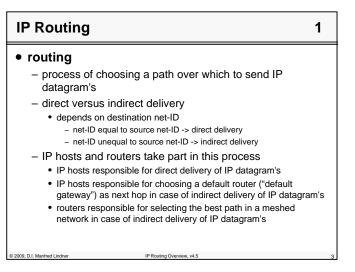
L32 - IP Routing Overview

# IP Routing Overview


Static-, Default-, Dynamic-Routing

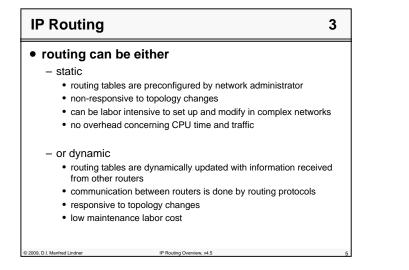
#### Agenda

© 2009, D.I. Manfred Lindner

- Routing Basics
- Static Routing
- Default Routing
- Dynamic Routing

L32 - IP Routing Overview




| IP      | Routing 2                                                                              |
|---------|----------------------------------------------------------------------------------------|
| • in    | direct routing of IP datagram's                                                        |
| -       | is done by routers based on routing tables                                             |
| -       | - routing table                                                                        |
|         | <ul> <li>database of known destinations</li> </ul>                                     |
| -       | - database contains                                                                    |
|         | <ul> <li>next hop router (and next hop MAC address in case of LAN)</li> </ul>          |
|         | <ul> <li>outgoing port</li> </ul>                                                      |
|         | <ul> <li>metric (information how far away is a certain destination network)</li> </ul> |
|         | • time reference (information about the age of the table entry)                        |
|         | for every known (or specified) destination network                                     |
|         | net-ID / subnet-mask                                                                   |
|         |                                                                                        |
| 000 011 | Manfred Lindner IP Routing Overview, v4.5                                              |

© 2009, D.I. Manfred Lindner

IP Routing Ov

© 2009, D.I. Manfred Lindner

#### L32 - IP Routing Overview

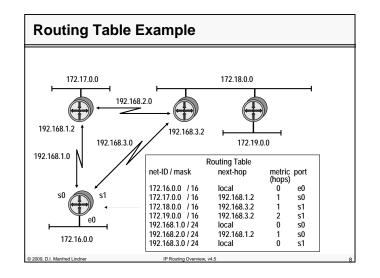


#### **IP Routing**

#### routing protocol

- discovers current network topology
- determines the best path to every reachable network
  best path is determined by the help of metric
- stores information about best paths in the routing table
- uses routing messages for communication
- routing messages need a certain percentage of bandwidth
- dynamic routing need a certain percentage of CPU time of the router
- that means overhead

© 2009, D.I. Manfred Lindner


riew, v4.5

4

#### L32 - IP Routing Overview

# IP Routing Related Protocols

| Application                | SMTP             | HTTP           | FTP                  | Telnet                             | DNS | BootP<br>DHCP  | SNMP                  | TFTP |  |
|----------------------------|------------------|----------------|----------------------|------------------------------------|-----|----------------|-----------------------|------|--|
| Presentation               | <br>(MI          | ME)            |                      |                                    |     |                |                       |      |  |
| Session                    |                  |                |                      |                                    |     |                |                       |      |  |
| Transport                  | (Transmi         | TC<br>ission C | -                    | UDP<br>(User Datagram<br>Protocol) |     |                |                       |      |  |
| Network                    | ICM              | P              | IP Routin<br>RIP, 01 |                                    |     |                | iting Prot<br>OSPF, B |      |  |
| Link                       | <br>IP Transmiss |                |                      |                                    |     | ion over ARP   |                       |      |  |
| Physical                   | <br>ATI<br>RFC 1 |                | EE 802.<br>FC 1042   |                                    |     | FR<br>RFC 1490 | PPI<br>RFC 1          |      |  |
| 2009. D.I. Manfred Lindner |                  | IP Routin      | Overview.            | 4.5                                |     |                |                       |      |  |



#### © 2009, D.I. Manfred Lindner

© 2009, D.I. Manfred Lindner

IP Routing Ov

Page 32 - 3

L32 - IP Routing Overview

# **IP Routing Paradigm**

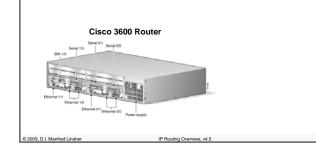
#### • Destination Based Routing

source address is not taken into account for the forward decision

#### • Hop by Hop Routing

 IP datagram's follow the path, which is pointed by the current state of the routing tables

#### • Least Cost Routing


- normally only the best path is considered for forwarding of IP datagram's
- alternate paths will not be used in order to reach a given destination
- note:some methods allow load balancing if paths are equal

IP Routing Overview, v4.5

#### © 2009, D.I. Manfred Lindner

## Router

- Initially Unix workstations with several network interface cards
- Today specialized hardware

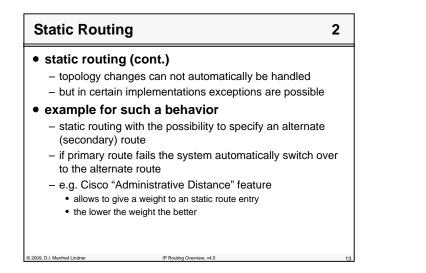


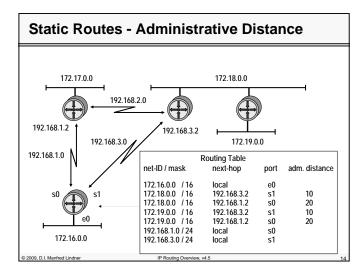
Institute of Computer Technology - Vienna University of Technology

## L32 - IP Routing Overview

#### Agenda

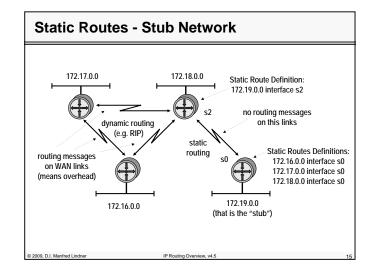
- Routing Basics
- Static Routing
- Default Routing
- Dynamic Routing

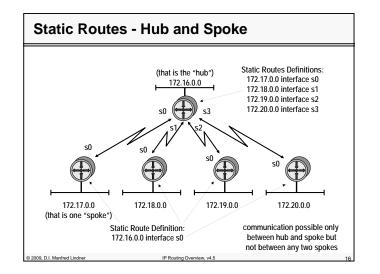

© 2009, D.I. Manfred Lindner


| Static Routin                                      | ng 1                                                                                               |   |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------|---|
| • static routin                                    | g                                                                                                  |   |
| <ul> <li>preconfigure</li> </ul>                   | d static routing tables                                                                            |   |
| <ul> <li>no overhead</li> </ul>                    | traffic                                                                                            |   |
| <ul> <li>e.g. reachir</li> </ul>                   | ent in case of lack of any network redundancy<br>ng stub networks<br>d spoke topology              |   |
| networks                                           | abor intensive to set up and modify in comple:<br>an be reduced by default route                   | x |
| <ul><li>sometimes of</li><li>Dial on Der</li></ul> | only or preferred way in certain technologies<br>nand Networks (e.g. X.25, ISDN, Frame Relay, ATM) |   |
| – sometimes l                                      | ised for security reasons                                                                          |   |
| 2009, D.I. Manfred Lindner                         | IP Routing Overview, v4.5                                                                          |   |

IP Routing Overview v4.5

© 2009, D.I. Manfred Lindner

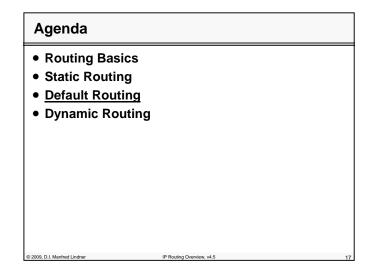

#### L32 - IP Routing Overview






© 2009, D.I. Manfred Lindner

L32 - IP Routing Overview






© 2009, D.I. Manfred Lindner

Page 32 - 7

L32 - IP Routing Overview



# **Default Route**

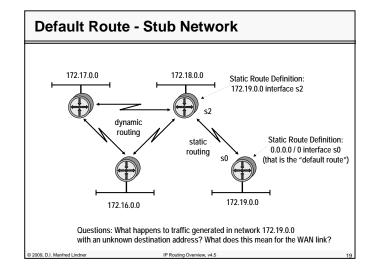
#### • general routing principle

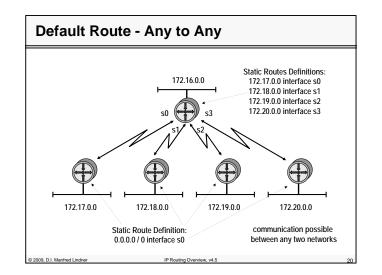
- traffic to destinations that are unknown to the router will be discarded by the router (ICMP message !!!)
- behavior can be changed by default route

#### • default routing principle

- traffic to destinations that are unknown to the router will be sent to a <u>default route</u> (default network)
- implies that another router might know more networks
- permits routers to carry less than full routing tables
- default network marked with net-ID equal 0.0.0.0

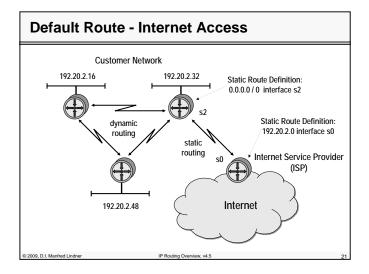
• in routing tables


• in routing updates used by dynamic routing


© 2009, D.I. Manfred Lindner

IP Routing Overview, v4.5

Institute of Computer Technology - Vienna University of Technology

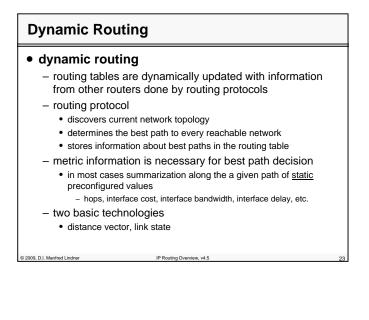

L32 - IP Routing Overview

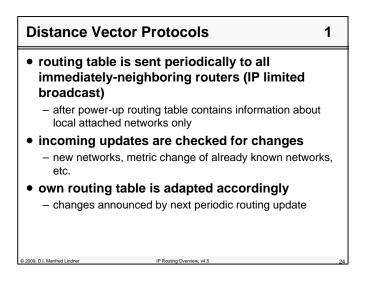




© 2009, D.I. Manfred Lindner Page 32 - 9 © 2009, D.I. Manfred Lindner Page 32 - 10

#### L32 - IP Routing Overview





#### Agenda

© 2009, D.I. Manfred Lindner

- Routing Basics
- Static Routing
- Default Routing
- Dynamic Routing

L32 - IP Routing Overview





© 2009, D.I. Manfred Lindner

IP Routing

Page 32 - 11

© 2009, D.I. Manfred Lindner

#### L32 - IP Routing Overview

2

3

# **Distance Vector Protocols**

 metric information based on hops (distance between hops)

#### limited view of topology

- routers view is based on its routing table only · exact view how to reach local neighbors
  - but topology behind neighbors is hidden
- based on signpost principle only

#### several procedures necessary

- to solve problems caused by limited view
- · e.g. count to infinity, routing loops
- to reduce convergence time
  - · time to reach consistent routing tables after topology change

IP Routing Overview, v4.5

2009 D L Manfred Lindner

# **Distance Vector Protocols**

- some usual procedures to solve inherent problems
  - maximum hop count
  - split horizon, poison reverse
  - triggered update
  - hold down, route poisoning
- distance vector protocols examples
  - RIP, RIPv2 (Routing Information Protocol)
  - IGRP (Cisco, Interior Gateway Routing Protocol)
  - IPX RIP (Novell)
  - AppleTalk RTMP (Routing Table Maintenance Protocol) IP Routing Overview, v4.5

2009, D.I. Manfred Lindner

© 2009, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

#### L32 - IP Routing Overview

# **Link State Protocols** 1 routers have a global view of network topology - exact knowledge about all routers, links and their costs (metric) of a network stored in topology database ("roadmap") - roadmap principle routing table entries are based - on computation of own router-resident topology database SPF computation - Shortest-Path-First (Dijkstra) algorithm to find lowest cost path to every destination network - lowest cost path is stored in routing table © 2009 D I Manfred Lindner IP Routing Overview v4.5

# **Link State Protocols**

#### topology changes (link up or down, link state)

- are recognized by routers responsible for supervising those links
- are flooded by responsible routers to the whole network (Link State Advertisements, LSAs)

2

- flooding
  - is a controlled multicast procedure to guarantee that every router gets corresponding LSA information as fast as possible
  - is used to update network topology database and hence may lead to change of routing table

© 2009, D.I. Manfred Lindner

© 2009, D.I. Manfred Lindner

IP Routing (

Page 32 - 13

L32 - IP Routing Overview

# Link State Protocols

3

4

#### • with the lack of topology changes

- local hello messages are used to supervise local links (to test reachability of immediate-neighboring routers)
- therefore less routing overhead concerning link bandwidth than periodic updates of distance vector protocols
- but more network load is caused by such a routing protocol
  - during connection of former separate parts of the network

IP Routing Overview, v4.5

- topology database synchronization

## **Link State Protocols**

#### • in large networks

© 2009, D.I. Manfred Lindner

- two level hierarchy is used to decrease
  - CPU time for SPF calculations
- memory requirement for storing topology database
- one backbone area
- several non-backbone areas
  - non-backbone area can be connected by area border router to backbone area only
- summarization possible at area border routers
- route aggregation to reduce size of routing tables

IP Routing Ove

summarization means that some net-IDs can be summarized in one net-ID only

© 2009, D.I. Manfred Lindner

ew, v4.5

© 2009, D.I. Manfred Lindner

Page 32 - 15

Institute of Computer Technology - Vienna University of Technology

L32 - IP Routing Overview

# Link State Protocols 5 • link state protocols examples – OSPF (Open Shortest Path First) – Integrated IS-IS (IP world) • note: Integrated IS-IS takes another approach to handle large networks (topic outside the scope of this course) – IS-IS (OSI world) – PNNI (in the ATM world) – APPN (IBM world), – NLSP (Novell world)

#### **Routing Protocol Comparison** Convergence Protocol Routing Protocol Complexity Max. Size Reliability Time Traffic Not absolutely RIP very simple 16 Hops High (minutes) High loop-safe Not absolutely 16 Hops RIPv2 very simple High (minutes) High loop-safe IGRP simple High (minutes) Medium High х EIGRP complex х Fast (seconds) High Medium Thousands OSPF ery comple Fast (seconds) High Low of Routers Thousands IS-IS Fast (seconds) complex High Low of Routers more than 00,000 networ BGP-4 Middle very complex Verv Hiah Low IP Routing O © 2009, D.I. Manfred Lindner

© 2009, D.I. Manfred Lindner