
L27 - DQDB

Agenda

Introduction

DQDB Topology

DQDB Physical Layer

DQDB Access Control

DQDB Framing

□ MAN

2005, D.I. Manfred Lindner

□ SMDS/SIP

© 2005, D.I. Manfred Lindner

DODB v3

Page 27 - 1

Institute of Computer Technology - Vienna University of Technology

L27 - DQDB

MAN/DQDB metropolitan area network (MAN) provides integrated services such as data, voice and video high speed transmission of digital bitstreams over a large geographical area IEEE 802.6 defines base technology for MAN subnetworks Distributed Queue Dual Bus (DQDB) shared media like a LAN fixed-length packets (cells) like ATM

MAN/DQDB

DQDB subnetwork

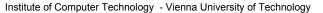
◆ transmission rate between 1 Mbps and 155 Mbps

 shared media communication between DQDB nodes located within an area typically up to 50 km in diameter

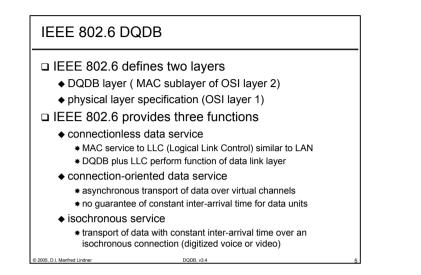
usually a public or private MAN consists

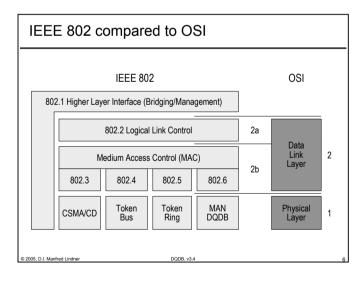
 of several DQDB subnetworks interconnected via bridges, routers or gateways

□ therefore MAN service can cover large regions

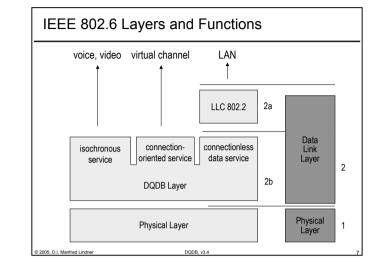

♦ infinite range

© 2005, D.I. Manfred Lindner


© 2005, D.I. Manfred Lindner


DODB v3

L27 - DQDB



L27 - DQDB

© 2005, D.I. Manfred Lindner

Agenda		
□ Introduction		
DQDB Topology		
DQDB Physical La	ayer	
DQDB Access Co	ntrol	
DQDB Framing		
□ MAN		
© 2005. D.I. Manfred Lindner	DODB. v3.4	

© 2005, D.I. Manfred Lindner

Page 27 - 3

L27 - DQDB

Dual-Bus Architecture

end systems (DQDB stations) are connected to DQDB subnet

via two unidirectional serial buses
 * bus A
 * bus B

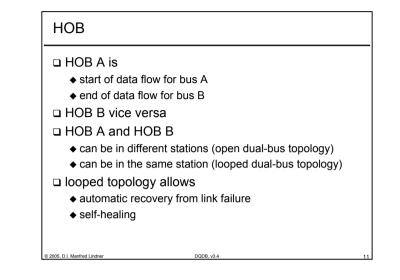
□ bus A and B support

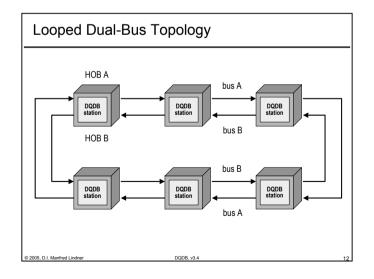
- ♦ communication in opposite direction
- ◆ full duplex transmission between any pair of stations
- □ station at the head of bus (HOB)
 - ♦ generates fixed-length slots of 53 octets which can carry data between stations

DQDB, v3.4

♦ HOB A, HOB B

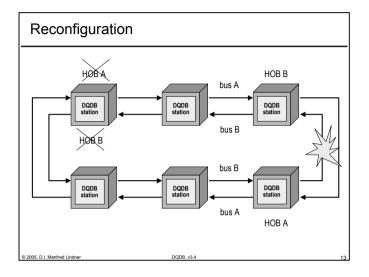
2005, D.I. Manfred Lindner


Open Dual-Bus Topology HOB A bus A DQDB station DQDB station DQDB station bus B bus B DQDB station DQDB station DQDB station bus A HOB B 2005, D.I. Manfred Lindne DODB v3


© 2005, D.I. Manfred Lindner

Page 27 - 5

Institute of Computer Technology - Vienna University of Technology


L27 - DQDB

© 2005, D.I. Manfred Lindner

L27 - DQDB

Agenda

Introduction

DQDB Topology

DQDB Physical Layer

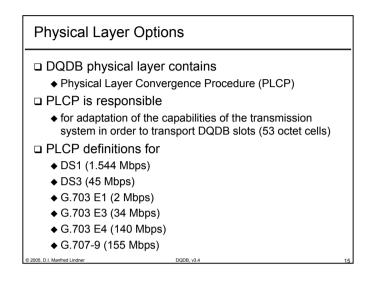
DQDB Access Control

DQDB Framing

□ MAN

2005, D.I. Manfred Lindner

SMDS/SIP


© 2005, D.I. Manfred Lindner

DODB v3

Page 27 - 7

Institute of Computer Technology - Vienna University of Technology

L27 - DQDB

Agenda		
Introduction		
DQDB Topolog	у	
DQDB Physical	Layer	
DQDB Access	<u>Control</u>	
DQDB Framing		
□ MAN		
□ SMDS/SIP		
© 2005, D.I. Manfred Lindner	DQDB, v3.4	16

© 2005, D.I. Manfred Lindner

L27 - DQDB

Access Control

- DQDB allows two access methods
 - pre-arbitrated (PA)
 * used by isochronous service
 - queued-arbitrated (QA)
 * used by data services

🗆 PA

- for every isochronous connection a unique channel identifier is assigned by network management in advance
 * VCI (virtual channel identifier) field in cell header
- HOB generates PA-cells with this VCI periodically
 to satisfy timing constraints of isochronous connection

DQDB, v3.4

stations can use PA-cells with this VCI value
 to transmit isochronous traffic across the network

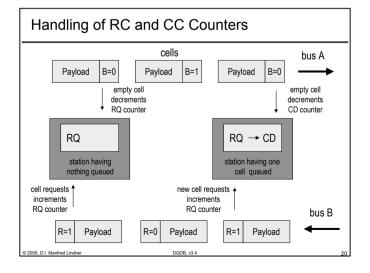
2005, D.I. Manfred Lindner

Access Control

🗆 QA

- controlled by distributed queuing protocol
- □ distributed queuing
 - each stations has explicit information about queuing state of the network
 - queuing state means, how many cells are waiting for transmission in all stations of the network
 - implemented by special bits in the cell header and counters within the station
 * busy-bit B, request bit R in access control field (ACF)
 * request counter RQ
 * countdown counter CD

2005, D.I. Manfred Lindner


Institute of Computer Technology - Vienna University of Technology

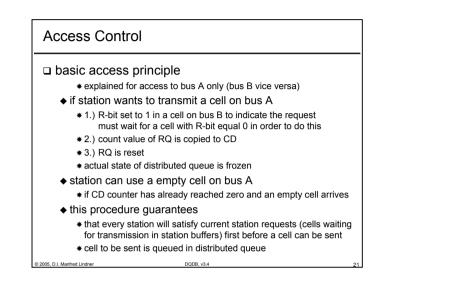
L27 - DQDB

Distributed Queuing Protocol handling of B-bit and R-bit B and R bits in header of each cell B = 0 ... empty cell, may be used by station for transmission downstream if access control does allow if empty cell is used by a station, B is set to 1 on the fly and payload is filled B = 1 ... busy cell, cannot be used by a downstream station R = 1 ... cell contains a request of an upstream station, cannot be used by another station for signaling request R = 0 ... cell does not contain a request of an upstream station, will be set on the fly by station signaling a request for a cell to downstream stations

DODB v3.4

© 2005. D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner


DODB v3

© 2005, D.I. Manfred Lindner

Page 27 - 9

L27 - DQDB

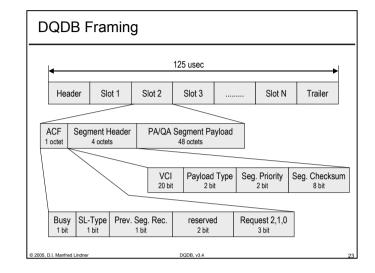
L27 - DQDB

Agenda

Introduction

DQDB Topology

DQDB Physical Layer


DQDB Access Control

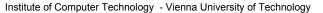
DQDB Framing

MAN

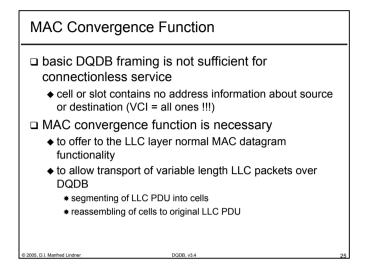
□ SMDS/SIP

© 2005, D.I. Manfred Lindner

AC	F, Segment Header
D A	CF Access Control Field
•	Busy (0 slot empty, 1 slot contains information)
•	SL-Type Slot Type (0 QA, 1 PA)
•	Busy = 0 and SL-Type = 1 reserved
•	 Previous Segment Cleared (1 clear)
•	Request 2, 1, 0 request (R) bits for three priority levels
🗆 S	egment Header Field
•	VCI Virtual Channel Identifier
	* set to all ones fur QA (connectionless service)
	 identifies isochronous channel for PA
•	 Payload Type (00 user data, other values reserved for further study)
•	 Segment Priority (set to 00, other values reserved for multiport bridging)
•	Segment Header Checksum (x8 + x2 + x +1)
005, D.I. I	Manfred Lindner DQDB, v3.4


© 2005, D.I. Manfred Lindner

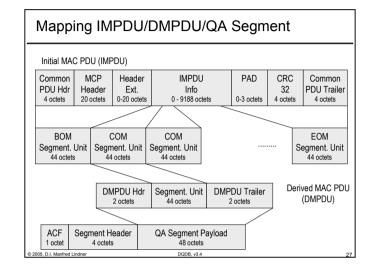
DODB v3

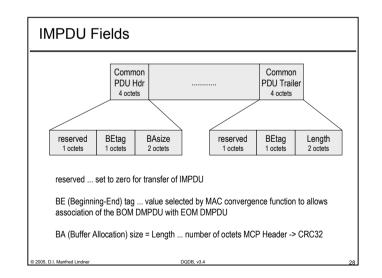

Page 27 - 11

© 2005, D.I. Manfred Lindner

L27 - DQDB

L27 - DQDB


MAC Convergence Function


□ MAC convergence function

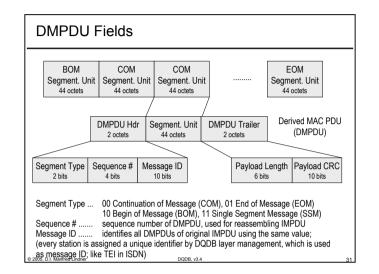
- takes MAC service data unit of LLC layer (0 9188 octets)
- builds a so called Initial MAC Protocol Data Unit (IMPDU)
 - header contains information about source and destination, length of PDU, protocol type, QoS, Begin TAG; trailer contains End TAG, CRC, padding
- ◆ splits IMPDU in segmentation units (44 octets), adds header to form a Derived MAC PDU (DMPDU)
 - header contains sequence number, type (BOM, COM, EOM) and message ID of segmentation unit; trailer contains checksum of segmentation unit
- ♦ finally DMPDU (48 octets) fits in the QA Segment Payload of a slot

DODB v34

2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner


Page 27 - 13

L27 - DQDB

Common PDU Hdr 4 octets MCP Header 20 octets Common PDU Trailer 4 octets Destination Address 8 octets Source Address 8 octets Protocol Identifier 6 bits Pad Length 2 bits QoS Delay 1 bits CRC32 1 bits Hdr. Ext. Length 3 bits Bridging reserved 2 octets Address 8 octets Address 6 bits Protocol bits Pad 2 bits QoS 1 bits CRC32 1 bits Hdr. Ext. 1 bits Bridging reserved 2 octets Address 4 bits Address 60 bits Source 6 bits Source 6 bits Source 6 bits Source 1 bits Hdr. Ext. 1 bits Bridging reserved 2 octets 0100 = 16 bit address 1000 = 46 bit address 1000 = 46 bit address, individual, public (E.164) 1101 = 60 bit address, group, public (E.164) 1111 = 60 bit address, group, private Source addresses can be individual only. mapping of 16 or 48 bit addresse (country code) is administered by CCITT according to Numbering Plan for the ISDN Era E.164 uses decimal numbers encoded using BCD starting with 0xC (individual) or 0XE (group)	IMPDU	J Fiel	ds						
Address Address Identifier Length Delay Loss Indic. Length reserved 8 octets 8 octets 6 bits 2 bits 3 bits 1 bits 1 bits 3 bits 2 octets Address 4 bits 60 bits 5 bit address 60 bits 5 bit address 60 bits 5 bit address 60 bits 5 bit address 5 bit address 60 bits 5 bit address 60 bits 5 bit address 60 bits 60 bit address 60 bit address <td< td=""><td></td><td></td><td>PDU Hdr</td><td>Hea</td><td>ader</td><td></td><td></td><td>PDU Trailer</td><td></td></td<>			PDU Hdr	Hea	ader			PDU Trailer	
Address Address Identifier Length Delay Loss Indic. Length reserved 8 octets 8 octets 6 bits 2 bits 3 bits 1 bits 1 bits 3 bits 2 octets Address 4 bits 60 bits 5 bit address 5 bit address 5 bit address 5 bit address 0100 = 16 bit address 1000 = 48 bit address, individual, public (E.164) 101 = 60 bit address, group, public (E.164) administered by CCITT according to Numbering Plan for the ISDN Era 1101 = 60 bit address, individual, private E.164 uses decimal numbers encoded using BCD BCD									
4 bits 60 bits 0100 = 16 bit address source addresses can be individual only, mapping of 16 or 48 bit addressing in 56 bit done by padding remaining bits (left to right), assignment of E. 164 addresses (country code) is administered by CCITT according to Numbering Plan for the ISDN Era 1101 = 60 bit address, individual, private	Address	Address	Identifier	Length	Delay	Loss	Indic.	Length	reserved
	4 bits 0100 = 16 bit 1000 = 48 bit 1100 = 60 bit 1110 = 60 bit 1101 = 60 bit	address address (IE address, in address, gr address, in	bits EE 802 MAC dividual, publ oup, public (I dividual, priva	íc (E.164) E.164)	mapp by pa assigi admir Plan f E.164	ing of 16 dding rer nment of istered b or the IS uses de	or 48 bit maining t E.164 a by CCITT DN Era cimal nu	t addressing in bits (left to right ddresses (cour according to f mbers encode	56 bit done t), ntry code) is Numbering d using BCD

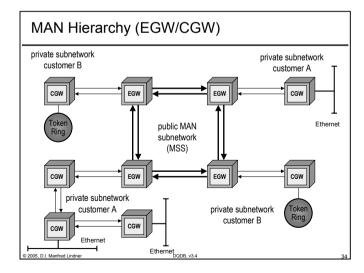
Common PDU Hdr 4 octets MCP Header 20 octets Common PDU Trailer 4 octets Destination Address 8 octets Source Address 8 octets Protocol Identifier 6 bits Pad Length 2 bits QoS Delay 3 bits QoS 1 bits CRC32 1 bits Hdr. Ext. Length 3 bits Bridging reserved 2 octets Protocol Identifier 4 octets Protocol Identifier 6 bits Pad 2 bits QoS 1 bits CRC32 1 bits Hdr. Ext. 3 bits Bridging reserved 2 octets Protocol Identifier 8 octets Source 6 bits Protocol 2 bits Indic. 1 bits Length 3 bits 2 octets Protocol Identifier 9 al Length (0-3) number of Pad octets after INFO; INFO plus PAD must be an integral multiple of four octets Sources 0 an integral multiple of four octets Sources 0 cRC32 licitation indicates presence or absence of CRC32 checksum field Header Extension Length length of Header Extension field (multiple of four octets)	IMPDL	J Fiel	ds						
Address 8 octets Address 8 octets Identifier 6 bits Length 2 bits Delay 3 bits Loss 1 bits Indic. 1 bits Length 3 bits reserved 2 octets Protocol Identifier set to 1 for LLC, 48-63 available for use of local administration, other values reserved for future standardization by IEE 802.6 Pad Length (0-3) number of Pad octets after INFO; INFO plus PAD must be an integral multiple of four octets Output Output			PDU Hdr	Hea	ader			PDU Trailer	
Address 8 octets Identifier 6 bits Length 2 bits Delay 3 bits Loss 1 bits Indic. 1 bits Length 3 bits reserved 2 octets Protocol Identifier set to 1 for LLC, 48-63 available for use of local administration, other values reserved for future standardization by IEE 802.6 Pad Length (0-3) number of Pad octets after INFO; INFO plus PAD must be an integral multiple of four octets QoS Delay contains priority bits (7 shortest, 0 longest delay) QoS Loss reserved (set to zero) CRC32 Indication indicates presence or absence of CRC32 checksum field Header Extension Length length of Header Extension field (multiple of four octets)							_		
other values reserved for future standardization by IEE 802.6 Pad Length (0-3) number of Pad octets after INFO; INFO plus PAD must be an integral multiple of four octets QoS Delay contains priority bits (7 shortest, 0 longest delay) QoS Loss reserved (set to zero) CRC32 Indication indicates presence or absence of CRC32 checksum field Header Extension Length length of Header Extension field (multiple of four octets)	Address	Address	Identifier	Length	Delay	Loss	Indic.	Length	reserved
Bridging reserved for future use with MAC Sublayer bridging (set to zero)	other values Pad Length an integral r QoS Delay QoS Loss CRC32 Indi Header Exte	s reserved (0-3) n nultiple of contains . reserved cation ir ension Len	for future si umber of Pa four octets priority bits (set to zero ndicates pre ngth lengt	andardiza ad octets s (7 sho) sence or h of Head	ation by l after INF ortest, 0 . absence ler Exter	EE 802 O; INFC Insion fiel	.6) plus P st delay (32 cheo Id (multi	AD must be) cksum field ple of four oc	

L27 - DQDB

© 2005, D.I. Manfred Lindner

Page 27 - 15

© 2005, D.I. Manfred Lindner


L27 - DQDB

MAN Hierarchy

MAN is based on DQDB subnetworks

- DQDB subnetworks are shared media
- □ privacy problem if DQDB subnetworks should offer a public transport service to different customer
- therefore public MAN services
 - ♦ are built on hierarchical network topology
 - central public DQDB subnetwork to interconnect edge gateways (EGW)
 - ◆ several independent private DQDB subnetworks with customer gateways (CGW) as access stations
 - private DQDB subnetworks are used by one customer only and are connected to EGW DQDB, v3.4

2005. D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L27 - DQDB

MAN Hierarchy (EGW/CGW)

CGW

- ◆ customer networks such as LAN's, Frame Relay are connected to CGW which provides normal bridging or routing functionality over MAN
- ◆ several CGWs can form a private DQDB subnetwork in order to connect different locations (e.g. campus)
- private DQDB subnetwork is controlled by customer

DQDB, v3.

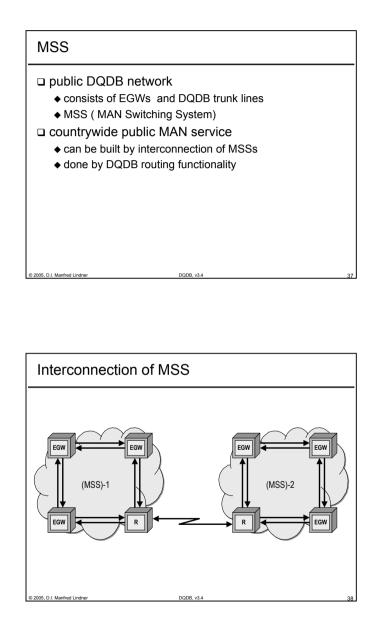
- small customer locations can be connected EGW directly to avoid high cost of CGW
 - * point-to-point link between router and EGW
 - SMDS interface protocol (SIP)
 - DXI Data Exchange Interface (DXI) SMDS DSU ("DQDB modem")

MAN Hierarchy (EGW/CGW)

DEGW

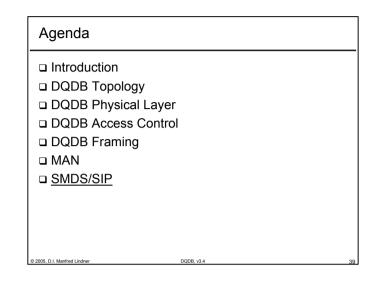
© 2005 D I Manfred Lindner

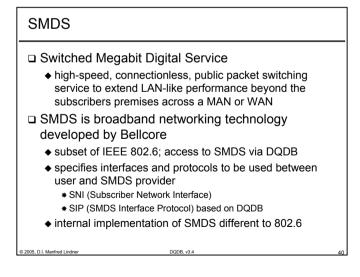
© 2005. D.I. Manfred Lindner


- ♦ is responsible to provide security and privacy to customer using MAN transport services
- ♦ is controlled by service provider only
- works as transparent bridge between private and public DQDB subnetworks
 - * store and forward device (IMPDU packet switch with connectionless service)
 - * transparent bridging based on E.164 addresses
- privacy guaranteed by EGWs
 - * filtering functions of transparent bridge
 - * mapping of customers broadcasts to customer specific E.164 group/multicast addresses

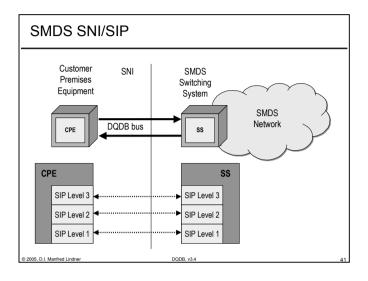
© 2005, D.I. Manfred Lindner

DODB v3


Page 27 - 17


L27 - DQDB

Institute of Computer Technology - Vienna University of Technology


L27 - DQDB

© 2005, D.I. Manfred Lindner

L27 - DQDB

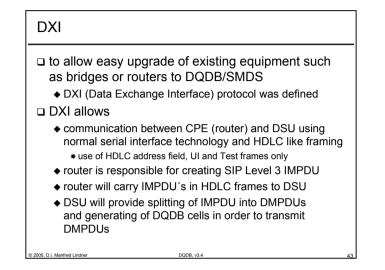
SIP

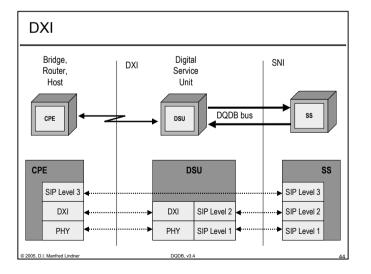
□ SIP Level 3

- ♦ format the same as for IMPDU of DQDB
- ◆ variable frame length 0 8199 octets

□ SIP Level 2

- ◆ consists of DMPDU plus segment header and trailer
- ♦ 53 octets cells


□ SIP Level 1


♦ defines PLCP for DS1 (1.544 Mbps), DS3 (45 Mbps)

Institute of Computer Technology - Vienna University of Technology

L27 - DQDB

© 2005, D.I. Manfred Lindner

DODB v3

© 2005, D.I. Manfred Lindner

Page 27 - 21

L27 - DQDB

Summary

DQDB (IEEE 802.6) is base technology for MAN

□ three services

♦ connectionless data (LAN-LAN)

♦ connection oriented data (virtual channel)

♦ isochronous (voice, video)

□ dual-bus shared media

□ access control by distributed queuing protocol

□ data services need convergence functions

♦ to assemble and reassemble packets into DQDB cells

□ SMDS service description

♦ based on IEEE 802.6, connectionless only, SIP, DXI DQDB, v3.4

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner