L94 - Public-Key Cryptography

Public-Key Cryptography

Number Theory, RSA, Diffie-Hellmann

Agenda

• Introduction

• Number Theory

• RSA

© 2006, D.I. Manfred Lindner

• Diffie-Hellmann

Institute of Computer Technology - Vienna University of Technology

L94 - Public-Key Cryptography

Public-Key Technique 1 • A pair of keys is used - Private Key used by one party • key kept secret in one system • to sign messages to be sent to the other party for authentication • to decrypt messages received from the other party - Public Key used by the other party • key may widely be published to many systems • to encrypt messages received from the other party for privacy • to verify messages received from the other party for authentication

Public-Key v4

© 2006 D I Manfred Lindner

© 2006, D.I. Manfred Lindner

Public-Key Technique 2 Methodology - S ... Private Key, P ... Public Key Security association between Alice and Bob • Alice generates one key pair (P_A, S_A), keeps S_A secret in her system and give P_A to Bob - Security association between Bob and Alice • Bob generates one key pair (P_B, S_B), keeps S_B secret in his system and give P_B to Alice - Encrypted messages from Alice to Bob • C = f_E (<u>P</u>_B, M) • M = f_{D} (S_B, C) done by Bob to decrypt - Encrypted messages from Bob to Alice • C = f_E (<u>P</u>_A, M) • $M = f_D (\underline{S}_A, C)$ done by Alice to decrypt

© 2006, D.I. Manfred Lindner

Page 94 - 1

© 2006, D.I. Manfred Lindner

Public-Key v4

L94 - Public-Key Cryptography

© 2006, D.I. Manfred Lindner

Page 94 - 3

L94 - Public-Key Cryptography

Agenda		
 Introduction <u>Number Theory</u> RSA Diffie-Hellmann 		
© 2006, D.I. Manfred Lindner	Public-Key, v4.7	8.

© 2006, D.I. Manfred Lindner

L94 - Public-Key Cryptography

1

"Natürliche Zahlen"

- a teilt n -> b -> b * a = n
- b ist der komplementäre Teiler
- p = Primzahl ("prime")
 - als Teiler nur 1 und p
 - Primzahlen sind ungerade Zahlen (Ausnahme p=2)
- Untersuchung, ob eine Zahl Primzahl ist
 - Überprüfen aller Zahlen bis Wurzel aus p
- Primfaktorzerlegung ("prime factorisation")

Public-Key v47

- -240 = 24*10 = 3*8*2*5 = 2*2*2*3*5= 24*3*5
- -3750 = 25*15*10 = 5*5*3*5*2*5 = 2*3*5*
- Primfaktoren bleiben übrig

© 2006, D.I. Manfred Lindner

"Natürliche Za	hlen" 2
• ggT (größter g	emeinsamer Teiler)
- gcd ("greatest d	common divisor)
 bilde Produkt d gleichzeitig vor 	er Primfaktoren, die in beiden Zerlegungen kommen
- 240 = 24*10 = 3	3*8*2*5 = 2*2*2*2*3*5= <u>2</u> 4* <u>3</u> * <u>5</u>
- 3750 = 25*15*1	0 = 5*5*3*5*2*5 = <u>2*3</u> * <u>5</u> 4
– ggT (240, 3750) = 2*3*5 = 30
- 54 = 2*3*3*3= 2	> teilerfremd (" <u>relatively prime</u> ") ^{2*33}
- 65 = 5*13	
– ggT (54, 65) =	1
© 2006, D.I. Manfred Lindner	Public-Key, v4.7

Institute of Computer Technology - Vienna University of Technology

L94 - Public-Key Cryptography

ggT durch Euklid statt Faktorisierung

- ggt lässt sich mit dem <u>Euklid-Algorithmus</u> leicht berechnen:
 - Zwei Zahlen 792 (n) und 75 (a)
 - 792 = 10*75 + 42 • (n = q*a + r) -> ggT(n,a) = ggT (a, r) mit 0 <= r < a
 - $(n = q a + 1) \rightarrow gg1(n,a) = gg1(a, 1) n$
 - 75 = 1*42 + 33
- 42 = 1*33 + 9 - 33 = 3*9 + 6
- 33 3 9 + - 9 = 1*6 +3
- 6 = 2***3**

© 2006, D.I. Manfred Lindner

- 3 ist ggT von 792 und 75

© 2006, D.I. Manfred Lindner

L94 - Public-Key Cryptography

Vielfachsummendarstellung des ggT

- Vielfachsummendarstellung:
 - ist g = ggT (n, a)
 - dann gibt es ganze Zahlen s und t so dass
 - g = t*a + s*n

2006 D I Manfred Lindner

- "Lemma von Bezout"
- die Werte t und s lassen sich mit dem <u>erweiterten Euklid-</u> <u>Algorithmus</u> leicht berechen

Public-Key v47

Restklassenarithmetik – Modulo (mod)

• Restklassenarithmetik verwendet natürliche Zahlen kleiner n

– 0, 1, 2, ... n-1

© 2006, D.I. Manfred Lindner

- Auf diese Zahlen lassen sich alle Operationen wie Addition, Multiplikation, Subtraktion anwenden
- Das Ergebnis einer solchen Operation wird durch n geteilt und der dabei entstandene Rest als modulo von n (mod n) bezeichnet

a mod n = r ist gleichbedeutend mit der Aussage es gibt eine ganze Zahl k gibt für die gilt: a = k * n + r

Public-Key, v4.7

Institute of Computer Technology - Vienna University of Technology

L94 - Public-Key Cryptography

Introduction

Most of the public-key algorithms

- are based on modular arithmetic
- Modular arithmetic
 - uses non-negative integer numbers less than some positive integer *n*
 - performs ordinary arithmetic operations like addition or multiplication on such numbers but replaces the ordinary arithmetic result *a* with its remainder *r* when divided by *n*
 - the result *r* is expressed by "*a* mod *n*"
 - *r* = *a* mod *n*
 - that means we can find an integer "k" such that

Public-Ke

 $\cdot a = k * n + r$

© 2006, D.I. Manfred Lindner

© 2006, D.I. Manfred Lindner

© 2006, D.I. Manfred Lindner

L94 - Public-Key Cryptography

lodul	ar	Add	ditio	on (mo	d 1	0)				
					к						
	+	0	1	2	3	4	5	6	7	8	9
Г	0	0	1	2	3	4	5	6	7	8	9
Γ	1	1	2	3	4	5	6	7	8	9	0
	2	2	3	4	5	6	7	8	9	0	1
	3	3	4	5	6	7	8	9	0	1	2
Γ	4	4	5	6	7	8	9	0	1	2	3
Γ	5	5	6	7	8	9	0	1	2	3	4
E E	6	6	7	8	9	0	1	2	3	4	5
	7	7	8	9	0	1	2	3	4	5	6
	8	8	9	0	1	2	3	4	5	6	7
	9	9	0	1	2	3	4	5	6	7	8
-	М				С						
6, D.I. Manfred Lin	dner				Publi	c-Key, v4.7					

Encryption / Decryption (add mod 10)

• Addition of constant K mod 10

- can be used for encryption of digits
- each decimal digit maps to a different decimal digit
- reversible way
- constant K is the secret key
- cipher like "Caesar Cipher"
- Mono alphabetic substitution
 - of course not a good cipher
- Decryption

© 2006, D.I. Manfred Lindner

- subtracting the secret constant
- if less than 0 then add 10

L94 - Public-Key Cryptography

Modular Multiplication (mod 10)												
		_			к							_
	x	0	1	2	3	4	5	6	7	8	9	
	0	0	0	0	0	0	0	0	0	0	0	
	1	0	1	2	3	4	5	6	7	8	9	
	2	0	2	4	6	8	0	2	4	6	8	
	3	0	3	6	9	2	5	8	1	4	7	
	4	0	4	8	2	6	0	4	8	2	6	
	5	0	5	0	5	0	5	0	5	0	5	
	6	0	6	2	8	4	0	6	2	8	4	
	7	0	7	4	1	8	5	2	9	6	3	
	8	0	8	6	4	2	0	8	6	4	2	
	9	0	9	8	7	6	5	4	3	2	1	
	М				С					•		
006, D.I. Manfred Lind	dner				Publi	c-Key, v4.7						

© 2006, D.I. Manfred Lindner

© 2006, D.I. Manfred Lindner

Public-Key v4

L94 - Public-Key Cryptography

© 2006, D.I. Manfred Lindner

Page 94 - 11

L94 - Public-Key Cryptography

Relatively Prime
• Why are the numbers 1, 3, 7 and 9
– the only ones with multiplicative inverse mod 10?
• They are the only ones which are <u>relatively prime</u> to 10
 each of these numbers does not share any common factors with 10 other than 1 (gcd is 1) the largest integer that divides 9 and 10 is 1 the largest integer that divides 7 and 10 is 1
 the largest integer that divides 3 and 10 is 1 but 6 and 10 have two factors in common -> 1 and 2
© 2006, D.I. Manfred Lindner Public-Key, v4.7 2

© 20

© 2006. D.I. Manfred Lindner

L94 - Public-Key Cryptography

$\varphi(n)$ for Prime Numbers

- all the integers 1, 2, ... n-1 are relatively prime to n · greatest common divisor with n is 1 for all of them
- note:

© 2006, D.I. Manfred Lindner

- a number n is prime means that the only divisors are 1 and n itself · it cannot written as a product of other numbers
- If n = product of two distinct prime numbers p and g then

 $\varphi(n) = (p-1)^*(q-1)$

Public-Key, v4.7

L94 - Public-Key Cryptography

• Why?

© 2006 D L Manfred Lindner

- -p and q are prime numbers and $n = p^{*}q$
 - n could be divided only by p or q
 - n could not divided by other numbers because p and g are prime (only 1, p or q are possible as factors)
- there are $n = (p^{+}q^{-1})$ numbers -> (1,2, ... n-1)
 - · we want to exclude all numbers which are not relatively prime
 - those are the numbers that are either multiples of p or q
 - we have the numbers 1q, 2q, ... (p-1)q which are in sum p-1 multiples of q which are less than p*q
 - we have the numbers 1p, 2p, ... (q-1)p which are in sum q-1 multiples of p which are less than p*q
 - · the rest must be relatively prime

```
-\phi(n) = (p^{*}q - 1) - (p-1) - (q-1) = p^{*}q - 1 - p + 1 - q + 1 =
             p^{*}q - p - q + 1 = (p - 1)^{*}(q - 1)
                               Public-Key v47
```


© 2006, D.I. Manfred Lindner

Page 94 - 13

© 2006. D.I. Manfred Lindner

L94 - Public-Key Cryptography

xampl	e							
			n =	5, q =	7			
			p*q	= 35 =	= n			
		1	1	1				
	1	2	3	4	5	6	7	
	8	9	10	11	12	13	14	
	15	16	17	18	19	20	21	
	22	23	24	25	26	27	28	
	29	30	31	32	33	34	35	

Euler

© 2006, D.I. Manfred Lindner

Public-Key, v4.7

L94 - Public-Key Cryptography

© 2006, D.I. Manfred Lindner

L94 - Public-Key Cryptography

Institute of Computer Technology - Vienna University of Technology

L94 - Public-Key Cryptography

RSA algorithm
generate public and private keys
 two large primes: p and q
– build n = p*q
$-\phi(n) = (p-1)^*(q-1)$
 p and q remains secret
 select <u>e</u> that is relatively prime to φ(n) =(p-1)*(q-1)
 use Basic Euclid to proof you have found such an e
$- gcd (\phi(n), e) = 1$ with $1 < e < \phi(n)$
 therefore it must also exists a multiplicative inverse d of e
- d such that $(e^*d) \mod \varphi(n) = 1$
 note: because of (Euler 3.)
e ^{φ(n)} mod n = 1 is valid
from (Euler 1.): a $\varphi(n)$ mod n = 1 is valid if a and n are relatively prime to each other but in our case e is only relatively prime to $\varphi(n)$;
but if $n = p^*q$ (product of two primes) then (Euler 1.) is valid for all numbers x with x less n (Euler 3.) -> hence also for number e
2006, D.I. Manfred Lindner Public-Key, v4.7 36

© 2006, D.I. Manfred Lindner

L94 - Public-Key Cryptography

RSA algorithm

- generate public and private keys (cont.)
 - find <u>d</u> that is the multiplicative inverse of e • that is (e*d) mod $\varphi(n) = 1$
 - d can be found using the **Extended Euclid** algorithm
- now the public key is <e, n>
- and the private key is <d, n>
- it is not feasible

© 2006 D I Manfred Lindner

to determine the private key from the public key
 you need to know p and q in order to build φ(n)

Public-Key v47

- but factoring is a hard problem
 - finding p and q based on n

RSA Encryption / Decryption

• encryption with public key

- divide the plaintext message (regarded as bit string) into blocks of M's where every M falls in the interval 0 < M < n
- compute C = M^e mod n (with public key)
- decryption M = C^d mod n (with private key)
- privacy aspect
- sign a message using private key
 - compute S = M^d mod n (with private key)
 - verification M = S^e mod n (with public key)
 - authentication and integrity aspect

Public-Key, v4.7

© 2006, D.I. Manfred Lindner

Page 94 - 19

L94 - Public-Key Cryptography

RSA Example

- p = 3, q = 11
- hence n = 33, $\phi(n) = 20$
- choose e = 3 relatively prime to 20

 take 3 (gcd = 1)
- compute d = 7
 - $-3d = 1 \pmod{20}$
- encryption C = M³ mod 33
- decryption M = C⁷ mod 33
- M < 33

© 2006, D.I. Manfred Lindner

 therefore encode every letter of the message as single block; numbers 1 ... 26 represent A ... Z

Public-Key v4

© 2006, D.I. Manfred Lindner

L94 - Public-Key Cryptography

F	RSA Example (cont.)									
		aintext ender	M ³	M³ (mod 33)	C ⁷	C ⁷ (mod	33)			
	S	19	6859	28	13492928512	19	S]		
	U	21	9621	21	1801088541	21	U	1		
	Ζ	26	17576	20	1280000000	26	Ζ	1		
	Α	01	1	1	1	01	Α	1		
	Ν	14	2744	5	78125	14	Ν	1		
	Ν	14	2744	5	78125	14	N	1		
	Е	05	125	26	8031810176	05	Е	1		
@ 20	06. D.I. Manfi	ad Lindnar		Ciphertext	1	Plain Rece		41		

RSA Security

© 2006, D.I. Manfred Lindner

- Security depends on difficulty of factoring
 - find \boldsymbol{p} and \boldsymbol{q} from \boldsymbol{n}
- If you can factor quickly you can break RSA
 - factoring the public value n into p and q, building $\varphi(n)$ and knowing public value e allows you to find d by performing the same computations (Euclid's algorithm) as done by the key generation

1

- Fortunately factoring is a hard problem
 - Currently 500-bit numbers are the largest which can be factorized
- The minimum length proposed for n is 1024 bits and for p and q 512 bits each

Public-Key, v4.7

L94 - Public-Key Cryptography

RSA Security	2
There is a possible misu	se
 an eavesdropper can guess transmitted although he is n 	5 5
 he can encrypt all expected and compares the result wit eavesdropped 	o , , ,
 especially a problem with shore 	t messages
 if there is a match then he k 	nows what was transmitted
• Therefore is necessary to	o use special guidelines
of how to format RSA me	essage
 – e.g. short messages should random number (e.g. 64 bits 	0
 – PKCS … Public-Key Crypto 	graphy Standard
© 2006, D.I. Manfred Lindner Public-Key,	v4.7 43

RSA Performa	ance Aspects	1
• Finding large p		
 typically greater 	than 100 ¹⁰⁰	
 pseudo prime nu Fermat's theorem 	imbers (random numbers) are used and checked m	with
 If n is prime th 	en for 0 < a < n -> a ⁿ⁻¹ mod n = 1	
	(Euler 1.): a $^{\phi(n)}$ mod n = 1 if a and n are relatively prime a then $\phi(n)$ =n-1	
 If n is really rule is valid 	v a prime number all numbers a are relatively prime and Ferm I	at's
 primality test: 		
 For a number 	n to check pick a number a < n	
 If aⁿ⁻¹ mod n = 	1 is not fulfilled then n is certainly not prime	
	 1 is fulfilled then n may or may not be prime (risk for 0¹³ in case of randomly generated number of about 	
 Try multiple value 	lues of number a to make the test more reliable	
 Special attenti 	on for Carmichael numbers	
© 2006, D.I. Manfred Lindner	Public-Key, v4.7	44

© 2006, D.I. Manfred Lindner

© 2006, D.I. Manfred Lindner

L94 - Public-Key Cryptography

RSA Facts

© 2006, D.I. Manfred Lindner

- RSA is special type of block cipher
- Variable key-length
 - usually 512 2048 bits
 - compromise between enhanced security and efficiency
 - plaintext block need to be smaller than the key length
- Ciphertext block will be the length of the key
- Typically much slower to implement than conventional block ciphers like DES or IDEA
 - unsuitable for encrypting large messages
 - 1000 times (HW) to 100 times (SW) slower
 - mostly used to encrypt a session key for performing a secret-key algorithm Public-Key, v4.7

Institute of Computer Technology - Vienna University of Technology

L94 - Public-Key Cryptography

Agenda Introduction Number Theory RSA • Diffie-Hellmann © 2006 D I Manfred Lindner Public-Key v4

Diffie-Hellman (DH)

- · Oldest public-key system still in use
- Compared to RSA

© 2006, D.I. Manfred Lindner

- it does neither encryption nor signatures
- Allows two individuals to agree on a shared key
- even though they can only exchange information in public
- this secret is used for symmetric encryption
- better performance than doing this with RSA
- DH used for key establishment

© 2006, D.I. Manfred Lindner

© 2006. D.I. Manfred Lindner

L94 - Public-Key Cryptography

1

Diffie-Hellman Algorithm

- Select p prime and g < p
 - g and p might be public, strong primes are used for p $\mbox{-->}$ more secure if (p-1)/2 is also a prime
- Select random secret numbers SA, SB
 - SA,SB are the private DH keys
 - Alice: SA -> T_A = g^{SA} mod p
 - Bob: SB -> T_B = g^{SB} mod p
- Exchange T_A and T_B
 - these are the public DH keys
- Produce shared key K
 - Alice: $K = T_B^{SA} = (g^{SB})^{SA} = g^{SBSA} = g^{SASB} \mod p$
 - Bob: $K = T_A^{SB} = (g^{SA})^{SB} = g^{SASB} = g^{SBSA} \mod p$

© 2006, D.I. Manfred Lindner Public-Key, v4.7

© 2006, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L94 - Public-Key Cryptography

© 2006, D.I. Manfred Lindner

Page 94 - 25

L94 - Public-Key Cryptography

• Problem:

– when $\mathsf{T}_{\mathbf{A}}$ and $\mathsf{T}_{\mathbf{B}}$ are sent over a public network and an active intruder is present

1

- Alice will establish a secret key with whoever transmitted ${\rm T}_{\rm B}$ but it might not be Bob
- Bob will establish a secret key with whoever transmitted $\mathsf{T}_{\textbf{A}}$ but it might not be Alice

Public-Key v47

- There is no authentication (!) in the key exchange process of DH
 - vulnerable against man-in-the-middle attack
 - also known as bucket brigade attack
- DH is only secure against passive attacks

© 2006, D.I. Manfred Lindner

L94 - Public-Key Cryptography

© 2006, D.I. Manfred Lindner

Page 94 - 27

© 2006, D.I. Manfred Lindner