L62 - Internet Email - SMTP

TCP/IP Standard Applications for Electronic Mail

Email, SMTP, POP, IMAP, MIME

Agenda

• Introduction

- Email Address, Routing, Format
- SMTP
- POP
- IMAP
- MIME
- X.400
- RFCs

2005, D.I. Manfred Lindner

L62 - Internet Email - SMTP

What is E-Mail ?

- E-Mail (or "email") is the <u>most</u> widely used Internet application
- Note: email was one of TCP/IP's keys to success: developers wrote RFCs and exchange them quickly via email
- user can communicate with each other
 - on the same machine or across a network

• using a mailbox principle

- a sender does not require the receiver to be online nor the recipient to be present
- a user's mailbox can be maintained anywhere in the Internet on a server

Internet Email, v4.3

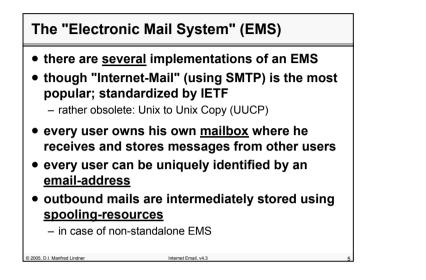
History

© 2005, D.I. Manfred Lindner

- Electronic Mail has been invented
 - in 1972 by Ray Tomlinson (note TCP in 1974)
- initially started as a simple service that copied a file from one machine to another and appended it to the recipient's "mailbox" file
- problems to cope:
 - several exchange techniques
 - several machine-dependent character sets
 - several mail content formats
 - demand for multi-media extensions
 - demand for encryption
- 1982: standardized mail format (RFC 822)

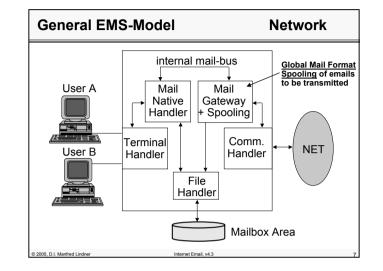
© 2005, D.I. Manfred Lindner

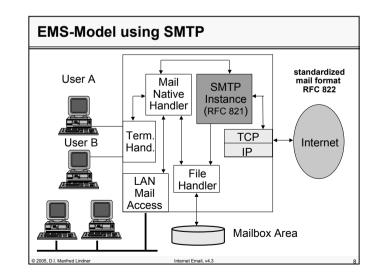
© 2005, D.I. Manfred Lindner


Page 62 - 1

© 2005, D.I. Manfred Lindner

Internet Email, v4.3


L62 - Internet Email - SMTP


L62 - Internet Email - SMTP

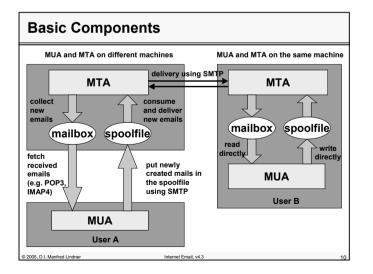
User A Mail	<u>Native Mail Format</u> Create Mail
Vser B User B Handler File Handler Mailbo	Send Mail Notify User View Received Mail Delete Mail

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

L62 - Internet Email - SMTP

Basic Components


- Mail User Agent (MUA)
 - program to read and write emails
- sender spool-file
 - each message to be send is placed (appended) in a designated spool-file by the MUA
- Mail Transfer Agent (MTA)
 - program which reads emails from a spool-file in a consuming way
 - forwards these emails into the mailboxes of the recipients (e.g. using SMTP)

Internet Email, v4.3

• mailbox

- designated file owned by a receiver
- delivered mails should be appended here

2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L62 - Internet Email - SMTP

Basic Protocols

- <u>transport mechanisms</u> to send mails from the sender's spooling memory to the receiver's mailbox:
 - SMTP Simple Mail Transfer Protocol (widely used)
 - X.400 (more sophisticated)
- <u>fetch mechanisms</u> to move (copy) mails from a remote mailbox to a local host

Internet Email, v4.3

- POP Post Office Protocol
- IMAP Internet Message Access Protocol

Basic Protocols

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

- multimedia attachment formats:
 - MIME Multipurpose Internet Mail Extensions
- encryption standards:
- PGP Pretty Good Privacy

© 2005, D.I. Manfred Lindner

Internet Email v4

Page 62 - 5

L62 - Internet Email - SMTP

Typical Mail Configurations

Local Delivery

- no network access all users are directly attached on a local machine (e.g. via terminals)
- Internet site using a "smarthost"
 - mail is received directly using SMTP or fetched using POP or IMAP
 - outgoing mail is sent to a "smarthost" which is responsible for the proper delivery
 - smarthost optionally applies address-rewriting
 - typical for a dialup system
- Internet site
 - mail is sent and received directly using SMTP

Internet Email, v4.3

2005, D.I. Manfred Lindner

Agenda

- Introduction
- Email Address, Routing, Format
- SMTP
- POP
- IMAP
- MIME
- X.400
- RFCs

2005, D.I. Manfred Lindner

L62 - Internet Email - SMTP

Email Addresses

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

- every mailbox can uniquely identified by an email address
- email addresses consists of character strings conforming the following format:

user@domain

- <u>user</u>: identifies the user or his/her mailbox of a domain
- <u>domain</u>: identifies some organization or a host-machine providing a mail-exchange service (DNS name)

• example: lindner@ict.tuwien.ac.at

Mail Routing in the Internet (Source Routing)

Internet Email, v4.3

- in the old days of the Internet sometimes it was necessary to specify the <u>path</u> a mail should take
- the path consists of a series of "mailboxgateways"
- intermediate hops are given as a domain-list which precedes the mailbox-address
- @domain1, @domain2, ... , @domainX:user@domain
- today's usage of source-routing is discouraged

© 2005, D.I. Manfred Lindner

L62 - Internet Email - SMTP

Mail Routing in the Internet (DNS Based)

mail routing service of a mail server can be announced with the help of DNS

- DNS servers allow to identify a Mailbox Exchanger (MX) which is registered for a domain
- using MX-records in the DNS database which specify the name(s) of such machine
 - each MX record is assigned a preference value (positive integer)
 - if several MX server exist for one domain, the MTA will try to transfer the message to the server with the lowest preference value
 - a MTA must not transfer mails to MX servers with a higher preference value than its own (safe way of avoiding mail loops)
- DNS resolves for any given domain-name the machine's associated IP-address

Internet Email. v4.3

Message Components (RFC 822, 2822)

• Envelope or Header

2005, D.I. Manfred Lindner

- contains any information necessary for transmission and delivery
- starts with a "From" expression in the first line
- necessary for MUA's mail handling
 - not particular to any transport mechanism (though MTA's may use some information of the header)
- contains well defined message information
 - about sender, receiver, intermediate stations, date and time, content-type, return-path (for error messages back to the sender), subject of the message, etc...

2005, D.I. Manfred Lindner

1

L62 - Internet Email - SMTP

Message Components (RFC 822, 2822) 2

- Body
 - separated from the header by an empty line
 - contains the user's message
 - maximal 1000 characters
- Signature
 - separated from the body by two dashes "--"
- contains personal information, jokes, PGP-keys or fingerprints, etc.

• Very important:

 Header and Body must be represented with US-ASCII characters only to be RFC822 conform

Internet Email, v4.3

Header Fields (1)

• From:

© 2005. D.I. Manfred Lindner

- sender's email address and (frequently) her "real name"
- many formats are used here
- To:
 - recipients email address
- Subject:
 - what the message is about (to the sender's opinion)
- Date:
 - the date the mail was sent
- Reply-To:

© 2005 D L Manfred Lindner

 hint for the recipient which email address should be used for a reply

© 2005, D.I. Manfred Lindner

L62 - Internet Email - SMTP

Header Fields (2)

• Organization:

- hint which organization (company, etc) the user belongs to
- Message-ID:
 - a string, generated by the initial MTA
 - identifies a message uniquely
- Received:
 - every site (including sender and recipient) which processes this email inserts such a field in the header
 - several information can be stated here: site name, message-id, time, IP-address, software name
- X-anything:
 - used to implement additional features
 - no MUA or MTA should complain about this lines

Internet Email, v4.

2005, D.I. Manfred Lindner

Agenda

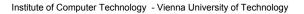
- Introduction
- Email Address, Routing, Format
- <u>SMTP</u>
- POP
- IMAP
- MIME
- X.400
- RFCs

2005, D.I. Manfred Lindner

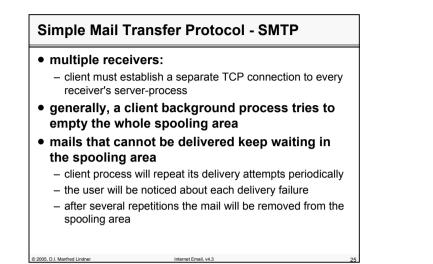
© 2005, D.I. Manfred Lindner

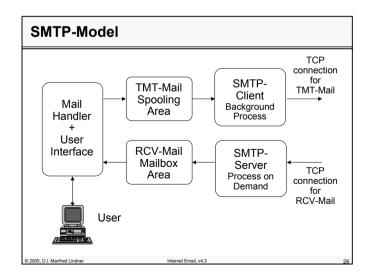
Page 62 - 11

Institute of Computer Technology - Vienna University of Technology

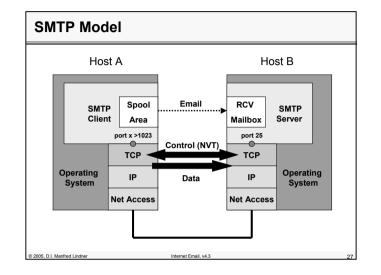

L62 - Internet Email - SMTP

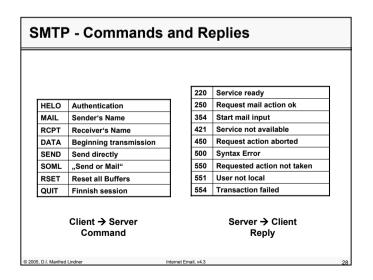
Simple Mail Transfer Protocol


- RFC 821, 2821
- client-server principle
 - SMTP relies on TCP, well-known port number 25
- end-to-end communication
 - sender (SMTP client) talks directly to the receiver (SMTP server)
 - local deleting condition: mail must successfully arrive at the receiver
- commands and message-contents are transferred in ASCII format
- printable 7-bit US-ASCII (=character values 33-126) plus , D.1. Marfiel Linder Internet Email, v4.3


ASCII-Code										
American Standard Code for Information Interchange										
Bit 6 Positions 5	0 0 0 0 0 1	0 1 0	0 1 1	1 0 0	1 0 1	1 1 0	1 1 1			
0 0 0 0	Null DLE	SP	0	@	Р	١	р			
0 0 0 1	SOH DC1	!	1	Α	Q	а	q			
0 0 1 0	STX DC2	"	2	В	R	b	r			
0 0 1 1	ETX DC3	#	3	C	S	C	S			
0 1 0 0	EOT DC4	\$	4	D	Т	d	t			
0 1 0 1	ENQ NAK	%	5	E	U	e	u			
	ACK SYN BEL ETB	&	6	F G	w	f	V			
1 0 0 0	BS CAN		8	н	X	g h	w			
	HT EM	\vdash	9	<u>-</u>	Ŷ	<u>n</u>	x			
1 0 1 0	LF SUB	*			7		z			
	VT ESC	+		ĸ	ī	k	Ĩ			
1 1 0 0	FF FS		,	L	1	Î				
1 1 0 1	CR GS	-	=	м	1	m	}			
1 1 1 0	SO RS		>	N	Â	n	~			
1 1 1 1	SI US	1	?	0		0	DEL			
4 3 2 1	3 2 1 Transmission Control Format Control									
	Printable Cha	Printable Character Information Separator Others			Others					
© 2005, D.I. Manfred Lindner		Internet Ema	ail, v4.3				© 2005, D.I. Manfred Lindner Internet Email, v4.3 24			

L62 - Internet Email - SMTP


L62 - Internet Email - SMTP



© 2005, D.I. Manfred Lindner

Page 62 - 13

© 2005, D.I. Manfred Lindner

L62 - Internet Email - SMTP

SMTP - Commands: Client -> Server

- HELO.....for client authentication
- MAIL.....specifies sender's name (FROM-line)
- RCPT.....specifies receiver's name; can be repeated if there are several recipients on the receiver's system
- DATA.....indicates beginning of mail transmission
- SEND...... this email should be send directly to the terminal of the specified user
- SOML...... first act like SEND; if the user's terminal cannot be reached use that user's mailbox ("Send Or MaiL") *
- RSET.....resets all buffers, TCP connection remains open though

Internet Email, v4.3

- QUIT......finishes this client-server session

2005, D.I. Manfred Lindner

SMTP - Replies: Server -> Client

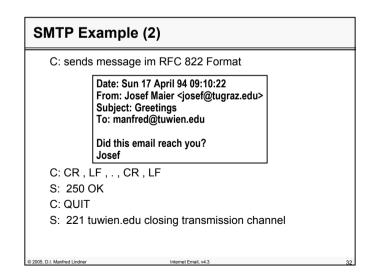
- 220 <domain> service ready
- 250 <domain> requested mail action okay, completed
- 354 start mail input, end with CR,LF,.,CR,LF
- 421 <domain> service not available, closing trans.cha.
- 450 request action aborted, local error in processing
- 500 syntax error, command unrecognized
- 550 requested action not taken (mailbox not found)
- 551 user not local

2005 D L Manfred Lindner

- 554 transaction failed
- error numbers are very similar like those of FTP
- both commands and replies are completed with a CR, LF sequence

Internet Email v4

Institute of Computer Technology - Vienna University of Technology


L62 - Internet Email - SMTP

SMTP Example (1)

© 2005, D.I. Manfred Lindner

C: (opens TCP connection to port 25 of the server) S: 220 tuwien.edu Simple Mail Transfer Service ready C: HELO tugraz.edu S: 250 OK C: MAIL FROM: josef@tugraz.edu S: 250 OK C: RCPT TO:hans@tuwien.edu S: 550 no such user there C: RCPT TO:manfred@tuwien.edu S: 250 OK C: DATA S: 354 start mail input, end with CR LF . CR LF

Internet Email. v4.3

© 2005, D.I. Manfred Lindner

Page 62 - 15

© 2005, D.I. Manfred Lindner

L62 - Internet Email - SMTP

SMTP Example (3)

Return-Path: josef@tugraz.edu Posted-Date: Sun 17 April 94 09:10:22 PDT Received-Date: Sun 17 April 94 09:11:43 PDT Received: from tugraz.edu by tuwien.edu id AA07832; Sun 17 April 94 09:11:43 PDT Date: Sun 17 April 94 09:10:22 PDT	
From: Josef Maier <josef@tugraz.edu> Subject: Greetings</josef@tugraz.edu>	
To: manfred@tuwien.edu	
(additionally, here may appear some Logging Information caused by SMTP processes having forwarded this mail)	message conforming to
Did this email reach you?	the RFC 822
Josef	format, seen at
	the receiver

Internet Empil v4

Agenda

2005. D.I. Manfred Lindner

- Introduction
- Email Address, Routing, Format
- SMTP
- **POP**
- IMAP
- MIME
- X.400
- RFCs

2005, D.I. Manfred Lindner

L62 - Internet Email - SMTP

Post Office Protocol (POP3, RFC 1939, 2449)

- very often a user reads and writes his emails on a local PC but has his mailbox on a server machine
- running a SMTP server process for receiving email (probably running also a SMTP client process for sending email)
- is permanently connected with the Internet
- POP3 lets a user fetch his emails from a remote mailbox (client-server principle)
 - the machine with the mailbox (SMTP-server) runs also a POP3 server process
- the POP3 client on the user's workstation is able to load and delete emails from that server and also to save them on the local disk

Internet Email, v4.3

POP3 Principles POP3 relies on TCP

- well-known port number 110
- again commands and error-/state-messages are exchanged using ASCII characters
- communication procedure is similar to SMTP

Some examples of "LAN Mail Access Modules and/or Native Mail Systems"

- Pegasus Mail (DOS/Windows)
- Eudora
- · Groupwise (Novel, originally IPX based)
- MS Exchange
- MS Outlook
- · Lotus Notes

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

Page 62 - 17

© 2005, D.I. Manfred Lindner

Internet Email, v

L62 - Internet Email - SMTP

1

2

POP3 Commands

- USER name ... user name for authentication
 attention: cleartext
- PASS password ... password for authentication
 attention: cleartext
- STAT ... to get the number of messages and total size of the messages
- LIST [msg] ... if a message number is specified, the size of this mail is listed (if it exists), if not all messages will be listed with the message sizes
- RETR msg .. sends the whole message to the client

Internet Email, v4.3

– DELE msg ... deletes the specified message

POP3 Commands

2005, D.I. Manfred Lindner

2005, D.I. Manfred Lindner

- NOOP ... the server does not do anything, just sends a positive response.
- RSET ... this command cancels previous delete requests
- QUIT ... if entered in the authorization state, it merely ends the TCP connection; if entered in the transaction state, it first updates the mailbox (deletes any messages requested previously) and then ends the TCP connection

L62 - Internet Email - SMTP

Agenda

- Introduction
- Email Address, Routing, Format
- SMTP
- POP
- IMAP
- MIME
- X.400
- RFCs

© 2005, D.I. Manfred Lindner

Internet Message Access Protocol (IMAP4)

Internet Empil v4

- RFC 3501
- client-server principle
- relies on TCP, well-known port 143
- IMAP4 is similar to POP3 but more sophisticated
 - allows a client to access and manipulate emails and mailboxes on a server
 - includes operations for creating, deleting, and renaming mailboxes
 - commands for selective fetching of message attributes
 - ALL

© 2005, D.I. Manfred Lindner

- BODY
- BODY<section> (get single pages of a "multipart message"),

Internet Email v4

© 2005, D.I. Manfred Lindner

Page 62 - 19

L62 - Internet Email - SMTP

IMAP4

- commands for selective fetching of message attributes (cont.)
 - BODYSTRUCTURE (get MIME-1 body structure of a message), ENVELOPE
 - FLAGS (get only the flags that are set for this message)
 - \Seen ... Message has been read
 - Answered … Message has been answered
 - \Flagged ... Message is marked for special attention.

Internet Email, v4.3

- $\begin{aligned} \label{eq:loss_loss} \begin{aligned} \label{eq:loss} \begin{aligned} \label{eq:loss} \label{eq:loss} \begin{aligned} \label{eq:loss} \label{eq:loss} \begin{aligned} \label{eq:loss} \label{eq:loss} \begin{aligned} \label{eq:loss} \label{eq:loss} \label{eq:loss} \begin{aligned} \label{eq:loss} \label{eq:loss} \label{eq:loss} \label{eq:loss} \label{eq:loss} \begin{aligned} \label{eq:loss} \labe$
- \Draft ... Message has been completed.
- Necent ... Message has arrived recently and this is the first session after its arrival, this flag cannot be changed by the client.
- FULL
- RFC822 (get message in RFC822 format)
- · UID (get the unique identifier for this message)

© 2005, D.I. Manfred Lindner

IMAP4

- search-command
 - searches a mailbox for messages that match a given criteria (search keys)
- examine-command:
 - enables read-only mailboxes
- maintains several *flags* for each message
 SEEN, ANSWERED, DRAFT, DELETED, FLAGGED

• RFC 1733

- specifies "Distributed Electronic Mail Models in IMAP4"
 - · offline use model
 - online use model
 - · disconnected use model

2005, D.I. Manfred Lindner

Internet Email, v4.3

L62 - Internet Email - SMTP

Agenda

- Introduction
- Email Address, Routing, Format
- SMTP
- POP
- IMAP
- MIME
- X.400
- RFCs

© 2005, D.I. Manfred Lindner

SMTP and Binary Data Sources

• RFC 822 format

- allows only US-ASCII characters in the message body

Internet Email, v4.3

- For including binary data like pictures, images, executable files in an RFC 822 conform email
 - they first must be prepared for an ASCII-transmission
 conversion into 7-bit-Bytes represented by printable ASCII characters
- several ad hoc methods were used before MIME
 - UUENCODE and UUDECODE
 - Unix-to-Unix
 - pure hexadecimal representation
 - Andrew Toolkit Representation (ATK)
 - many others

© 2005, D.I. Manfred Lindner Internet Email, v4.

© 2005, D.I. Manfred Lindner

L62 - Internet Email - SMTP

Multipurpose Internet Mail Extensions

• MIME is a mechanism

- for specifying and describing the format of message bodies (content-type) in a standardized way
- but leaves message body as ASCII text
- using MIME now emails can contain
 - images
 - audio-content
 - videos

2005, D.I. Manfred Lindner

- HTML pages
- application specific data

• it is necessary that

- MUA can identify and support the associated content-type

Internet Email, v4.3

Multipurpose Internet Mail Extensions

• MIME is realised using

- MIME-Version header field
- Content-Type header field
 - type and subtypes of data in the body
 - this describes how the object within the body is to be interpreted
 - · the default value is text/plain; charset=us-ascii,
- Content-Transfer-Encoding header field
 - this describes how the object within the body was encoded so that it could be included in he message in a mail-safe form (US-ASCIIcode)
- Content-Description header field (optional)
 - · for additional plain-text data description
- Content-ID header field
 - a world-unique identifier for the content of this part of the message

© 2005, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L62 - Internet Email - SMTP

7 Standard Content-Types 1) text plain (unformatted text) charset=us-ASCII 7 bit (position 0 - 127 in the code table) plain (unformatted text) charset= iso-8859-x (x = 1 - 9) us-ascii plus national characters (position 128 - 255 in the code table) html and enriched 2) image jpeg, gif 3) audio 4) video mpeg

7 Standard Content-Types (cont.)

• 5) application

- postscript
- octet stream
- 6) multipart
 - mixed:
 - different body parts sequentially presented to the receiver
 - parallel:
 - same as mixed but no order how to presented the different parts to the receiver
 - alternative:
 - · different body parts are alternatives of the same information

Internet Email, v4.3

- can be presented depending on capabilities of the receiver
- e.g. email as text/plain or text/html

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

Internet Email, v4.3

© 2005, D.I. Manfred Lindner

L62 - Internet Email - SMTP

7 Standard Content-Types (cont.)

• 7) message

- the body is an encapsulated message or part of one
- rfc822
 - encapsulated message is RFC822 conform
- partial
 - · large mail fragmented in smaller pieces
- external-body
 - pointer to a object existing elsewhere accessible via ftp, tftp, local file. mail-server
- private types not falling into categories above

Internet Email. v4.

- starts with a type/subtype X-
 - e.g. X-Mailer (MS Outlook, Novell GroupWise, etc.)
 - e.g. X-Priority (Normal, High, Low)

2005. D.I. Manfred Lindner

5 Standard Content-Transfer-Encodings

1) 7-bit encoding

- body contains strict US-ASCII with maximal length of 1000 characters
- 2) 8-bit encoding
 - possible SMTP agents support the SMTP service extension for 8-bit MIME transport · EHLO instead of HELO
 - still maximal length of 1000 characters

• 3) binary encoding

- binary with length greater than 1000 characters
- currently only usable for type=message subtype=externalbody

2005, D.I. Manfred Lindner

L62 - Internet Email - SMTP

5 Standard Content-Transfer-Encodings

• 4) guoted-printable encoding

- real encoding
- leaves text files largely readable in their encoded form
- it represents non-mail safe characters by the hexadecimal representation of their ascii-characters
- non-text characters are replaced by three byte sequence

5) Base64 encoding

- · real encoding
- for binary data
- three 8-bit input words -> grouped to 24 bits
- 24 bits -> grouped to four 6-bit words (bbbbbb)
- each of it padded to 8-bit (00bbbbbb) word
- 8-bit word converted with Base64-table to be mail-safe Internet Empil v4.3

Agenda

2005, D.I. Manfred Lindner

- Introduction
- Email Address, Routing, Format
- SMTP
- **POP**
- IMAP
- MIME
- X.400
- RFCs

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

L62 - Internet Email - SMTP

X.400

- X.400 was designed by the ITU (formerly known as CCITT) initially for telephone and X.25 networks
 - in the 80s, many governments preferred international standards over rather randomly growing IETF protocols
 - "X.400" is short for the protocol family X.400 to X.440

• X.400 has more features than RFC822-Mail

 – e.g.: delivery notifications, receipt notifications, security functions, 3-level priority markers, deferred delivery, protocol conversions, reliable transfer service

Internet Email. v4.

X.400

2005, D.I. Manfred Lindner

• X.400 uses a binary oriented messages structure

- (+) easy to embed other binary stuff (e.g. images) without encoding it for the transfer
- (-) relies on error-less transmissions !
- (-) debugging is complicated ! consider SMTP where you can simply telnet to a server and verify the operations
- (+) but mail-faking is also complicated
- (-) X.400 is decoded by an ASN.1-compiler; new commands violate its syntax specification and will cause error messages

whereas RFC822's text-based messages can be displayed in any case; even new features will not prevent revealing the basic information

2005, D.I. Manfred Lindner

rnet Email, v4.3

Institute of Computer Technology - Vienna University of Technology

L62 - Internet Email - SMTP

X.400 features

store-and-forward delivery method

- mail is deleted locally after it was transferred to the first mail-relay-machine
 - (other than SMTP's end-to-end communication)
- address scheme uses a more general set of "attributes" which are used to look up the recipient's host in an X.500 directory server
 - e.g.: G=Robert; S=Scott; O=southpole; OU=notfarfrom; PRMD=polarnet; ADMD=polarnet; C=ax (compared to IETF Mail: Robert.Scott@notfarfrom.southpole.ax)
 - actually, X.500 integration is specified but not used very often

Internet Email, v4.3

X.400 features

2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

• Delivery Notification

 sender gets a delivery report saying that the message has been delivered to the specified address

• Receipt Notification

- telling the sender, that the mail reached the receiver and she "will probably read it" -- generated automatically
- receiver can issue such a receipt-notification also manually, telling the sender that she did read the message already

© 2005, D.I. Manfred Lindner

Page 62 - 27

© 2005, D.I. Manfred Lindner

L62 - Internet Email - SMTP

X.400 Features

• priority markers (3 levels)

- forces "important" mails to be send earlier
- useful if only low-bandwidth connections are available (compared to the daily mail volume)

• conversion

2005, D.I. Manfred Lindner

2005, D.I. Manfred Lindner

- e.g. Teletex to plain text or embedding fax images
- counterpart to the MIME-idea

• reliable transfer service

- provides the ability to continue the transmission if it gets interrupted
- very useful when many interrupts can be expected (and also the ideal case transmission time is relatively long)

Internet Email, v4.3

IETF-Mail Features Missing in X.400

- SMTP check recipients for validity before transmitting the message (receiver's existence)
- optionally, IETF mail can check if a message is too large before sending it
- ability to insert arbitrary data in the mail header
 - using "X-....." syntax
 - promotes development of special additional features
 - additional information can be exchanged
- with MIME Multipart/Alternative function, several representations of the same message content can be transmitted at once
 - to ensure that any recipient is able to read it

© 2005, D.I. Manfred Lindner

Institute of Computer Technology - Vienr	a University of Technology

L62 - Internet Email - SMTP

Agenda

- Introduction
- Email Address, Routing, Format
- SMTP
- POP
- IMAP
- MIME
- X.400
- RFCs

© 2005, D.I. Manfred Lindner

RFCs

© 2005, D.I. Manfred Lindner

• Mail:	RFC 822 (obsolete), RFC 2822
• SMTP:	RFC 821 (obsolete), RFC 2821
• POP2:	RFC 937
• POP3:	RFC 1081, RFC 1225, RFC 1460, RFC 1725, RFC 1939
 POP3 Au 	thentication: RFC 1734
• APOP:	RFC 1460, RFC 1725, RFC 1939
• RPOP:	RFC 1081, RFC 1225
• IMAP2, IN	MAP2BIS: RFC 1176, RFC 1732
• IMAP4:	RFC 1730, RFC 1731, RFC 1732, RFC 2060, RFC 2061, RFC 3501
• MIME:	RFC 2045, 2046, 2047, 2048, 2049

Internet Email, v4.3

© 2005, D.I. Manfred Lindner

Page 62 - 29