Lindner

BGP Policies, v4.5

L48 - BGP Policies

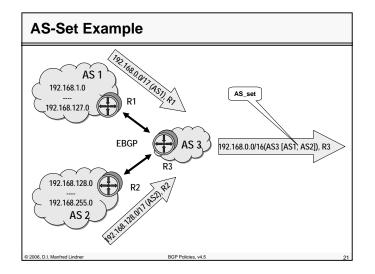
AS-Set Aggregation

as alternative AS-Set could be used

- a set includes all the AS's a route has traversed but in an unordered way (no sequence information)
 - an aggregate of an IP address can be announced while keeping information about the components of the aggregate

 can be used for avoiding loops
- done with path segment type of the AS_PATH attribute
- AS_Path attribute (type 2) consists of
 - path segment type (one octet)
 - 1 = AS_Set (unordered set of AS's)
 - 2 = AS_Sequence (ordered set of AS's)
 - path segment length (one octet)
 - path segment value (variable; each AS encoded in two octets)

BGP Pol


© 2006, D.I. Manfred Lindner

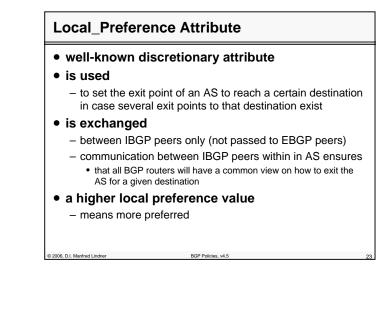
© 2006, D.I. Manfred Lindner

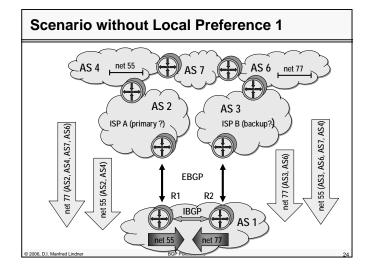
Page 48 - 9

© 2006, D.I. Manfred Lindner

L48 - BGP Policies

Agenda

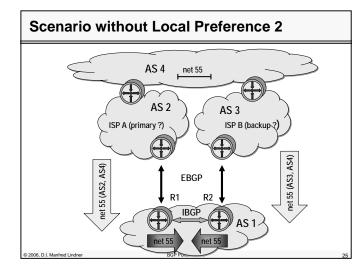

- Introduction
- Next hop handling
- AS aggregation
- Preferences for outgoing traffic
- Preferences for incoming traffic
- Route origins
- Communities

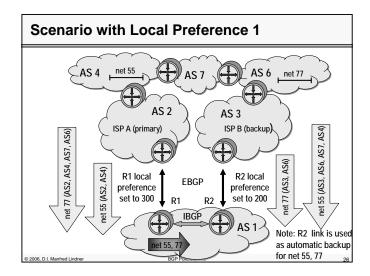

2006, D.I. Manfred Lindner

- Routing decision details
- Routing policies

Institute of Computer Technology - Vienna University of Technology

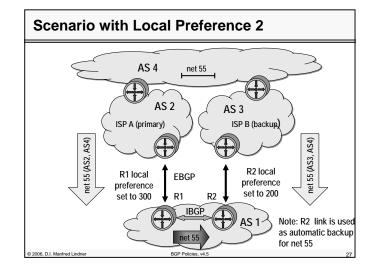
L48 - BGP Policies


© 2006, D.I. Manfred Lindner


© 2006, D.I. Manfred Lindner

BGP Policie:

Page 48 - 11


L48 - BGP Policies

Institute of Computer Technology - Vienna University of Technology

L48 - BGP Policies

Aa	enda
<u>7 9</u>	on au

- Introduction
- Next hop handling
- AS aggregation
- Preferences for outgoing traffic
- Preferences for incoming traffic
- Route origins
- Communities

© 2006, D.I. Manfred Lindner

- Routing decision details
- Routing policies

© 2006, D.I. Manfred Lindner

Page 48 - 13

© 2006, D.I. Manfred Lindner

BGP Policies

L48 - BGP Policies

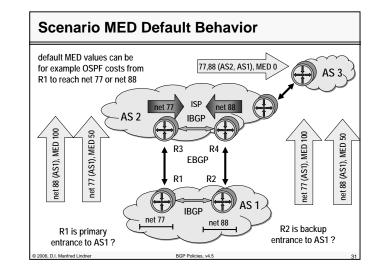
Multi Exit Discriminator Attribute

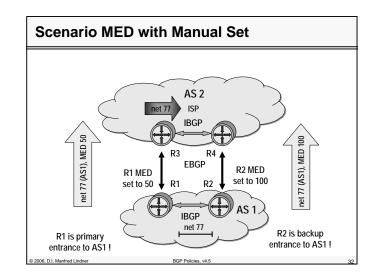
- Multi Exit Discriminator = MED
- optional non-transitive attribute
- is a hint to external neighbors
 - about the preferred path into an AS in case of multiple entrance points
 - "external BGP metric"
- is exchanged between AS's
 - but a MED that comes into an AS does not leave the AS

BGP Policies v4

MED value used for decision making within the AS
 however, AS might decide to ignore it

MED Attribute

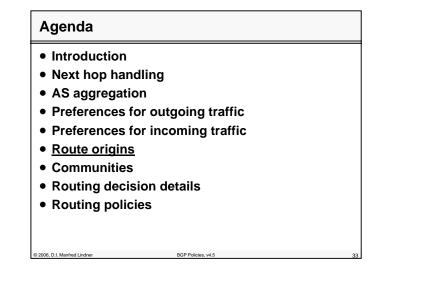

© 2006 D I Manfred Lindner


• MED value

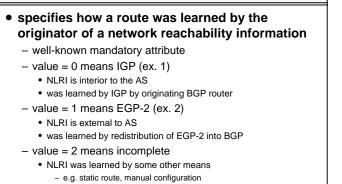
© 2006, D.I. Manfred Lindner

- may follow the internal IGP metric of a route
- the lower the better (closer to given destination)
- normally compared only for paths from external neighbors that are in the same AS
 - it might be difficult to compare metrics from different neighbors

L48 - BGP Policies


© 2006, D.I. Manfred Lindner

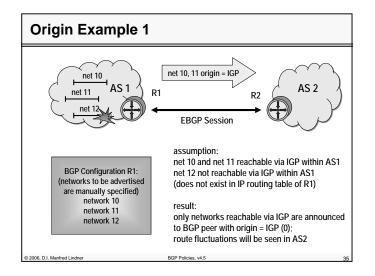
BGP Policies

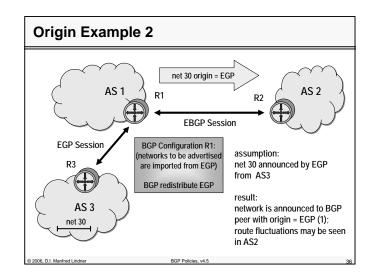

© 2006, D.I. Manfred Lindner

Page 48 - 15

L48 - BGP Policies

Origin Attribute

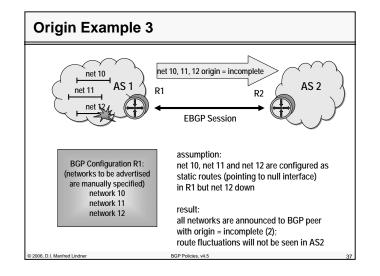


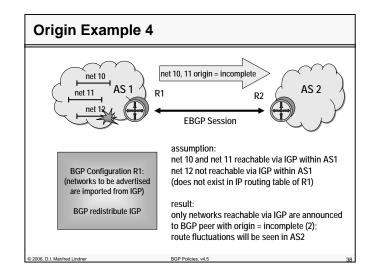

- e.g. statically (example 3) or dynamically (example 4) redistributed

© 2006, D.I. Manfred Lindner

BGP Policies, v4.5

L48 - BGP Policies




© 2006, D.I. Manfred Lindner

© 2006, D.I. Manfred Lindner

Page 48 - 17

L48 - BGP Policies

Institute of Computer Technology - Vienna University of Technology

L48 - BGP Policies

Agenda

- Introduction
- Next hop handling
- AS aggregation
- Preferences for outgoing traffic
- Preferences for incoming traffic
- Route origins
- <u>Communities</u>

© 2006 D L Manfred Lindner

- Routing decision details
- Routing policies

Community Attribute 1 optional transitive attribute • community is a group of destinations that share a common property - e.g. group of academic or government networks - e.g. group of networks which should be handled by a foreign AS in a certain way - community is not restricted to one network or one AS community attributes are used - to simplify routing policy based on logical properties rather than IP prefix or AS number (= physical location) - to tag routes to ensure consistent filtering or routeselection policy © 2006, D.I. Manfred Lindner BGP Polic

BGP Policies v4.5

© 2006, D.I. Manfred Lindner

Page 48 - 19

© 2006, D.I. Manfred Lindner

L48 - BGP Policies

2

3

Community Attribute

• 32 bit values (range 0 - 4.294.967.200)

- value range 0x00000000 to 0x0000FFFF
- value range 0xFFFF0000 to 0xFFFFFFF
- 0xFFFFF01 ... No_Export
 - a route carrying this community attribute should not be advertised to BGP peers outside of the receiving AS

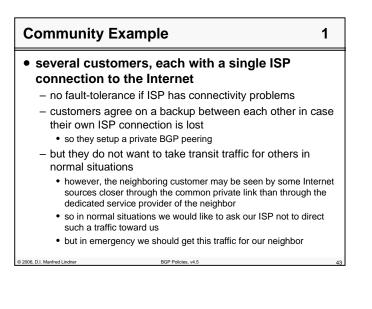
 so internal peers of this AS will receive it
- 0xFFFFF02 ... No_Advertise
 - a route carrying this community attribute should not be advertised to any other BGP peer
 - so even internal peers of the receiving AS will not receive it

2006, D.I. Manfred Lindner

Community Attribute

- private communities
 - value range 0x00010000 to 0xFFFEFFFF

• common practice

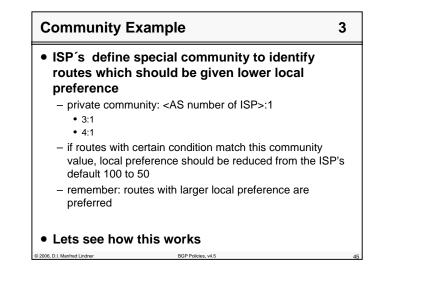

- for using private communities:
- high order 16 bit: number of AS
 which is responsible for defining the meaning of the community
- low order 16 bit: definition of meaning
- might have only local significance within the defining AS

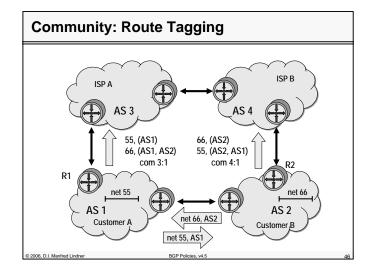
2006, D.I. Manfred Lindner BGP Policies

v4.5

Institute of Computer Technology - Vienna University of Technology

L48 - BGP Policies

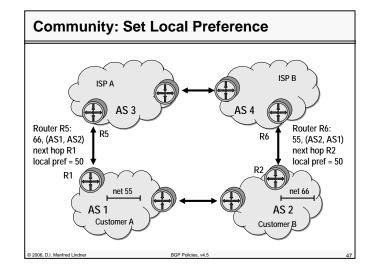

Community Example 2 • ISP's agree on using local preference to implement this policy • but they do not want to change configurations every time the customers add, change, or remove IP networks • so they need a simple stable pattern matching rule that works in general

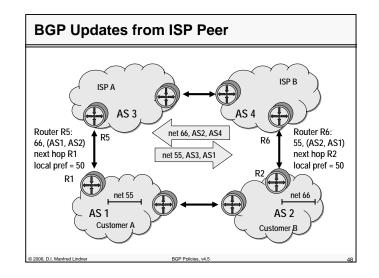

© 2006, D.I. Manfred Lindner

Page 48 - 21

© 2006, D.I. Manfred Lindner

L48 - BGP Policies

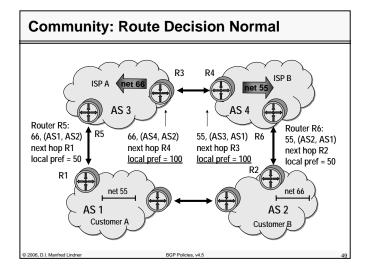


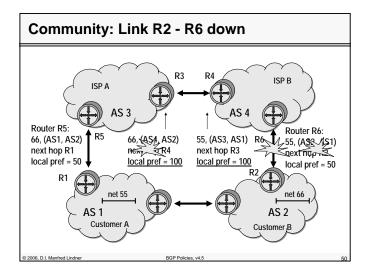


© 2006, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

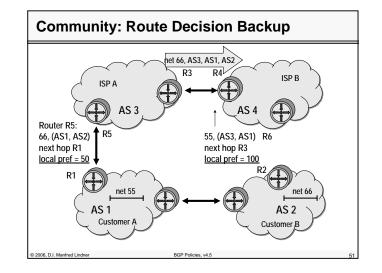
L48 - BGP Policies





© 2006, D.I. Manfred Lindner

Page 48 - 23


L48 - BGP Policies

Institute of Computer Technology - Vienna University of Technology

L48 - BGP Policies

A	gen	da
	401	~~

- Introduction
- Next hop handling
- AS aggregation
- Preferences for outgoing traffic
- Preferences for incoming traffic
- Route origins
- Communities

© 2006, D.I. Manfred Lindne

- Routing decision details
- Routing policies

© 2006, D.I. Manfred Lindner

© 2006, D.I. Manfred Lindner

BGP Poli

Page 48 - 25

L48 - BGP Policies

BGP Decision Process

- 1./ if next hop is inaccessible, the route is ignored
 - recursive lookup is done
- 2./ prefer largest weight (Cisco specific, historic)
 - others might also implement (according to RFC1772)
 - designed for easy translation of public routing policies
 historically this was the only tool for that
- 3./ prefer the route with the largest local preference
 - intended to replace weights local to a router, and thus providing a consistent scheme AS-wide

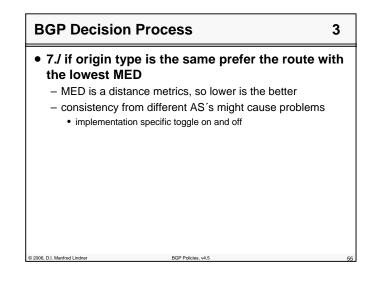
BGP Policies v4.5

BGP Decision Process

2

1

- 4./ if routes have the same local preference prefer the route that was locally originated (by this router)
- 5./ if routes have the same local preference prefer the route with the shortest path
 - complies with RFC1772, but not with RFC1771
 check for implementation specific toggling on and off
- 6./ if AS_Path length is the same, then prefer the route with lowest origin type


– IGP < EGP < incomplete</p>

2006, D.I. Manfred Lindner

2006 D I Manfred Lindner

BGP Policies, v4.5

L48 - BGP Policies

BGP Decision Process	4
 8./ if routes have the same MED, then prefer to route in the following manner 	the
 External (EBGP) better than 	

- External Confederations better than
- Internal (IBGP)

© 2006, D.I. Manfred Lindner

- 9./ if all the preceding scenarios are identical, then prefer the route that has the lowest IGP metric to the BGP next hop
- 10./ if IGP metric to the BGP next hop is the same, then the BGP router-ID will be the tie breaker
 - chose route with lowest router ID (IP address)

© 2006, D.I. Manfred Lindner

Page 48 - 27

© 2006, D.I. Manfred Lindner

BGP Policies, v4.5

L48 - BGP Policies

Agenda

- Introduction
- Next hop handling
- AS aggregation
- Preferences for outgoing traffic
- Preferences for incoming traffic
- Route origins
- Communities

2006 D I Manfred Lindner

2006, D.I. Manfred Lindner

- Routing decision details
- Routing policies

Routing Policy

- routing policies determine what routing information is exchanged with other AS's
- can be implemented by filtering and manipulating BGP routes
- some attributes determine policy by their definition
 - AS_Path can be used to discard any route that passes a certain AS

BGP Policies v4.5

- MED can be used to distinguish between multiple exits of an AS to a neighbor AS
- NLRI (IP prefix, length) itself may be used for policy

Institute of Computer Technology - Vienna University of Technology

L48 - BGP Policies

Routing Policy Usage Examples

- to prevent advertisement of private networks to the outside world
- to ensure that a certain link to a provider is taken during normal situations in case of multiple links to the outside world (primary versus backup link)
- to prevent use of the own AS for transit traffic in case of multiple links
- to allow only packets to a certain destination to be routed through the own AS
- to achieve symmetry for outgoing and incoming traffic in case of multiple links
- to enable load balancing of traffic in case of multiple links
- to establish a default routing strategy

General Available Routing Policy Options

- inbound/outbound filtering
- identifying routes ("match)
 - match on prefix, MED, Next_Hop, Origin, Community
 - regular expression match on AS_Path
 - pattern of characters represented by a formula
 - e.g. ^10 20\$ or ^10_ or _20\$ or ^\$ or .* or _10_ or _100 1[0-9]_
- permitting or denying routes
- manipulating attributes ("set")
- change Next_Hop
- change MED
- change Local_Preference
- change Origin
- change / add Community
- change AS_Path (be careful)

© 2006, D.I. Manfred Lindner

© 2006, D.I. Manfred Lindner

BGP Policies v4

Page 48 - 29

© 2006, D.I. Manfred Lindner

BGP Polic

L48 - BGP Policies

1

Regular Expressions

• Period .

- matches any single character, including white space

Asterisk *

- matches 0 or more sequences of the pattern

• Question Mark ?

- matches 0 or 1 occurrences of the pattern

• Plus Sign +

- matches 1 or more occurrences of the pattern

• Caret ^

- matches the beginning of the input string

• Dollar Sign \$

- matches the end of the input string

2006, D.I. Manfred Lindner

```
Regular Expressions
                                                                    2

    Brackets [ range ]

   - designates a range of a single character pattern

    Underscore

   - matches any delimiter(beginning, end, white space)

    Escape \

   - escapes the next character
• examples:
           ^10 20$
                             exact 10 20
           ◆ ^10_
                             10 .... or 10; network behind 10
           ◆ _20$
                             20 or .... 20; networks originated in 20
           ♦ ^$
                            local routes only; originated in local AS
           • .*
                             matches everything; all paths
                             10 or ..10 or 10..; going through 10
           ◆ _10_
           ◆ _100 1[0-9]_ .. 100 12 .. or 100 19 or .. 100 10 ...
2006, D.I. Manfred Lindner
                               BGP Policies v4.5
```

BGP Policies v4.5

Institute of Computer Technology - Vienna University of Technology

L48 - BGP Policies

Internet Registry and Routing Registry

Internet Registry (IR) handles

- official network number assignment
- AS number assignment
- domain name registration
- domain name server registration
- IR function is delegated to authorized organizations
- which are responsible for a special domain of the Internet
- e.g. InterNIC in the US and RIPE NCC (Europe)

• Routing Registry (RR) provides

 additional services which should help coordination of interconnection of Internet Service Providers (ISP)

BGP Policies v4.5

Routing Registry

© 2006 D L Manfred Lindner

• every ISP has its own set of routing policy

- the chance for conflicts is very high when interconnecting different ISPs
- neutral RR's maintain a databases for their global domains
 - where ISP's can register and update their routing policies
- all databases together form Internetworking Routing Registry (IRR)
- RR acts as

© 2006, D.I. Manfred Lindner

 repository for routing information and performs consistency checking on the registered information with the other RR's

BGP Policies v4

© 2006, D.I. Manfred Lindner

Page 48 - 31

© 2006, D.I. Manfred Lindner

L48 - BGP Policies

Routing Registry

• most RR's are based on RFC 1786 (RIPE 181)

- register prefixes with originating AS
- register AS with policy expression towards all other AS's
- register AS contact information
- policy expression can be translated in AS_Path (path based) or prefix based policy
- policy expressions allow creation of filters/manipulations

BGP Policies, v4.5

- AS macros, communities

• several large RR's

- NSF Routing Arbiter
- MCI
- RIPE Routing Registry responsible for Europe

© 2006, D.I. Manfred Lindner

© 2006, D.I. Manfred Lindner