L44 - Advanced IP Addressing

Classful, Classless, CIDR, NAT

Classful- versus Classless-Routing, Advanced IP Addressing (Supernetting, VLSM) Classless Inter Domain Routing, Network Address Translation

Agenda

- Classful Routing
- Classless Routing
- VLSM
- Address Design Aspects
- CIDR
- NAT

2009, D.I. Manfred Lindner

Classful, Classless, CIDR, v4

L44 - Advanced IP Addressing

Classful Routing

- routing protocols like RIP, IGRP cannot carry subnetmask information in routing updates
- this has several consequences
 - if a given class A, B or C address is subnetted the subnetmask must be constant in the whole area
 - no variable length subnet mask (VLSM) can be used
 - if a routing update is sent to an interface with an network number different to the subnetted network
 - only the major class A, B or C network number will be announced
 - route summarization will be performed on class boundaries

Classful Classless CIDR v4.6

- hence a subnetted area must be contiguous
- classful routing

© 2009 D I Manfred Lindner

Routing Table Lookup (Classful)

• assumption:

© 2009, D.I. Manfred Lindner

- IP datagram with a given IP address is received by a classful router
- IP address is interpreted as class A, B or C - the major net is determined
- next a lookup in the routing table for the major net is performed
 - if there is no entry the IP datagram will be discarded
- if there is a match the IP address is compared to every known subnet of this major network

Classful Classless CIDR vi

if there is no such subnet the IP datagram will be discarded

© 2009, D.I. Manfred Lindner

Page 44 - 1

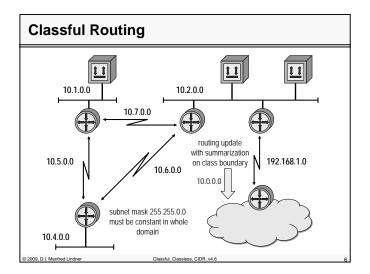
L44 - Advanced IP Addressing

Routing Table Lookup (Classful) cont.

• hence a problem may arise with default routing

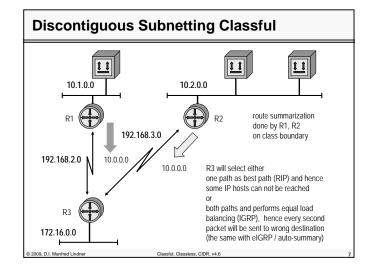
 if the major network is known by the router, but the subnet does not exist, the IP datagram will be discarded even if a default route exists

• therefore


- subnetted area must be contiguous
- all subnets of a given major net must be reachable using only paths with these subnet-IDs

• remark:

 Cisco's configuration command *ip classless* will change such an behavior in case of default routing to the behavior of classless routing even if classful routing is used


Classful, Classless, CIDR, v4.6

2009, D.I. Manfred Lindner

© 2009, D.I. Manfred Lindner

L44 - Advanced IP Addressing

Agenda		
Classful Rou	uting	
• Classless Re	outing	
• VLSM	-	
Address Des	sign Aspects	
• CIDR		
• NAT		
© 2009. D.I. Manfred Lindner	Classful, Classless, CIDR, v4.6	8

© 2009, D.I. Manfred Lindner

L44 - Advanced IP Addressing

Classless Routing

- routing protocols like RIPv2, OSPF, elGRP can carry subnet mask information in routing updates
- this has several advantages
 - variable length subnet mask (VLSM) can be used
 - subnetting of a given address can be done according to the number of hosts required on a certain subnet
 - more efficient use of address space ⇒ sub-subnetting
 - route summarization can be performed on any address boundary and not only on class boundaries

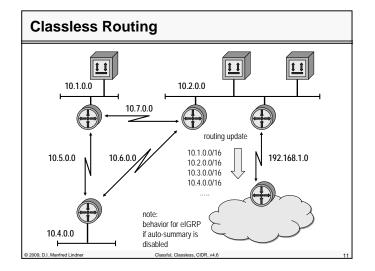
Classful Classless CIDR v4.6

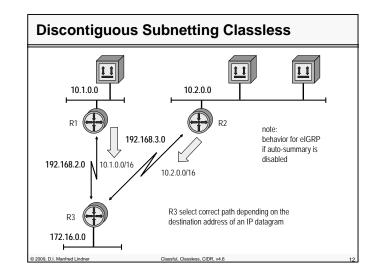
• a routing update contains prefix (relevant part of IP address) and length (number of ones used in subnetmask)

supernetting

- actual subnetmask is smaller than natural subnetmask of given class

Routing Table Lookup (Classless)

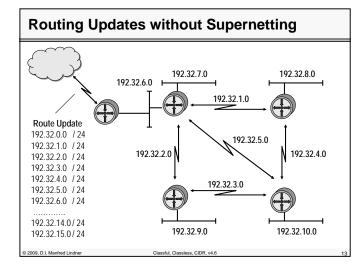

• assumption:

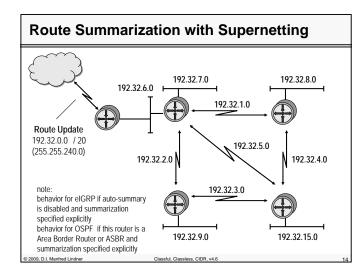

2009 D L Manfred Lindner

 IP datagram with a given IP address is received by a classless router

- IP address is not interpreted as class A, B or C
- a lookup in the routing table for the best match for this IP address is performed
 - IP prefixes of the routing table are compared with the given IP address bit by bit from left to right
 - IP datagram is passed on to the network which matches best
 - "Longest Match Routing Rule"
- result: IP addresses with any kind of subnetting can be used independent from the underlying network topology
 2006, D.I. Martred Lindner
 Classifies, CIDR, v4.6

L44 - Advanced IP Addressing

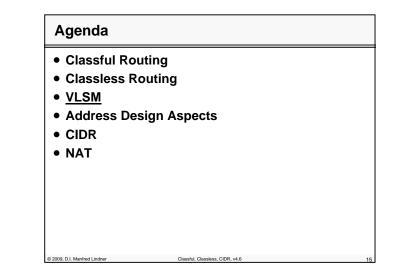


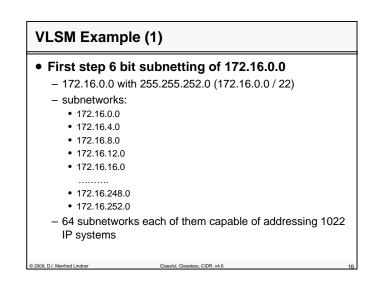


© 2009, D.I. Manfred Lindner

© 2009, D.I. Manfred Lindner

L44 - Advanced IP Addressing

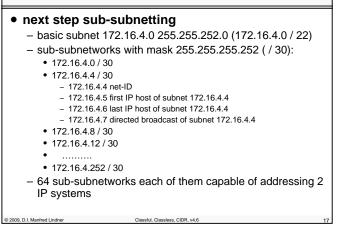




© 2009, D.I. Manfred Lindner

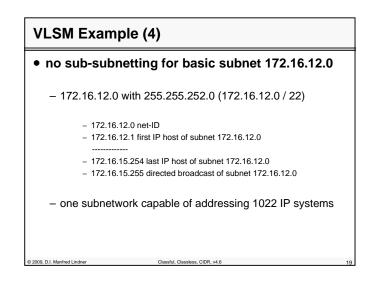
Institute of Computer Technology - Vienna University of Technology

L44 - Advanced IP Addressing



© 2009, D.I. Manfred Lindner

L44 - Advanced IP Addressing


VLSM Example (2)



© 2009, D.I. Manfred Lindner

L44 - Advanced IP Addressing

© 2009, D.I. Manfred Lindner

L44 - Advanced IP Addressing

Agenda

- Classful Routing
- Classless Routing
- VLSM
- Address Design Aspects
- CIDR
- NAT

2009 D I Manfred Lindner

Address Design Issues 1

• facts of classful routing

 subnetting of a given class A, B or C address must be contiguous

Classful Classless CIDR v4.6

- summary on class boundary
- subnetmask of a given class A, B or C address must be constant
 - no VLSM

© 2009, D.I. Manfred Lindner

addressing must obey these principles
 be careful

© 2009, D.I. Manfred Lindner

Classful, Classless, CIDR, v4

Institute of Computer Technology - Vienna University of Technology

L44 - Advanced IP Addressing

Address Design Issues 2

facts of classless routing

- in principle any IP address with any subnetmask can be located anywhere in the network
 - VLSM possible

© 2009 D I Manfred Lindner

- longest match routing rule
- but in order to keep number of routing table entries small
 - addressing of networks should be done in a way to use route summarization most efficient
- that is important for core routers in large networks like the Internet
- therefore addressing should follow physical topology
- e.g. networks of a certain region could be advertised towards the core as one single supernetted network
- renumbering of networks may be necessary to achieve this

Classful Classless CIDR v4.6

Address Design Issues 3

• route summarization

- classful routing (RIP, IGRP)
 - on class boundary
- classless routing (OSPF)
- on any address boundary
- possible only at Area Border Router or ASBR
- classless routing (eIGRP with auto-summary)
 - on class boundary
- backward compatibility to IGRP
- classless routing (eIGRP no auto-summary)
 - on any address boundary

on any router

© 2009, D.I. Manfred Lindner

© 2009, D.I. Manfred Lindner

Classful, Classless, CIDR, v

L44 - Advanced IP Addressing

Agenda

- Classful Routing
- Classless Routing
- VLSM
- Address Design Aspects
- <u>CIDR</u>
- NAT

2009 D I Manfred Lindner

IP Address Space Depletion

the growing demand of IP addresses

- has put a strain on the classful model
- class B exhaustion
- class C are to small for most organization
- many class C addresses given to a certain organization leads to explosion of routing table entries in the Internet core routers

Classful Classless CIDR v4.6

- measures to handle these problems
 - creative IP address allocation
 - CIDR
 - private IP addresses and network address translation (NAT)

Classful, Classless, CIDR, v4

– IPv6

2009, D.I. Manfred Lindner

L44 - Advanced IP Addressing

CIDR

- Classless Interdomain Routing (CIDR)
 - address assignment and aggregation (route summarization) strategy
 - temporary solution to overcome depletion of IP address space and explosion of routing tables in the Internet core routers

basic ideas

- classless routing (prefix, length)
- supernetting
- coordinated address allocation
- until 1992 IP addresses had no relation at all to the networks topology

Classful Classless CIDR v4.6

© 2009, D.I. Manfred Lindner

CIDR

CIDR address allocation

- addressing plan for class C addresses by continents

- 192.0.0.0 193.255.255.255 ... Multiregional
- 194.0.0.0 195.255.255.255 ... Europe
- 198.0.0.0 199.255.255.255 ... North America
- 200.0.0.0 201.255.255.255 ... Central/South America
- provider addressing strategy
 - Internet Service Providers (ISP) are given contiguous blocks of class C addresses which in turn are granted to their customers
 consequence: change of provider means required in the service of the service of
 - consequence: change of provider means renumbering
- class C network numbers are allocated in such a way that route summarization (or sometimes called route aggregation) into supernets is possible

Classful, Classless, CIDR, v4

© 2009, D.I. Manfred Lindner

© 2009, D.I. Manfred Lindner

© 2009, D.I. Manfred Lindner

L44 - Advanced IP Addressing

CIDR

- definitions of terms often used interchangeably
 - CIDR block
 - is the <prefix, length> notation
 - supernets
 - have a prefix length shorter than the networks natural mask
 - aggregates

2009 D L Manfred Lindner

indicate any summary route

• in order to implement CIDR

 classless routing protocols between routing domains must be used

Classful Classless CIDR v4.6

- BGP-4 as interdomain routing protocol
- classless routing within an routing domain
 RIPv2, OSPF, elGRP
 - RIPVZ, USPF, elGRP

Private Address Range - RFC 1918

- Three blocks of address ranges are reserved for addressing of private networks
 - 10.0.0.0 10.255.255.255 (10/8 prefix)
 - 172.16.0.0 172.31.255.255 (172.16/12 prefix)
 - 192.168.0.0 192.168.255.255 (192.168/16 prefix)
 - Note:
 - In pre-CIDR notation the first block is nothing but a single class A network number, while the second block is a set of 16 contiguous class B network numbers, and third block is a set of 256 contiguous class C network numbers.
- Translation between private addresses and globally unique addresses -> NAT

2009, D.I. Manfred Lindner Classful, Classless, CIDR, v4.6

R, v4.6

Institute of Computer Technology - Vienna University of Technology

L44 - Advanced IP Addressing

Agenda

- Classful Routing
- Classless Routing
- VLSM
- Address Design Aspects
- CIDR
- <u>NAT</u>
- NAT Basics
- PAT
- DNS Aspects
- Load Balancing

© 2009, D.I. Manfred Lindner

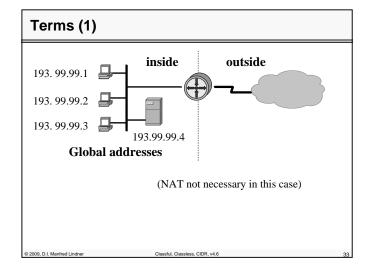
Reasons for Network Address Translation

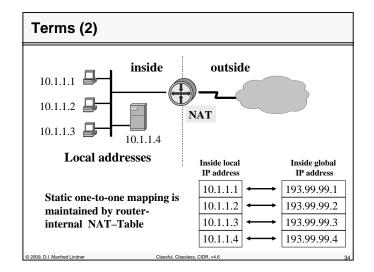
Classful Classless CIDR v4.6

Mitigate Internet address depletion

- NAT was originally developed as an interim solution to combat IPv4 address depletion by allowing globally registered IP addresses to be reused or shared by several hosts (RFC 1631)
- Save global addresses (and money)
 - NAT is most often used to map IPs from the nonroutable private address spaces defined by RFC 1918
 10.0.0.0/8, 172.16.0.0/16, 192.168.0.0/16
- Conserve internal address plan
- TCP load sharing

© 2009, D.I. Manfred Lindner

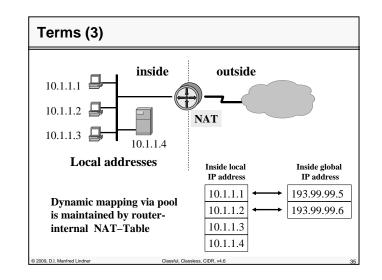

• Hide internal topology

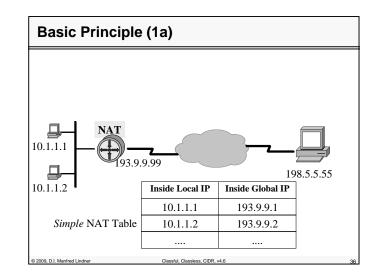

© 2009. D.I. Manfred Lindner

Classful, Classless, CIDR, v4.6

© 2009, D.I. Manfred Lindner Page 44 - 15

L44 - Advanced IP Addressing

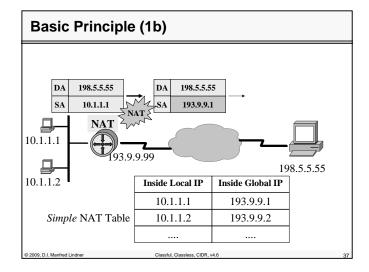


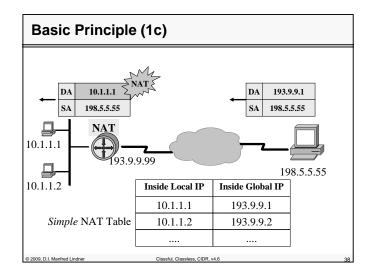


© 2009, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L44 - Advanced IP Addressing

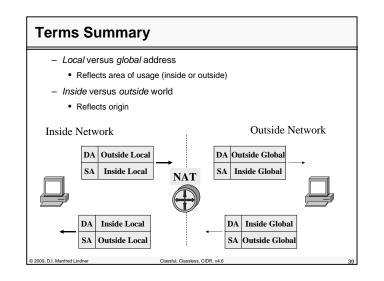


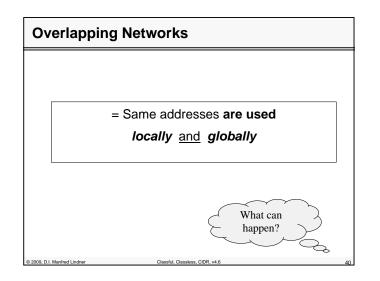


© 2009, D.I. Manfred Lindner

Page 44 - 17

L44 - Advanced IP Addressing

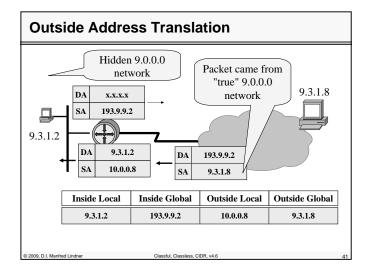




© 2009, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

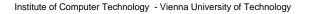
L44 - Advanced IP Addressing



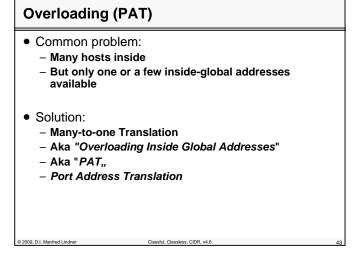
© 2009, D.I. Manfred Lindner

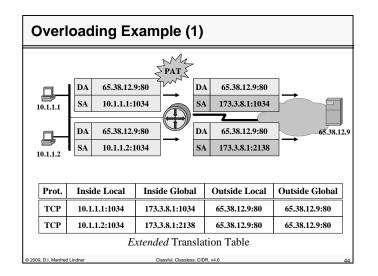
Page 44 - 19

L44 - Advanced IP Addressing



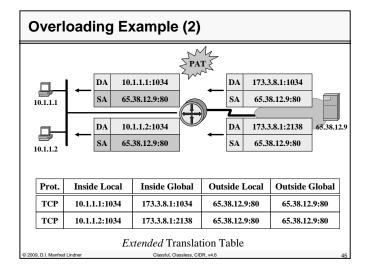
Agenda


- Classful Routing
- Classless Routing
- VLSM
- Address Design Aspects
- CIDR
- <u>NAT</u>
 - NAT Basics
 - <u>PAT</u>


© 2009, D.I. Manfred Lindner

- DNS Aspects
- Load Balancing

L44 - Advanced IP Addressing


© 2009, D.I. Manfred Lindner

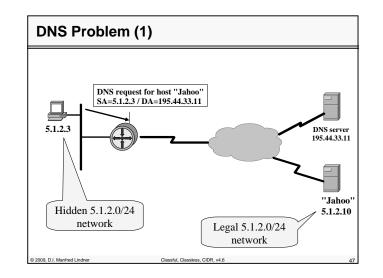
Classful, Classless, CIDR, v4.

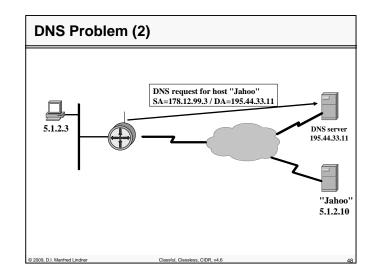
Page 44 - 21

© 2009, D.I. Manfred Lindner

L44 - Advanced IP Addressing

Agenda

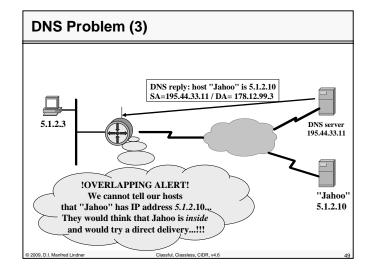

- Classful Routing
- Classless Routing
- VLSM
- Address Design Aspects
- CIDR
- <u>NAT</u>
 - NAT Basics
 - PAT

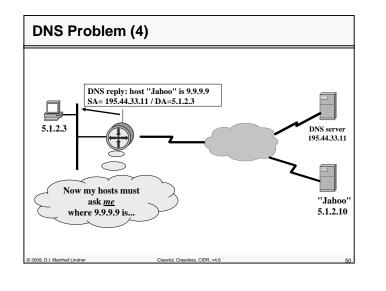

© 2009, D.I. Manfred Lindner

- DNS Aspects
- Load Balancing

© 2009, D.I. Manfred Lindner

L44 - Advanced IP Addressing

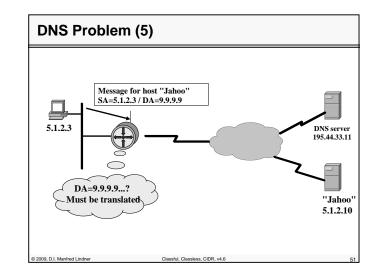


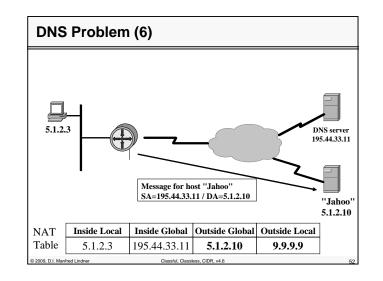

© 2009, D.I. Manfred Lindner

Page 44 - 23

Classful, Classless, CIDR, v4.6

L44 - Advanced IP Addressing

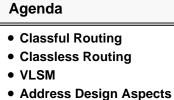




© 2009, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L44 - Advanced IP Addressing



© 2009, D.I. Manfred Lindner

Page 44 - 25

L44 - Advanced IP Addressing

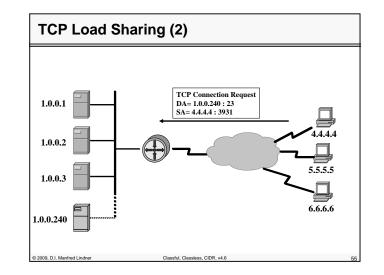
- CIDR
- NAT
 - NAT Basics
 - PAT

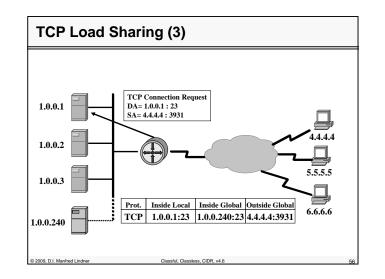
2009, D.I. Manfred Lindner

- DNS Aspects
- Load Balancing

TCP Load Sharing (1)

• Multiple servers represented by a single insideglobal IP address

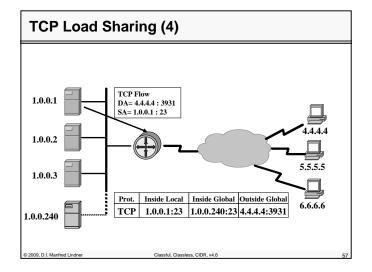

Classful Classless CIDR v4.6

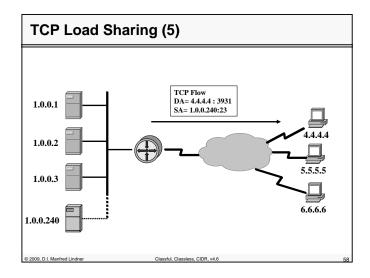

- Virtual host address
- New TCP session requests to the Virtual Host are forwarded to one of a group of real hosts

Rotary group

© 2009, D.I. Manfred Lindner

L44 - Advanced IP Addressing

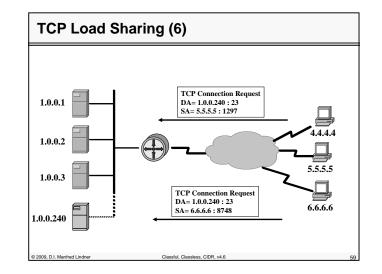

© 2009, D.I. Manfred Lindner

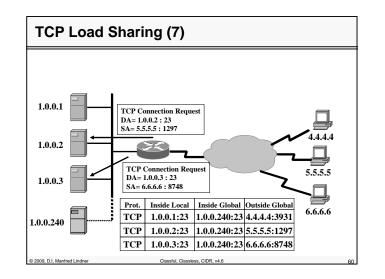

Classful, Classless, CIDR, v4.

© 2009, D.I. Manfred Lindner

Page 44 - 27

L44 - Advanced IP Addressing





© 2009, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L44 - Advanced IP Addressing

© 2009, D.I. Manfred Lindner

Page 44 - 29

L44 - Advanced IP Addressing

Further Information

- RFC 1631 (NAT)
- RFC 3022 (Traditional NAT)
- RFC 2694 (DNS ALG)
- RFC 2766 (IPv4 to IPv6 Translation)
- NAT Friendly Application Design Guidelines (Draft)
- Internet Protocol Journal
 - www.cisco.com/ipj
 - Issue Volume 3, Number 4 (December 2000)
 - "The Trouble with NAT"

© 2009, D.I. Manfred Lindner

Classful, Classless, CIDR, v4.6

© 2009, D.I. Manfred Lindner