NATNetwork Address Translation

Agenda

- NAT Basics
- NAPT
- Complex NAT
- DNS Aspects
- Load Balancing
- RFCs

© 2005 D.I. Manfred Lindo

NAT. v4.3

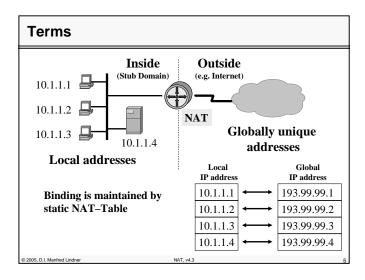
L35 - Network Address Translation

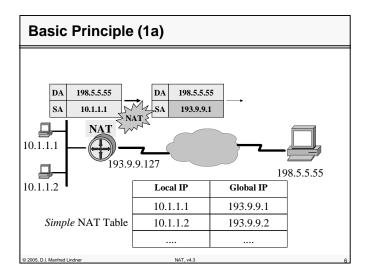
Network Address Translation (NAT)

NAT

- was originally developed as an interim solution to combat <u>IPv4 address depletion</u> by allowing IP addresses to be reused by several hosts
- first explained in RFC 1631
 - the address reuse solution is to place Network Address Translators (NAT) at the borders of stub domains
 - each NAT box has a table consisting of pairs of local IP addresses and globally unique addresses performing address translation when passing IP Datagram's between a stub domain and the Internet and vice versa
 - the IP addresses inside the stub domain are not globally unique, they are reused in other domains, thus solving the address depletion problem
 - in most cases private addresses (RFC 1918) are used inside the stub domain (10.0.0.0/8, 172.16.0.0/16, 192.168.0.0/16)

2005 D.I. Monfred Lindner

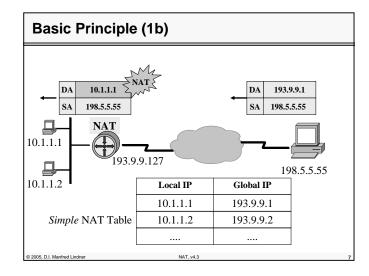

ΔT v4.3


Reasons for NAT

- Mitigate Internet address depletion
- Save global addresses (and money)
 - if not all inside hosts need to go outside
 - if all inside hosts can be mapped to one unique global address using NAPT (Network Address Port Translation)
- Conserve internal address plan
- Hide internal topology
 - Security aspect
- TCP load sharing
 - Several physical servers are hided behind one IP address and traffic to them is balanced

2005, D.I. Manfred Lindner

AT, v4.3



© 2005, D.I. Manfred Lindner

Page 35 - 3

L35 - Network Address Translation

NAT Tasks and Behaviour

- modify IP addresses according to NAT table
- but also must modify the IP checksum and the TCP checksum
- note: TCP's checksum also covers a pseudo IP header which contains the source and destination address.
- must also look out for ICMP and modify the places where the IP address appears
- there may be other places, where modifications must be done (FTP, NetBIOS over TCP/IP, SNMP, DNS, Kerberos, X-Windows, SIP, H.323, IPsec, IKE...)
- the packet sender and receiver (should) remain unaware that NAT is taking place
- NAT devices were intended to be unmanaged devices that are transparent to end-to-end protocol interaction
- hence no specific interaction is required between the end systems and the NAT device

D.I. Manfred Lindner NAT vo

NAT Binding Possibilities

- Static ("Fixed Binding")
 - in case of one-to-one mapping of local to global addresses
- Dynamic ("Binding on the fly")
 - in case of sharing a pool of global addresses
 - connections initiated by private hosts are assigned a global address from the pool
 - as long as the private host has an outgoing connection, it can be reached by incoming packets sent to this global address
 - after the connection is terminated (or a timeout is reached), the binding expires, and the address is returned to the pool for reuse
 - is more complex because state must be maintained, and connections must be rejected when the pool is exhausted
 - unlike static binding, dynamic binding enables address reuse, reducing the demand for globally unique addresses.

© 2005, D.I. Manfred Lindner

NAT, v4.

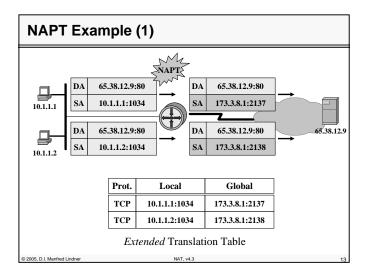
Scenario Dynamic Binding Inside Outside 10.1.1.1 10.1.1.2 NAT Globally unique 10.1.1.3 addresses Local addresses Global Local IP address IP address Binding is maintained by 10.1.1.1 193.99.99.1 dynamic NAT-Table 10.1.1.2 193.99.99.2 Note: a connection state or timer 10.1.1.3 Currently not possible must be maintained per mapping Currently not possible 10.1.1.4

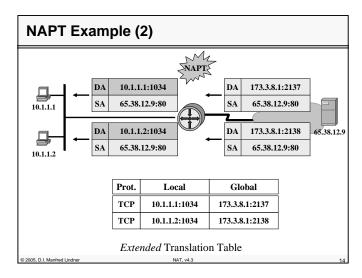
L35 - Network Address Translation

Agenda

- NAT Basics
- NAPT
- Complex NAT
- DNS Aspects
- Load Balancing
- RFCs

NAT v43


Overloading (NAPT)


- Common problem:
 - Many hosts inside initiating connections to the outside world
 - But only one or a few inside-global addresses available
- Solution:
 - Many-to-one Translation with NAPT (Network Address Port Translation)
 - Usable in context of TCP and UDP sessions
 - Aka "Overloading Global Addresses"
 - Aka "PAT,, (Port Address Translation)

2005, D.I. Manfred Lindner

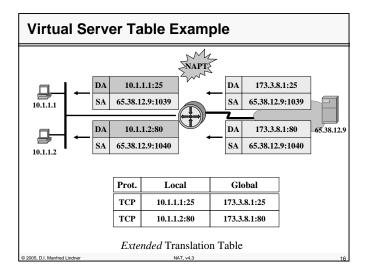
NAT, v4.3

© 2005, D.I. Manfred Lindner

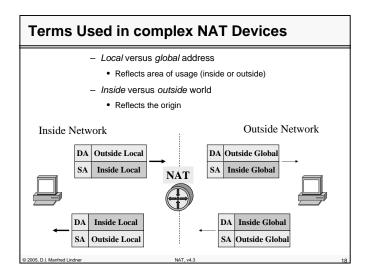
© 2005, D.I. Manfred Lindner

L35 - Network Address Translation

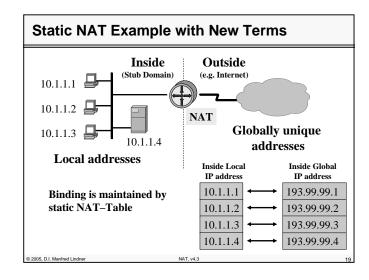
Virtual Server Table

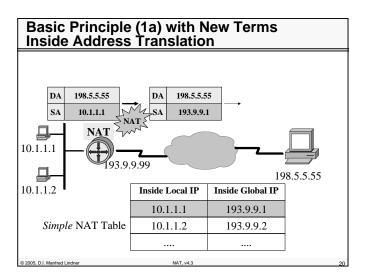

• Problem:

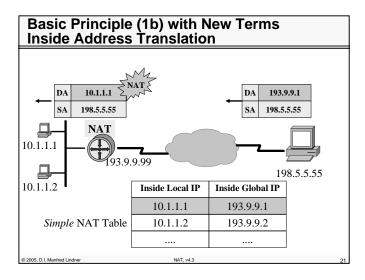
- How to reach an inside server from the outside
- NAPT/NAT let IP datagram's (with UDP or TCP segments as payload) from to outside only in if a binding is found
- But server waits for connections from the outside hence cannot install binding in the NAPT/NAT device

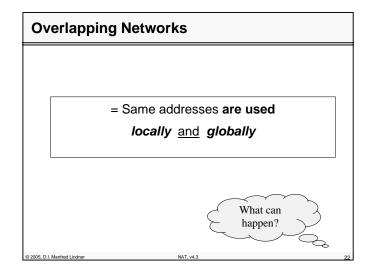

• Solution:

- Virtual Server Table
- Creating manually a static binding in the NAPT/NAT device to forward IP datagram's to the real inside server

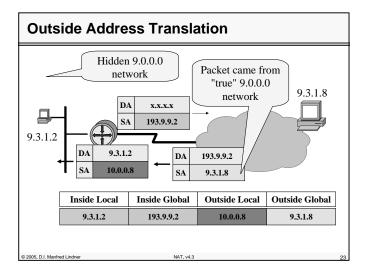

© 2005 D.I. Manfred Lindner

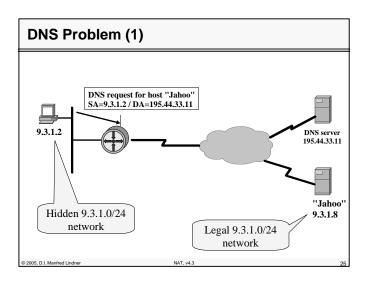


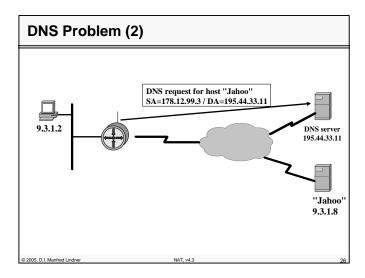

Agenda NAT Basics NAPT Complex NAT DNS Aspects Load Balancing RFCs



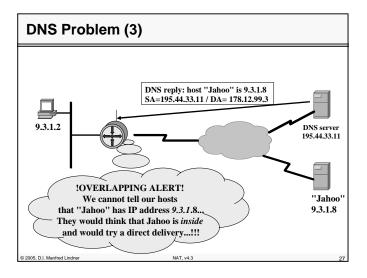
© 2005, D.I. Manfred Lindner

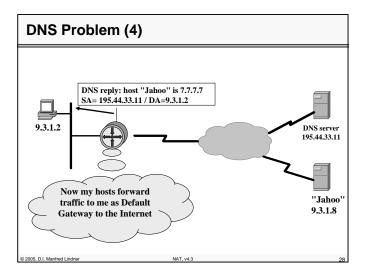


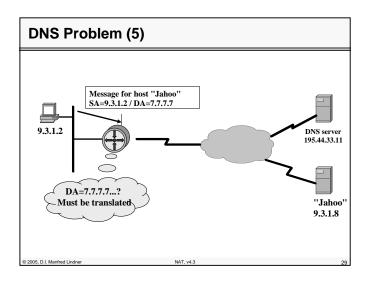

© 2005, D.I. Manfred Lindner

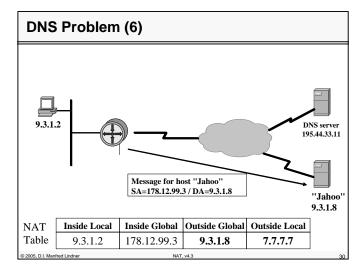

L35 - Network Address Translation

Agenda


- NAT Basics
- NAPT
- Complex NAT
- DNS Aspects
- Load Balancing
- RFCs





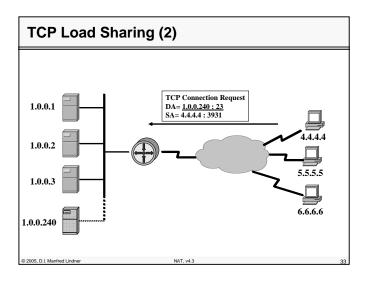

© 2005, D.I. Manfred Lindner Page 35 - 13

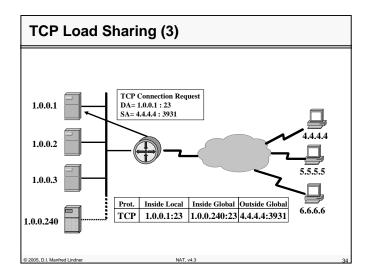
L35 - Network Address Translation

© 2005, D.I. Manfred Lindner

Agenda

- NAT Basics
- NAPT
- Complex NAT
- DNS Aspects
- Load Balancing
- RFCs

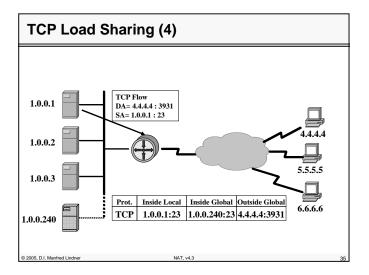

15 D.I. Manfred Lindner

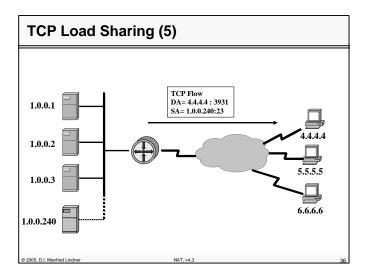

TCP Load Sharing (1)

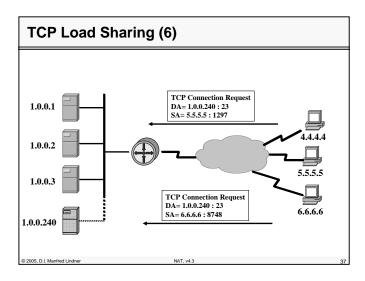
- Multiple servers represented by a single insideglobal IP address
 - Virtual host address
- New TCP session requests to the Virtual Host are forwarded to one of a group of real hosts
 - Rotary group

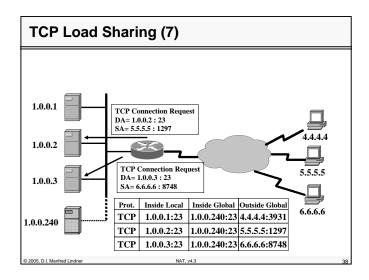
005, D.I. Manfred Lindner

NAT, v4.3






© 2005, D.I. Manfred Lindner


Page 35 - 17

L35 - Network Address Translation

L35 - Network Address Translation

Agenda

- NAT Basics
- NAPT
- Complex NAT
- DNS Aspects
- Load Balancing
- RFCs

DI Markad Lindana

NAT v43

Further Information

- RFC 1631 NAT
- RFC 2391 Load Sharing Using IP Network Address Translation (LSNAT)
- RFC 2666 IP Network Address Translator (NAT)
 Terminology and Considerations
- RFC 2694 DNS ALG
- RFC 2776 Network Address Translation Protocol Translation (NAT-PT)
- RFC 2993 Architectural Implications of NAT
- RFC 3022 Traditional IP Network Address Translator (Traditional NAT)

5, D.I. Manfred Lindner

NAT. v4.3

© 2005, D.I. Manfred Lindner

Further Information

- RFC 3027 Protocol Complications with the IP Network Address Translator,
- RFC 3235 Network Address Translator (NAT)-Friendly Application Design Guidelines
- RFC3303 Middlebox Communication Architecture and Framework
- RFC 3424 IAB Considerations for Unilateral Self Address Fixing (UNSAF) Across Network Address Translation

© 2005, D.I. Manfred Lindne

NAT, v4

Further Information

- RFC 3489 STUN—Simple Traversal of User Datagram Protocol (UDP) Through Network Address Translators (NATs)
- RFC 3715 IPsec—Network Address Translation (NAT) Compatibility Requirements
- Internet Protocol Journal
 - www.cisco.com/ipj
 - Issue Volume 3, Number 4 (December 2000)
 - "The Trouble with NAT"
 - Issue Volume 7, Number 3 (September 2004)
 - . "Anatomy (of NAT)"

© 2005, D.I. Manfred Lindner

NAT. v4.