

Public-Key Technique

- A pair of keys is used
- Private Key used by one party
- key kept secret in one system
- to sign messages to be sent to the other party for authentication
- to decrypt messages received from the other party
- Public Key used by the other party
- key may widely be published to many systems
- to encrypt messages to be sent to the other party for privacy
- to verify messages received from the other party for authentication
- Called asymmetric algorithms

Agenda

- Introduction
- Number Theory
- RSA
- Diffie-Hellmann

Public-Key Technique

- Methodology
- S ... Private Key, P ... Public Key
- Security association between Alice and Bob
- Alice generates one key pair $\left(P_{A}, S_{A}\right)$, keeps S_{A} secret in her system and give P_{A} to Bob
- Security association between Bob and Alice
- Bob generates one key pair ($\mathrm{P}_{\mathrm{B}}, \mathrm{S}_{\mathrm{B}}$), keeps S_{B} secret in his system and give P_{B} to Alice
- Encrypted messages from Alice to Bob - $C=f_{E}\left(\underline{D}_{B}, M\right)$
- $M=f_{D}\left(\underline{S}_{B}, C\right)$ done by Bob to decrypt
- Encrypted messages from Bob to Alice

$$
\text { - } C=f_{E}\left(P_{A}, M\right)
$$

$$
\text { - } M=f_{D}\left(\underline{S}_{A}, C\right) \text { done by Alice to decrypt }
$$

Public-Key Algorithms

- RSA
- for encryption and digital signature
- El-Gamal and DSS
- for digital signature
- Diffie-Helman
- allows establishment of a shared secret
- They are all very different from each other
- All hash algorithms do the same thing: they take a message and perform an irreversible transformation on it
- All the secret-key algorithms do the same thing: they take a block and encrypt in a reversible way and allow message ciphers by chaining mechanism of blocks

Agenda

- Introduction
- Number Theory

RSA

- Diffie-Hellmann

„Natürliche Zahlen"

- a teilt $\mathbf{n}->$ b $->$ b $\mathbf{a}=\mathbf{n}$
- b ist der komplementäre Teiler
- p = Primzahl (,,prime")
- als Teiler nur 1 und p
- Primzahlen sind ungerade Zahlen (Ausnahme $\mathrm{p}=2$)
- Untersuchung, ob eine Zahl Primzahl ist
- Überprüfen aller Zahlen bis Wurzel aus p
- Primfaktorzerlegung (,,prime factorisation")
$-240=24^{*} 10=3^{*} 8^{*} 2^{*} 5=2^{*} 2^{*} 2^{*} 2^{*} 3^{*} 5=2^{4 *} 3^{*} 5$
$-3750=25^{*} 15^{*} 10=5^{*} 5^{*} 3^{*} 5^{*} 2^{*} 5=2^{*} 3^{*} 5^{4}$
- Primfaktoren bleiben übrig

„Natürliche Zahlen"

- ggT (größter gemeinsamer Teiler)
- gcd (,,greatest common divisor)
- bilde Produkt der Primfaktoren, die in beiden Zerlegungen gleichzeitig vorkommen
$-240=24^{*} 10=3^{*} 8^{*} 2^{*} 5=2^{*} 2^{*} 2^{*} 2^{*} 3^{*} 5=\underline{2}^{4 *} \underline{3}^{*} \underline{5}$
$-3750=25^{*} 15^{*} 10=5^{*} 5^{*} 3^{*} 5^{*} 2^{*} 5=2^{*} 3^{*} 5^{4}$
- $\mathrm{ggT}(240,3750)=2 * 3^{*} 5=30$
- ggT (a, n) = 1 -> teilerfremd (,,relatively prime")
$-54=2^{*} 3^{*} 3^{*} 3=2^{*} 3^{3}$
$-65=5^{*} 13$
$-\mathrm{ggT}(54,65)=1$

„Natürliche Zahlen"

- kgV (kleinstes gemeinsames Vielfaches)
- bilde Produkt der höchsten Potenzen aller überhaupt vorkommender Primfaktoren
$-75=3^{*} 5^{*} 5=3^{*} \underline{5}^{2}$
$-189=3^{*} 3^{*} 3^{*} 7=\underline{7}^{*} \underline{3}^{3}$
$-\operatorname{kgV}(75,189)=7^{*} 5^{2 *} 3^{3}=4725$
- $\operatorname{ggT}(a, n)$ * $\operatorname{kgV}(a, n)=a$ * n
$-75=3^{*} 5^{*} 5=3^{*} 5^{2}$
$-189=3^{*} 3^{*} 3^{*} 7=7^{*} \underline{3}^{3}$
$-\mathrm{ggT}(75,189)=3$
$-\operatorname{kgV}(75,189)=7^{*} 5^{2 *} 3^{3}=4725$
$-3 * 4725=14175=75 * 189$

ggT durch Euklid statt Faktorisierung

- ggt lässt sich mit dem Euklid-Algorithmus leicht berechnen:
- Zwei Zahlen 792 (n) und 75 (a)
$-792=10^{*} 75+42$
- ($\mathrm{n}=\mathrm{q}^{*} \mathrm{a}+\mathrm{r}$) -> ggT(n, a) $=\mathrm{ggT}(\mathrm{a}, \mathrm{r})$ mit $0<=\mathrm{r}<\mathrm{a}$
$-75=1 * 42+33$
$-42=1 * 33+9$
$-33=3^{*} 9+6$
$-9=1 * 6+3$
$-6=2^{*} \underline{3}$
- 3 ist ggT von 792 und 75

Vielfachsummendarstellung des ggT

- Vielfachsummendarstellung:
- ist $\mathrm{g}=\mathrm{ggT}(\mathrm{n}, \mathrm{a})$
- dann gibt es ganze Zahlen s und t so dass
$-\mathrm{g}=\mathrm{t}^{*} \mathrm{a}+\mathrm{s}^{*} \mathrm{n}$
- "Lemma von Bezout"
- die Werte t und s lassen sich mit dem erweiterten EuklidAlgorithmus leicht berechen

Restklassenarithmetik - Modulo (mod)

- Restklassenarithmetik verwendet natürliche Zahlen kleiner \mathbf{n}
- 0, 1, 2, ... n-1
- Auf diese Zahlen lassen sich alle Operationen wie Addition, Multiplikation, Subtraktion anwenden
- Das Ergebnis einer solchen Operation wird durch n geteilt und der dabei entstandene Res als modulo von $\mathbf{n}(\bmod \mathrm{n})$ bezeichnet
a $\bmod n=r$
ist gleichbedeutend mit der Aussage
es gibt eine ganze Zahl k gibt für die gilt: $\mathrm{a}=\mathrm{k} * \mathrm{n}+\mathrm{r}$

ggT und modulo

- Wenn ggT (n, a) = 1 gilt laut Vielfachsummendarstellung $-1=t^{*} a+s^{*} n$
- Betrachtet man diese Gleichung bezüglich mod \mathbf{n}
$-1=$ t*a *
oder auch
- t^{*} a geteilt durch n ergibt Rest 1
- Man schreibt auch anstelle von $t \equiv a^{-1}(\bmod n)$
- Dann ist a ist bezüglich modulo \mathbf{n} invertierbar
- Es existiert daher ein komplementärer Teiler t der obige Gleichung erfüllt
- Anmerkung:
in der normalen Arnmelik ware
daher ein Bruch (rationale Zahl)
- In der Restklassenarithmetik gibt es aber keine Brüche sondern nur - dennoch lässt sich hier (wenn a und n teilerfremd sind) mittels
"erveiterten Euklid" eine natürliche Zahl t finden, die obige Gleichung
erfullt

Introduction

- Most of the public-key algorithms
- are based on modular arithmetic
- Modular arithmetic
- uses non-negative integer numbers less than some positive integer \boldsymbol{n}
- performs ordinary arithmetic operations like addition or multiplication on such numbers but replaces the ordinary arithmetic result a with its remainder \boldsymbol{r} when divided by \boldsymbol{n}
- the result r is expressed by "a mod \boldsymbol{n} "

- $r=a \bmod n$

- that means we can find an integer " k " such that - $a=k$ * $n+r$

Modular Addition (mod 10)

	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	0
2	2	3	4	5	6	7	8	9	0	1
3	3	4	5	6	7	8	9	0	1	2
4	4	5	6	7	8	9	0	1	2	3
5	5	6	7	8	9	0	1	2	3	4
6	6	7	8	9	0	1	2	3	4	5
7	7	8	9	0	1	2	3	4	5	6
8	8	9	0	1	2	3	4	5	6	7
9	9	0	1	2	3	4	5	6	7	8
M	C									

Encryption / Decryption (add mod 10)

- Addition of constant $\mathrm{K} \bmod 10$
- can be used for encryption of digits
- each decimal digit maps to a different decimal digit
- reversible way
- constant K is the secret key
- cipher like "Caesar Cipher"
- Mono alphabetic substitution
- of course not a good cipher
- Decryption
- subtracting the secret constant
- if less than 0 then add 10

Encryption / Decryption (add mod 10)

- Decryption (cont.)
- instead of subtracting you can add the "additive inverse"
- additive inverse of K is the number you have to add in order to get 0
- e.g. 7 is the inverse of 3 because $(3+7) \bmod 10=0$
- Encryption with $\mathrm{K}=3$
$-(\mathrm{M}+3) \bmod 10=\mathrm{C}$
- Decryption with add-inv(K) $=7$
$-(C+7) \bmod 10=M$

Modular Multiplication $(\bmod 10)$

x	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1
M	C									

Encryption / Decryption (mult mod 10)

- Encryption with K = 3
$-(M * 3) \bmod 10=C$
- Decryption
- multiplying C with the "multiplicative inverse"
- multiplicative inverse of K is the number you have to multiply to get 1
- ($\left.\mathrm{K}^{*} \operatorname{mult}-\mathrm{inv}(\mathrm{K})\right) \bmod \mathrm{n}=1$
- in ordinary arithmetic
- mult-inv $(K)=1 / K$ because K * $1 / K=1$
- $1 / \mathrm{K}$ is a fraction
- but in modulo arithmetic we have only integers
- so we cannot find mult-inv(K) for all possible values of K

Decryption (mult mod 10)

- Decryption (cont.)
- for our example we can find multiplicative inverse mod 10
- just by trying if (K^{*} mult-inv(K)) mod $10=1$
- so we find:
(1 * mult-inv(1)) $\bmod 10=1$ \rightarrow mult-inv(1) $=$
(3^{*} mult-inv(3)) mod $10=1$-> mult-inv(3) $=7$
(7 * mult-inv(7)) mod $10=1$-> mult-inv(7) $=3$
- $(9$ * mult-inv(9)) $\bmod 10=1$-> mult-inv(9) $=9$
- Therefore for K = 3 we can decrypt by multiplying with mult-inv $(\mathrm{K})=7$ $-(C * 7) \bmod 10=M$

How to Find the Multiplicative Inverse

- Finding multiplicative inverse \mathbf{t} in $\bmod \mathbf{n}$ arithmetic
- is not obvious especially for a large number n
- for a given a and $n \gg$ find number t such that (a*t) $\bmod n=1$
- brute-force search with $\mathrm{n}=100$ digit number will not work
- But if the two numbers a and \mathbf{n} are relatively prime
- then because of the general rule of "Bezout"
- $1=$ t*a $^{*} a+s^{*} n$
- and finally if the rule of "Bezout" is performed modulo n - (t^{*} a) $\bmod \mathrm{n}=1$
- 1.) there must exists such inverse number t
- 2.) the number t can be found by the Extended Euclid's algorithm
- note to Euclid:

$$
\begin{aligned}
& \text { Basic Euclid's algorithm finds gcd (greatest common divisor) of two numbers } \\
& (a, n)
\end{aligned}
$$

- alternatively t can be found by using the Euler formula $a^{\varphi(n)} \bmod \mathrm{n}=1$ ($\left.t^{*} a\right) \bmod n=a^{\phi(n)} \bmod n \rightarrow t=a^{\varphi(n)-1} \bmod n$
- useful only if value for $\varphi(n)$ is known

Relatively Prime

- Why are the numbers 1,3, 7 and 9
- the only ones with multiplicative inverse mod 10 ?
- They are the only ones which are relatively prime to 10
- each of these numbers does not share any common factors with 10 other than 1 (gcd is 1)
- the largest integer that divides 9 and 10 is
the largest integer that divides 7 and 10 is
- the largest integer that divides 3 and 10 is
- but 6 and 10 have two factors in common -> 1 and 2

Euler Function

- In turns out that in general
- when working with mod n all numbers which are relatively prime to n have a multiplicative inverse but none of the other numbers
- How many numbers less than \mathbf{n} are relatively prime to n ?
- notation for that amount is $\boldsymbol{\varphi}(\mathbf{n})$
- $\varphi(\mathrm{n})$.... Euler function
- there is no simple formula but in special cases of n we can determine $\varphi(\mathrm{n})$
- -> see next slides

Explanation $\varphi(\mathrm{n})$

- Why?
-p and q are prime numbers and $\mathrm{n}=\mathrm{p}^{*} \mathrm{q}$
- n could be divided only by p or q
- n could not divided by other numbers because p and q are prime (only $1, p$ or q are possible as factors)
- there are $n=\left(p^{*} q-1\right)$ numbers $->(1,2, \ldots n-1)$
- we want to exclude all numbers which are not relatively prime
- those are the numbers that are either multiples of p or q
- we have the numbers $1 q, 2 q, \ldots(p-1) q$ which are in sum $p-1$ multiples of q which are less than $p^{*} q$
we have the numbers $1 \mathrm{p}, 2 \mathrm{p}, \ldots(\mathrm{q}-1) \mathrm{p}$ which are in sum $\mathrm{q}-1$ multiples of p which are less than $p^{*} q$
- the rest must be relatively prime
$-\varphi(n)=\left(p^{*} q-1\right)-(p-1)-(q-1)=p^{*} q-1-p+1-q+1=$ $p^{*} q-p-q+1=(p-1)^{*}(q-1)$

$\varphi(\mathrm{n})$ for Prime Numbers

- If $\mathbf{n}=$ prime then $\boldsymbol{\varphi}(\mathbf{n})=\mathbf{n - 1}$
- all the integers $1,2, \ldots n-1$ are relatively prime to n
- greatest common divisor with n is 1 for all of them
- note:
- a number n is prime means that the only divisors are 1 and n itself
- it cannot written as a product of other numbers
- If $\mathbf{n}=$ product of two distinct prime numbers p and q then

$$
\varphi(n)=(p-1)^{*}(q-1)
$$

Example

- $p=5, q=7$
- $p^{*} q=35=n$
- 1*7, 2*7, 3*7, 4*7
- are not relatively prime to 35 because greatest common divisor is 7 instead of 1
- that is p-1 times -> 4 times
- $1 * 5,2 * 5,3 * 5,4 * 5,5 * 5,6 * 5$
- are not relatively prime to 35 because greatest common divisor is 5 instead of 1
- that is $q-1$ times -> 6 times
- $\varphi(35)=(p-1)^{*}(q-1)=24$
- all other numbers are relatively prime to 35

Example

$$
\begin{aligned}
& p=5, q=7 \\
& p^{*} q=35=n
\end{aligned}
$$

1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31	32	33	34	35

Euler

- Euler's theorem
if two numbers a and n are relatively prime then $a^{\varphi(n)} \bmod n=1$ (Euler 1.$)$
and for any integer k

$$
\mathrm{a}^{1+\mathrm{k}^{*} \varphi(\mathrm{n})} \bmod \mathrm{n}=\mathrm{a}(\text { Euler } 2 .)
$$

that is because
$\left(a^{1 *} a^{k^{*}(\varphi(n))}\right) \bmod n=\left(a^{1 *} a^{(\varphi(n)) k}\right) \bmod n=a * 1^{k}=a$

- It turns out that
if $n=$ product of two distinct prime numbers p and q then the formula's of Euler are valid even if the number a is not relatively prime to n (so for all x with $\mathrm{x}<=\mathrm{n}$)

$$
\varphi(n)=(p-1)^{*}(q-1)
$$

$x^{(p-1)^{*(q-1)}} \bmod \mathrm{n}=1$ (Euler 3.)
$x^{1+k^{*}(p-1)^{*}(q-1)} \bmod n=x($ Euler 4.$)$

Modular Exponentiation $(\bmod 10)$

K													
$\mathrm{X}^{\text {r }}$	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	4	8	6	2	4	8	6	2	4	8	6
3	1	3	9	7	1	3	9	7	1	3	9	7	1
4	1	4	6	4	6	4	6	4	6	4	6	4	6
5	1	5	5	5	5	5	5	5	5	5	5	5	5
6	1	6	6	6	6	6	6	6	6	6	6	6	6
7	1	7	9	3	1	7	9	3	1	7	9	3	1
8	1	8	4	2	6	8	4	2	6	8	4	2	6
9	1	9	1	9	1	9	1	9	1	9	1	9	1
M				c									

Encryption (exp mod 10)

- Encryption with K = 3
$-\left(\mathrm{M}^{3}\right) \bmod 10=\mathrm{C}$
- $\mathrm{K}=3$ or $\mathrm{K}=7$ can be used
- because all input digits are mapped to a unique output digit
$-\mathrm{K}=2$ or 4 or 6 or 8 cannot be used
- because some input digits are mapped to the same output digit
- $\mathrm{K}=1$ or $\mathrm{K}=5$ or $\mathrm{K}=9$ makes no sense
- because input and output digits are the same
- Exists exp-inverse of K for decryption?
- exp-inverse is the number so that $\left(M^{K}\right)^{\exp -i n v(K)} \bmod 10=M$
- note: in ordinary arithmetic $\exp -\operatorname{inv}(\mathrm{K})=1 / \mathrm{K}=\mathrm{K}^{-1}$
- Yes sometimes!

Decryption Aspects (exp mod 10)

- Example mod 10:
- only numbers 1,3,7 and 9 are relative prime to 10
- $\varphi(10)=$
- for $K=3$

```
K¢(n) mod n=1 is valid because of Eu
(t'K) mod }n=1\mathrm{ because of lemma of bezout performed modulo n
```

- exp-inv(K) can be found by using

$$
\left.t^{+} K\right) \bmod n=1=K^{\phi(n)} \bmod n \quad \rightarrow \quad t=K^{\phi(n)-1} \bmod r
$$

$$
\left(\exp -\operatorname{inv}(3)^{*} 3\right) \bmod 10=3^{4} \bmod 10 \rightarrow \quad \exp -\operatorname{inv}(3)^{*}=3^{4-1} \bmod 10=27 \bmod 10=7
$$

- Therefore for $\mathrm{K}=3$ decryption with $\exp -\mathrm{inv}(\mathrm{K})=7$ - (C') $\bmod 10=M$
- examples
- $2^{3} \bmod 10=8,8^{7} \bmod 10=2097152 \bmod 10=2$
$4^{3} \bmod 10=4,4^{7} \bmod 10=823543 \bmod 10=16384 \bmod 10=4$

Agenda

- Introduction
- Number Theory

RSA

- Diffie-Hellmann

Important Rule for Exponentiation

- Looking to the table
- columns 1 and 5 are the same, 2 and 6 are the same, 3 and 7 are the columns 1 and 5 are the sam
same, 4 and 8 are the same,
- Theory proofs
$-x^{y} \bmod n=x^{y} \bmod \varphi(n) \bmod n$
this formula is not true for all values of n but it is true if n is prime or the
ne for any x with $\mathrm{x}<\mathrm{n}$
- in our case $n=10$ (prime factors are $p=2, q=5$)
numbers 10,3 and 9 are relative prime to 10
$\varphi(10)=4=(p-1)^{*}(q-1)=1 * 4$
$x^{y} \bmod 10=x^{(y \bmod 4)} \bmod 10$
so column $i+4^{4 \mathrm{th}}$ and $\mathrm{ith}^{\text {th }}$ are the same
- Special important case for public-key algorithm (RSA)
- if $y \bmod \varphi(n)=1$ then for any number x
$x^{y} \bmod n=x \bmod n$ or $\left(x^{y}=x\right) \bmod n$
- we need this trick for later for to perform RSA decryption
modulo function is a one-way function, in order to reverse we need a trapdoor, this trick shows the possible trapdoor

RSA algorithm

- generate public and private keys (cont.)
- find $\underline{\mathbf{d}}$ that is the multiplicative inverse of e
- that is $\left(\mathrm{e}^{*} \mathrm{~d}\right) \bmod \varphi(\mathrm{n})=1$
- d can be found using the Extended Euclid algorithm
- now the public key is <e, n>
- and the private key is <d, $\mathrm{n}>$
- it is not feasible
- to determine the private key from the public key
- you need to know p and q in order to build $\varphi(n)$
- but factoring is a hard problem
- finding p and q based on n

RSA Algorithm Proof

- Proof of correctness
- we have chosen $\left(e^{*} d\right) \bmod \varphi(n)=1$
- that means that we can write $e^{*} d=1+k^{*} \varphi(n)=1+k^{*}(p-1)^{*}(q-1)$
- because of (Euler 4.) the following rule is valid
$x^{1+k^{(}(p-1)^{\prime(}(q-1)} \bmod \mathrm{n}=\mathrm{x}$ for all x less then n
- therefore for any x if we build $\mathrm{x}^{\text {ed }} \bmod \mathrm{n}$
- then $x^{\text {ed }} \bmod n=x^{\left(1+k^{\prime}(p-1)^{1}(q-1)\right)} \bmod n=x \bmod n$
- if we encrypt and decrypt:
- Encrypt: C = Me mod n
- Decrypt: $\mathrm{M}=\mathrm{C}^{d} \bmod \mathrm{n}$
$\mathrm{C}^{\text {d }}=\left(\mathrm{M}^{\mathrm{e}}\right)^{\mathrm{d}}=\left(\mathrm{M}^{\text {ed }}\right)=\mathrm{M} \bmod \mathrm{n}$
If we sign and verify:
- Sign: $S=M^{d} \bmod n$
- Verify: $M=S^{e} \bmod n$
$\underline{S^{e}=\left(M^{d}\right)^{e}=M^{d e}=M \bmod n}$
- q.e.d

RSA Encryption / Decryption

- encryption with public key
- divide the plaintext message (regarded as bit string) into
blocks of M's where every M falls in the interval $0<M<n$
- compute $\mathrm{C}=\mathrm{M}^{\mathrm{e}} \bmod \mathrm{n}$ (with public key)
- decryption $\mathrm{M}=\mathrm{C}^{d} \bmod \mathrm{n}$ (with private key)
- privacy aspect
- sign a message using private key
- compute $S=M^{d} \bmod n$ (with private key)
- verification $M=S^{e} \bmod n$ (with public key)
- authentication and integrity aspect

RSA Example

- $p=3, q=11$
- hence $\mathrm{n}=33, \varphi(\mathrm{n})=20$
- choose $e=3$ relatively prime to 20
- take 3 (gcd = 1)
- compute $\mathbf{d}=7$
$-3 \mathrm{~d}=1(\bmod 20)$
- encryption $\mathbf{C}=\mathbf{M}^{3} \bmod 33$
- decryption $\mathbf{M}=\mathbf{C}^{7} \bmod 33$
- M < 33
- therefore encode every letter of the message as single block; numbers $1 \ldots 26$ represent A... Z

RSA	Exa	mple	(cont.)			
	intext	M ${ }^{3}$	M ${ }^{3}(\bmod 33)$	C^{7}	C^{7} (mo	
S	19	6859	28	13492928512	19	S
U	21	9621	21	1801088541	21	U
Z	26	17576	20	1280000000	26	Z
A	01	1	1	1	01	A
N	14	2744	5	78125	14	N
N	14	2744	5	78125	14	N
E	05	125	26	8031810176	05	E
Ciphertext						
2006. D.1. Manted Lİnder			Publicerev, v4,			

RSA Security

- There is a possible misuse
- an eavesdropper can guess what is going to be transmitted although he is not able to decrypt
- he can encrypt all expected messages with the public key and compares the result with the ciphertext he has eavesdropped
- especially a problem with short messages
- if there is a match then he knows what was transmitted
- Therefore is necessary to use special guidelines of how to format RSA message
- e.g. short messages should be concatenated with a large random number (e.g. 64 bits)
- PKCS ... Public-Key Cryptography Standard

RSA Security

- Security depends on difficulty of factoring
- find p and q from n
- If you can factor quickly you can break RSA
- factoring the public value n into p and q, building $\varphi(n)$ and knowing public value e allows you to find d by performing the same computations (Euclid's algorithm) as done by the the same comp
key generation
- Fortunately factoring is a hard problem
- Currently 500-bit numbers are the largest which can be factorized
- The minimum length proposed for \mathbf{n} is 1024 bits and for p and $q 512$ bits each

RSA Performance Aspects

1

- Finding large prime numbers
- typically greater than 100^{100}
- pseudo prime numbers (random numbers) are used and checked with Fermat's theorem
- If n is prime then for $0<a<n->a^{n-1} \bmod n=1$
- taken from (Euler 1.): $\mathrm{a}^{\boldsymbol{\phi}(\mathrm{n})} \bmod \mathrm{n}=1$ if a and n are relatively prime
- if n is prime then $\varphi(n)=n-1$
- If n is really a prime number all numbers a are relatively prime and Fermat's
rule is valid
- primality test
- For a number n to check pick a number $a<n$
- If $a^{n-1} \bmod n=1$ is not fulfilled then n is certainly not prime
- If $a^{n-1} \bmod n=1$ is fulfilled the n and
- If and $^{n-1} \bmod n=1$ is fulfilled then n may or may not be prime (risk for
failure is 1 to 10^{13} in case of randomly generated number of about failure is 1 to 10^{13} in case of randomly generated number of about
hundred digits) hundred digits)
- Try multiple values of number a to make the test more reliable
- Special attention for Carmichael numbers

RSA Performance Aspects

- Finding e and d
- Euclid's algorithm
- normal -> gcd of e and $\varphi(n)=1$
- extended -> multiplicative-inverse
- Exponentiation with big numbers
- square and multiply algorithm and do modular reduction after each multiply
- e.g. result of $123^{32} \bmod 678$
$-123^{2}=123^{* 1} 123=15129=213 \bmod 678$
$-123^{4}=213^{*} 213=45369=621 \bmod 678$
$-123^{8}=621 * 621=385641=537 \bmod 678$
$-123^{16}=537^{*} 537=288369=219 \bmod 678$
$-123^{32}=219^{*} 219=47961=501 \bmod 678$

RSA Facts

- RSA is special type of block cipher
- Variable key-length
- usually 512-2048 bits
- compromise between enhanced security and efficiency
- plaintext block need to be smaller than the key length
- Ciphertext block will be the length of the key
- Typically much slower to implement than conventional block ciphers like DES or IDEA
- unsuitable for encrypting large messages
- 1000 times (HW) to 100 times (SW) slower
- mostly used to encrypt a session key for performing a secret-key algorithm

Agenda

- Introduction
- Number Theory
- RSA
- Diffie-Hellmann

Diffie-Hellman (DH)

- Oldest public-key system still in use
- Compared to RSA
- it does neither encryption nor signatures
- Allows two individuals to agree on a shared key
- even though they can only exchange information in public
- this secret is used for symmetric encryption
- better performance than doing this with RSA
- DH used for key establishment

Diffie-Hellman Algorithm

- Select p prime and $\mathrm{g}<\mathrm{p}$
- g and p might be public, strong primes are used for p
\rightarrow more secure if $(\mathrm{p}-1) / 2$ is also a prime
- Select random secret numbers SA, SB
- SA,SB are the private DH keys
- Alice: $\quad S A->T_{A}=g^{S A} \bmod p$
- Bob: $\quad S B->T_{B}=g^{S B} \bmod p$
- Exchange T_{A} and T_{B}
- these are the public DH keys
- Produce shared key K
- Alice: $K=T_{B}{ }^{\text {SA }}=\left(g^{S B}\right)^{S A}=g^{S B S A}=g^{S A S B} \bmod p$
- Bob: $K=T_{A}^{S B}=\left(g^{S A}\right)^{S B}=g^{S A S B}=g^{S B S A} \bmod p$

Diffie-Hellman Algorithm

- Nobody else can compute
- SA or SB and hence g ${ }^{\text {SASB }}$ in reasonable time
- even though he knows $T_{A}=g^{S A} \bmod p$
- even though he knows $T_{B}=g^{S B} \bmod p$
- Based on the fact
- that discrete logarithm modulo a very large prime number is hard to compute
- no one has found any efficient method to do this

Diffie-Hellman Example

Man-in-the-middle Attack

- Problem:
- when T_{A} and T_{B} are sent over a public network and an active intruder is present
- Alice will establish a secret key with whoever transmitted T_{B} but it might not be Bob
- Bob will establish a secret key with whoever transmitted T_{A} but it might not be Alice
- There is no authentication (!) in the key exchange process of DH
_ vulnerable against man-in-the-middle attack
- also known as bucket brigade attack
- DH is only secure against passive attacks

Man-in-the-middle Attack

- Man-in-the-middle Attack
- Intruder intercepts communication, impersonates in both directions
- intruder handles a different secret key with every party
- Solutions to overcome this attack
- published public numbers
- e.g. in the newspapers or PKI techniques
not possible to make active attacks, because the advertised values cannot be changed or cannot at least be easily changed
- authentication via out-band channel
- T_{A} and T_{B} are transmitted by voice communication over telephone network
- authentication based on voice recognition of other party

Man-in-the-middle Attack

- Solutions to overcome this attack (cont.)
- authentication via encryption
- Alice and Bob know some sort of secret e.g. each other's public key
- encrypt DH value with other side's public-key
- receiver can decrypt the message by using its own corresponding private-key

