Secure Shell , Public Key Infrastructure,

Certificate, X.509, CA, Repository, RA, CRL

• SSH • PKI

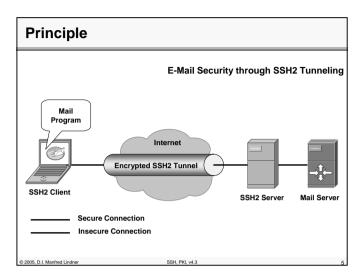
L98 - SSH, Public Key Infrastructure

SSH Basics

- Secures connections over the Internet
 - Authentication (Client, Server)
 - Integrity, (Compression)
- Encrypting all transmitted confidential data
 - Passwords
 - Binary files
 - Administrative commands
- Two versions of Secure Shell (not compatible)
 - Secure Shell Version 1(SSH1 or SSH)
 - Secure Shell Version 2 (SSH2 or SecSH)
- De-facto standard
- Client-server protocol

© 200E D.I. Monfred Lindoor

DLI DKI 1/4 2


SSH Basics

- Solve two most acute problems in the Internet
 - Secure remote terminal logins
 - ssh -l user-name machine-name
 - Secure remote command execution
 - ssh machine-name/path to exe-file
 - Secure file transfers
 - scp file user-name@machine-name
 - Port forwarding
 - ssh -L 3002:hostB:119 hostB
- Tunnels TCP sessions over encrypted Secure Shell connection
 - Secure the communication of other applications and protocols <u>without modifying</u> the applications

2005, D.I. Manfred Lindner

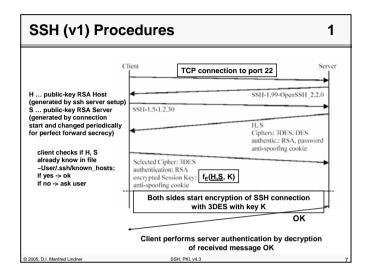
SH PKI v4.3

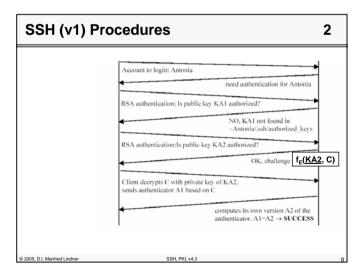
© 2005, D.I. Manfred Lindner

Encryption

• Support of the strongest available encryption algorithms

- 3DES
- CAST-128
- Twofish
- AES


© 2005, D.I. Manfred Lindner


- Advanced-Encryption-Standard (US)
- 128-bit key!

Method	SSH1	SSH2
DES	Х	-
3DES	Х	Х
IDEA	Х	-
Blowfish	Х	Х
Twofish	-	Х
Arcfour	-	Х
AES	-	Х
Cast128-cbc	-	Х

© 2005, D.I. Manfred Lindner Page 98 - 3

L98 - SSH, Public Key Infrastructure

L98 - SSH, Public Key Infrastructure

SSH1 vs. SSH2

- Two entirely different protocols
- SSH1 uses server and host keys to authenticate
- SSH2 only uses host keys and Diffie-Hellmann
- SSH2 encrypt different parts of the packet
- SSH2 is a complete rewrite of the protocol
- SSH2 is more secure
- Where to get:
 - OpenSSH -> http://www.openssh.com/
 - · ssh, scp, sftp, sshd, stfp-server
 - PuTTY -> http://www.chiark.greenend.org.uk/~sgtatham/putty/
 - Telnet and SSH client
 - SSH Tectia -> http://www.ssh.com/

© 2005, D.I. Manfred Lindner

SSH, PKI, v4.

Agenda

- SSH
- PKI

2005 D.I. Manfred Lindr

SSH. PKI, v4.3

Public-Key Distribution

In order to verify a digital signature of a received message from Bob

- you compare the own computed hash of the message with the received signed hash
- you need the public-key of Bob

• In order to encrypt a message for Bob

- you will encrypt the message/session secret-key with Bob´s public-key
- you need the public-key of Bob

• Problem of secure public-key distribution

- man-in-the-middle

© 2005 D.I. Monfred Lindo

SH, PKI, v4.3

Solutions for Public-Key Distribution

1

Web of Trust

- public-keys are exchanged personally between persons
 - out-of-band transport
- public-keys are exchanged over an insecure network between end-entities
 - in-band transport
 - · verification of fingerprints over out-of-band network
- public-keys are signed by trusted persons
- end-entity to end-entity key exchange
- does not scale
- e.g. PGP

© 2005, D.I. Manfred Lindner

SH, PKI, v4.3

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

Page 98 - 5

Page 98 - 6

Solutions for Public-Key Distribution

2

Certification Authority (CA)

- "Trusted Third Party"
- confirm that a public-key really belongs to a given person (end-entity)
- done by usage of certificates

Certificate

- document which bind a name of an end-entity to a publickey
- signed by an CA (using CA's private-key) and verified using the public-key of the CA

• Problem of key distribution reduced

- to get the public-key of the CA in a secure way

2005, D.I. Manfred Lindner

SSH, PKI, v4

...

Handling of Certificates

• Strength of the binding name to public-key

- depends on the policy of a CA
- more critical usage of a given public-key means a stronger policy e.g. for identity control of public-key holder
- Certification Practice Statements (CPS's)

• Storage of certificates

- on directory server, so called "Repository"

• If Alice wants to get Bob's public-key

- either get it from the repository (public-key + certificate) or Bob directly provides the public-key and the certificate
- in both cases Alice verifies the validity of the CA's signature using CA's public-key

2005, D.I. Manfred Lindner

SSH, PKI, v4.3

Standard Format for Certificates

• ITU recommendation X.509

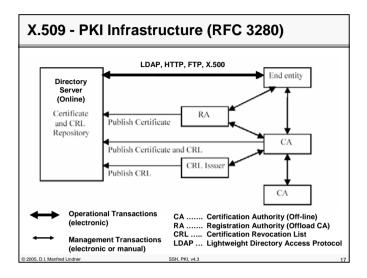
- X.500 standard series -> OSI directory systems
- newest version is 3
- certificates are encoded using ASN.1 (Abstract Syntax Notation 1)

• RFC 3280

- Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile
- defines a profile of X.509 for usage in the Internet
 - note: a so called profile defines actual chosen parameters/subset of a general standard specification
- revocation methods
 - deals with how to stop validity of a signed public-key before end of lifetime of the issued certificate -> CRL lists

05, D.I. Manfred Lindner SSH, PKI, v4.3

45


X.509 Basic Fields

Version:	Which version of X.509	
Serial Number:	Together with CA's name uniquely identifies the certificate, also used in CRL's	
Signature Algorithm:	The algorithm used to sign the certificate	
Issuer Name:	The name of the CA, usually a X.500 distinguished name	
Validity Period:	The starting and ending times of a validity period	
Subject Name:	The entity whose keys is being certified in the same format as the name of the CA	
Subject Public Key Info:	The ID of the algorithm used and the subject's public-key	
Issuer ID:	An optional ID uniquely identifying the issuer	
Subject ID:	An optional ID uniquely identifying the subject	
Signature Value:	The certificate's hash signed by the CA's private-key (fingerprint)	

© 2005 D.I. Manfred Linds

SH PKI v4.3

L98 - SSH, Public Key Infrastructure

PKI Transactions

Operational

- allow end user access to certificates and CRL lists
 - CRL is used to revoke a certificate before end of lifetime
 - · lifetime of a certificate maybe some years

Management

- register user with a CA or RA
- initializing end-entity with public-key of CA
- certifying a public-key of an end-entity and publishing in
- key-pair recovery (backup at the CA)
- key-pair update (refresh the certificate)
- request for key revocation from the end-entity
- cross-certificates (certifies public-key of other CA)

Simple Form of PKI: Hierarchy of CA's

Root CA

- top-level CA
- signs public-keys of second-level (SL) CA's
- = issuing certificates for second-level (SL) CA's

• SL CA

- signs public-keys of real CA's
- = issuing certificates for real CA's

• Real CA's

- signs public-keys of end users
- = issuing certificates for end users

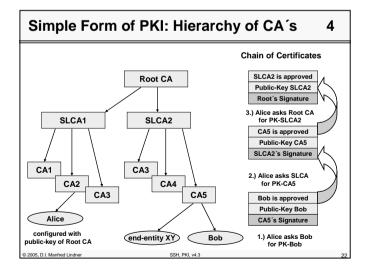
Delegation/distribution of trust

© 2005, D.I. Manfred Lindner

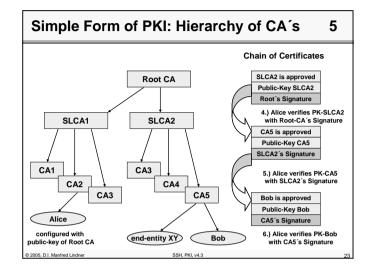
Simple Form of PKI: Hierarchy of CA's Root CA SLCA1 SLCA2 CA1 CA3 CA2 CA4 CA3 CA5 Alice end-entity XY © 2005, D.I. Manfred Lindn

Simple Form of PKI: Hierarchy of CA's

If an end user of one CA wants to verify a publickey of a end user registered by a foreign CA


- follow a chain of certificates towards root by getting in contact with every intermediate CA
 - · chain of trust
 - · certification path
- verify each public-key starting from the root
 - note: end users must be configured with the public-key of the Root CA in a secure way

Instead of asking every intermediate CA


 the requested end user will provide his public-key with all necessary certificates for following the path towards the root

2005, D.I. Manfred Lindner

SSH, PKI, v4.

L98 - SSH, Public Key Infrastructure

Hiearchy PKI versus Real Today's PKI

- A single worldwide Root CA would be a single point of failure
- Nobody want do perform the Root CA
 - political problem: some want a government organisation others want no government organisation
 - PEM suffered from this problem
- Solution:
 - have many roots, each with its own hierarchy of SLCA's and real CA's
 - modern browsers come preloaded with the public-keys for over 100 roots -> trust anchors
 - trust anchors need not to be at the root level

© 2005, D.I. Manfred Lindner

SH PKI v4.3

© 2005, D.I. Manfred Lindner

L98 - SSH, Public Key Infrastructure

Miscellaneous Terms

• Self-signed certificate

- issuer name = subject name
- used for distributing CA's public-key in a certificate

• Cross-certified CA's

- alternative to strict CA hierarchy of trust model
- CA's form a flat hierarchy (= CA's are single root for themselves) and certifies (signs) each other
- black hole in PKI

2

Enrolment

Miscellaneous Terms

- is the procedure of adding a PKI user (certificate holder) to the PKI in a secure way
 - on the CA side: Have we received the correct client's PK?
 - on the client side: Have we received the correct CA certificate?
- mutual authentication is necessary
- integrity must be checked
 - via out-band fingerprint verification if performed over non-secure network connections
- e.g. SCEP (Simple Certificate Enrolment Protocol) in the VPN arena
 - enables VPN devices (router/firewall with IPsec) to enrol to the PKI server (e.g. VeriSign OnSite Service, MS Windows 2000 Certification Services,)

SSH, PKI, v4.3

Today's PKI and Future PKI

- Many products for PKI on the market
- But standardization of PKI and worldwideorganisation of PKI
 - is an ongoing story
 - many problems need to be solved
 - therefore worldwide PKI and worldwide PKI certification paths are still far away

© 2005, D.I. Manfred Lindner Page 98 - 13