IP QoS DiffServ

Differentiated Services Architecture DSCP, CAR

Agenda

- <u>DiffServ Principles</u>
- DS-Field, DSCP
 - Historical Review
 - Newest Implementations
- Per-Hop Behaviors (PHB)
- DiffServ in Detail
- DiffServ in other Environments

2005 D I Manfred Lindo

P OoS DiffServ v4.3

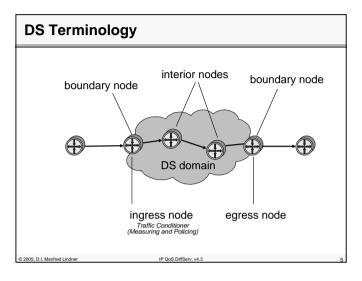
L74 - IP QoS Differentiated Services Model

Principles

- Integrated Services Model does not scale well
 - flow based
 - traffic overhead (RSVP messages)
 - routers must maintain state information for each flow
- ATM's principle of traffic classes
 - seemed to be also useful for IP
 - note: ATM virtual circuits implicitly identify flows (connection between two end systems) but queuing management handels service classes only (CBR, VBR, ABR, UBR) -> all virtual circuits of same class use the same queue
- Idea of Differentiated Services Model (DS, DiffServ): Packets are separated into traffic classes
 - aggregation of traffic → better scalability!
- Routers treat each traffic class according specific service level agreements

© 2005, D.I. Manfred Lindner

QoS DiffServ, v4.3

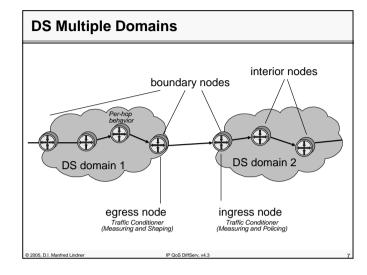

Principles

- Requires a <u>traffic identification</u> and <u>labeling</u> (marking) mechanism
- Routers examine this label to adjust queuing and drop parameters
 - IP Type of Service (ToS) field used as DS label
 - now called "Differentiated Service Code Point" (DSCP)
- So there are two main DS building blocks:
 - DSCP
 - Per-Hop Behavior (PHB) of the routers
- No reservations necessary
 - static QoS mechanism
 - PHB is determined by DSCP

2005, D.I. Manfred Lindner

QoS DiffServ, v4.3

© 2005, D.I. Manfred Lindner


DS Architecture

- Distinction between <u>boundary</u> and <u>interior</u> functions/nodes
- DSCP bits must be set at network boundaries
 - at "ingress" point to achieve PHP in own DS domain
 - at "egress" points to conform to DSCP meaning in next DS domain administered by another authority
- Also conditioning of packets at network boundaries
 - at "ingress" point for traffic policing
 - at "egress" points for traffic shaping to conform traffic aggrement with next DS domain administered by another authority
- Interior nodes have to examine these bits and treat the packets accordingly
 - interior nodes schedule packet forwarding in different ways based on DSCP

2005, D.I. Manfred Lindne

QoS DiffServ, v4.

L74 - IP QoS Differentiated Services Model

DS

- DS requires routers to support sophisticated queue management
 - DSCP value specifies queue parameters and drop preferences
 - traditional FIFO queuing cannot provide service differentiation
- DS assumes a "Service Level Agreement" between adjacent networks
 - service provider and customer
 - between service providers
 - adapt different per-hop behaviors

2005 D.I. Manfred Lindner

OnS DiffServ v4.3

© 2005, D.I. Manfred Lindner

Service Level Agreement / Specification

• Service Level Agreement (SLA)

- in context to DS is a contract between customer and service provider that specifies the forwarding service
- non-technical aspects
 - pricing
 - · contractual obligations

• Service Level Specification (SLS)

- a set of parameters and values
- defines the service offered to a traffic stream by a DS domain
- Traffic Conditioning Specification (TCS)
 - · specifies a set of classifier rules

© 2005, D.I. Manfred Lindner

IP QoS DiffServ, v4.

Traffic Conditioning Agreement

• A Traffic Conditioning Agreement (TCA) consists

- classifier rules
- traffic profiles (optional)
 - bandwidth, throughput, latency, drop precedence,...
- metering, marking, discarding, shaping rules

• A TCA is the result

- of an SLA
- the specific service requirements
- and the providers service provisioning policy

2005 D.I. Manfred Lindne

IP QoS DiffServ, v4.

Agenda

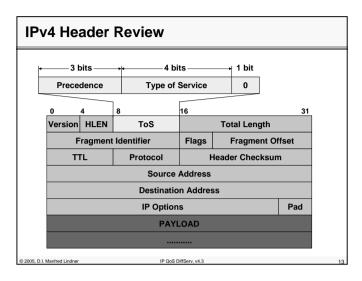
- DiffServ Principles
- DS-Field, DSCP
 - Historical Review
 - Newest Implementations
- Per-Hop Behaviors (PHB)
- DiffServ in Detail
- DiffServ in other Environments

© 2005 D.I. Manfred Lindner

IP QoS DiffServ, v4.3

Providing a Label for DS

- In earlier IP-days the IETF intended the Type of Service (ToS) field in the IP header to be used as some kind of flow descriptor
 - rarely used, mostly even ignored by operating systems
- So, this field can be reused!
 - no additional header necessary
- The IPv4 ToS field consists of
 - three <u>precedence</u> bits for eight precedence levels (0...lowest, 7...highest)
 - four type of service indication bits
 - one unused bit


2005, D.I. Manfred Lindner

IP QoS DiffServ, v4.3

© 2005, D.I. Manfred Lindner

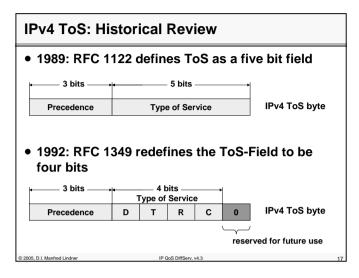
© 2005, D.I. Manfred Lindner

Page 74 - 6

IPv4 / IPv6 ToS Recycling

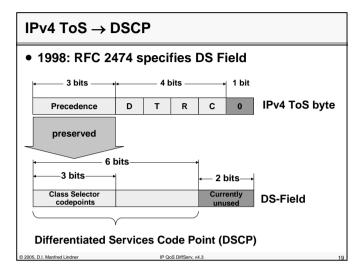
- IPv4 ToS field was redefined by the IETF to become the "Differentiated Service Code Point" (DSCP)
- Now the DSCP field is used to label the traffic class of a flow
- In IPv6 the "Traffic Class" octet is used to implement DiffServ

D 2005, D.I. Manfred Lindner IP OoS DiffServ, v4.3


Agenda

- DiffServ Principles
- DS-Field, DSCP
 - Historical Review
 - Newest Implementations
- Per-Hop Behaviors (PHB)
- DiffServ in Detail
- DiffServ in other Environments

© 2005, D.I. Manfred Lindner IP QoS DiffServ, v4.3


IPv4 ToS: Historical Review • 1981: RFC 791 defines the Internet Protocol containing the original ToS-Field 3 bits Type of Service IPv4 ToS byte Precedence Precedence: reserved for future use 111 - Network Control 110 - Internetwork Control 101 - CRITIC/ECP 100 - Flash Override Type of Service: 011 - Flash D: delay (0 = normal / 1 = low) 010 - Immediate T: throughput (0 = normal / 1 = high) 001 - Priority R: reliability (0 = normal / 1 = high) 000 - Routine

© 2005, D.I. Manfred Lindner

nitial Meaning of the ToS Subfield							
Type of Service	Bit Flags	Value	Examples				
Low Latency	1000	8	Telnet keystrokes, urgent data, etc.				
High Throughput	0100	4	FTP downloads, backups, bandwidth- sensitive applications				
High Reliability	0010	2	File-sharing, database updates, UDP transactions				
Low Cost	0001	1	NNTP news feed, nonessential traffic				
Default	0000	0	Normal traffic				
DS. D.I. Manfred Lindner	IP Ons	DiffServ, v4.3					

L74 - IP QoS Differentiated Services Model

Agenda

- DiffServ Principles
- DS-Field, DSCP
 - Historical Review
 - Newest Implementations
- Per-Hop Behaviors (PHB)
- DiffServ in Detail
- DiffServ in other Environments

© 2005, D.I. Manfred Lindner IP QoS DiffServ, v4.3

ECN in detail

- ECT(0) or ECT(1) are set by the data sender to indicate a ECN-capability
 - routers treat both code points as equivalent
- Not-ECT indicates a packet that is not using ECN
- CE code point is set by a router to indicate congestion to the end nodes
- Routers that have a packet arriving at a full queue drop the packet, just as they do in the absence of ECN
 - see specifications
 - RFC 3168 "The Addition of ECN to IP"

005. D.I. Manfred Lindner

QoS DiffServ, v4.3

DSCP Usage

DS-routers overwrite the IPv4 ToS field

- only precedence bits are preserved
- now known as "class selector code point" field

• DSCP consists of 6 bits

- 64 code points possible:
 - 48 in global space, 16 for local use
- last 2 bits of the former IPv4 ToS field used for ECN
- specifications
 - RFC 2474: "Definition of the Differentiated Service Field in the IPv4 and IPv6 Headers"
 - RFC 2475: "An Architecture for Differentiated Services"
 - RFC 3260: "New Terminology and Clarifications for DiffServ"

2005 D.I. Manfred Lindner

P QoS DiffServ, v4.3

Agenda

- DiffServ Principles
- DS-Field, DSCP
 - Historical Review
 - Newest Implementations
- Per-Hop Behaviors (PHB)
- DiffServ in Detail
- DiffServ in other Environments

© 2005, D.I. Manfred Lindner

OnS DiffServ v4.3

Per-Hop Behavior

• A Per-Hop Behavior (PHB) is

- "The externally observable forwarding behavior applied at a DS-compliant node to a DS behavior aggregate."
- concerns local behavior of a network-node
- should enable predictable services
- The PHB describes various node-behaviors for incoming packets
 - forwarding
 - classification
 - scheduling
 - drop
- Note: Traffic conditioning and service provisioning is not part of a PHB definition

2005, D.I. Manfred Lindne

IP QoS DiffServ, v4.

Per-Hop Behaviors

4 Types:

- Default PHB (DE)
 - Best Effort
 - -DSCP = 000000

• Class Selector PHB

- Defined to be backward-compatible with IP precedence

Precedence 1	001 000		
Precedence 2	010 000		
Precedence 3	011 000		
Precedence 4	100 000		
Precedence 5	101 000		
Precedence 6	110 000		
Precedence 7	111 000		

© 2005, D.I. Manfred Lindner

IP QoS DiffServ, v4.3

Per-Hop Behaviors

Expedited Forwarding (EF)

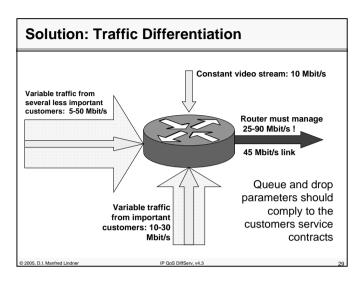
- Premium Service (Highest DS QoS)
- using a single DSCP only (101110)
- minimal delay and jitter; low loss and assured bandwidth
- targets applications like VoIP and video conferencing
 - · virtual leased line service
 - looks like a point-to-point connection for DiffServ network's end nodes
- implementation by appropriate packet scheduling techniques
 - it must be ensured, that a busy EF queue does not starve the remaining traffic queues
 - e.g. CBWFQ (Class-Based Weighted Fair Queuing)
 - e.g. Priority Queuing

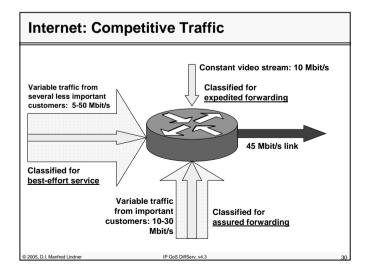
© 2005, D.I. Manfred Lindner

QoS DiffServ, v4.3

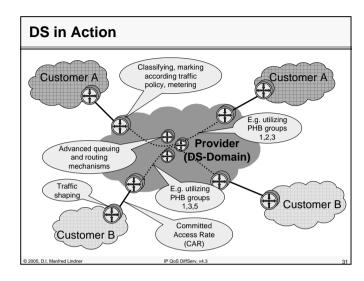
Per-Hop Behaviors

Assured Forwarding (AF)


- emulates a lightly loaded network even in congestion cases
- 4 classes and 3 drop-precedence's within each class
 12 code points
 - · bandwidth assurance but no guarantee
 - · each traffic class is serviced in its own queue


Drop Precedence	Class 1	Class 2	Class 3	Class 4
Low	001 010	010 010	011 010	100 010
Medium	001 100	010 100	011 100	100 100
High	001 110	010 110	011 110	100 110

 Random Early Detection (RED)-queue management is often used for an implementation


© 2005, D.I. Manfred Lindner

QoS DiffServ, v4.3

L74 - IP QoS Differentiated Services Model

Agenda

- DiffServ Principles
- DS-Field, DSCP
 - Historical Review
 - Newest Implementations
- Per-Hop Behaviors (PHB)
- DiffServ in Detail
- DiffServ in other Environments

© 2005, D.I. Manfred Lindner IP QoS DiffServ, v4

DS Domains

- A "DS domain" is a contiguous subnet with a consistent DS management
- A "DS region" consists of one or more contiguous DS domains
- Related PHB's are collected in a "PHB-group"
 - because there may be many more potential PHB's than the 64 map-able PHB's that can be addressed by the DSCP
 - e.g. several PHB's with similar properties can be summarized as one specific PHB group
 - sharing similar properties such as buffer sizes, bandwidth, delay, jitter, loss, etc.

2005, D.I. Manfred Lindner

IP QoS DiffServ, v4.3

Boundary nodes Traffic Conditioning Packet Marking the DSCP-Shaping, Field of the packet Classification Queuing, Scheduling Marking Data flow normal 🗍 low 📶 **Boundary router** 2005, D.I. Manfred Lindne

Traffic Profiles

- Classifiers check if incoming traffic profile complies to the SLA's traffic profile
- A traffic profile can be given by token-bucket parameters
 - eg. "DSCP=x, use token-bucket r, b" specifies that all packets with DSCP=x should be measured against a token bucket meter with rate r and burst size b.
 - out-of-profile traffic: when packets arrive while there is currently no token available
- Solution against out-of-profile traffic:
 - DSCP remarking
 - traffic shaping: queuing to adapt token rate
 - packet dropping

© 2005, D.I. Manfred Lindner

IP QoS DiffServ, v4.3

Traffic Conditioner Meter Packets Classifier Marker Shaper/ Dropper Traffic conditioners are usually located within DS ingress and egress boundary nodes

Traffic Conditioner

Classifier

- selects a packet in a traffic stream based on the content of some part of the packet header
 - common way: classification based on the DSCP field

Meter

- measures traffic stream against traffic profile
 - · based on traffic descriptor such as a token bucket
- the state of the Meter influences the decision of the Marker and the Shaper/Dropper

2005, D.I. Manfred Lindner

IP QoS DiffServ, v4.3

Traffic Conditioner

Marker

- might be configured to mark all packets which are steered to it (by the classifier) to a single DSCP
- might select a PHB in a PHB group according to the meter's state
- might re-mark (change an existing DSCP)

Shaper

 delays some or all packets in a traffic stream to smooth bursts and cares for compliance with the specified traffic profile

Dropper

 discards all packets that doesn't comply with the traffic profile ("policing the stream")

© 2005, D.I. Manfred Lindne

IP QoS DiffServ, v4.3

Packet Classification

Two types of classifiers:

- Behavior Aggregate (BA) classifier
 - classifies packets based on the DSCP only
- Multi-field (MF) classifier
 - selects packets based on the value of a combination of one or more header fields
 - e.g. source and destination address, DSCP, protocol ID, ports, also incoming interface
 - note: IP fragmentation can lead to wrong MF classification of fragments if TCP fields are examined

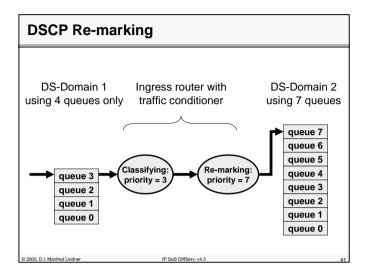
© 2005, D.I. Manfred Lindn

IP QoS DiffServ, v4.3

Re-marking the DSCP

- Ingress routers must ensure that packets entering a DS domain receive the same QoS as in the domain before
 - extending the PHB group by <u>re-marking</u> the DSCP field and traffic conditioning
- Ingress router examines the TCP port numbers and assigns a new service class
- So, the DS is transparent to applications
 - note: IntServ requires application's help!
- However, an end-to-end QoS cannot be guaranteed
 - because no reservation of resources
 - "Soft" QoS

© 2005, D.I. Manfred Lindner


IP QoS DiffServ, v4.3

© 2005, D.I. Manfred Lindner

Page 74 - 19

© 2005, D.I. Manfred Lindner

Page 74 - 20

Source Domain

- The source domain is the place where the traffic originates
 - Usually the customer's domain
- Nodes within a source domain may perform
 - traffic classification
 - E.g. directly by the source node
 - "initial marking" or "pre-marking"
 - conditioning
- Advantages of pre-marking and early conditioning:
 - traffic source knows preferences of applications
 - e.g. a CEO's traffic has more importance
 - simplifies classification and traffic shaping tasks on border nodes
- However, source domain is responsible that aggregated traffic conforms to the TCA
 - signaling of PHB's using RSVP might be necessary

2005, D.I. Manfred Lindner

IP QoS DiffServ, v4.3

Agenda

- DiffServ Principles
- DS-Field, DSCP
 - Historical Review
 - Newest Implementations
- Per-Hop Behaviors (PHB)
- DiffServ in Detail
- DiffServ in other Environments

© 2005, D.I. Manfred Lindn

One Different ut 2

Multicast Traffic

- IP multicast traffic may cause a higher load inside a DS domain
 - multicast packets may take multiple paths simultaneously because of multicast packet replication
 - unpredictably consumes more network resources than unicast packets
- So it may be necessary to reserve different sets of DSCP for unicast and multicast traffic
 - to provide resource isolation from multicast traffic

© 2005, D.I. Manfred Lindner

QoS DiffServ, v4.3

© 2005, D.I. Manfred Lindner

QoS Mapping between IEEE 802 and IP

- 802.1p and 802.1Q define 8 levels of prioritization (0-7)
- DSCP class selector code point also provides 8 precedence levels
 - three-bit field within DSCP
- So 802.1p priority values can be mapped one-toone into the DS class selector code point

2005, D.I. Manfred Lindner

IP QoS DiffServ, v4.3

DS and IPsec

- IPsec does not use the DS field of the IP header for its cryptographic calculations
 - That is: IPsec can be used in DS networks without modifications
- DS together with IPsec tunneling hides port information
 - increases security
 - as routers only need to examine the DSCP to perform traffic differentiation

2005 D.I. Manfred Lindner

IP QoS DiffServ, v4.3

DS and IPsec

IPsec tunnel mode:

- encapsulates the whole IP packet with an outer IP header
- outer IP header contains a proxy-DS field which is set according to the SLA
- only this outer proxy-DS field will be modified on the way through the IPsec tunnel
- at the end of the IPsec tunnel the outer IP header is stripped off again

2005, D.I. Manfred Lindner

IP QoS DiffServ, v4.3

© 2005, D.I. Manfred Lindner