L25 - Source Route Bridging

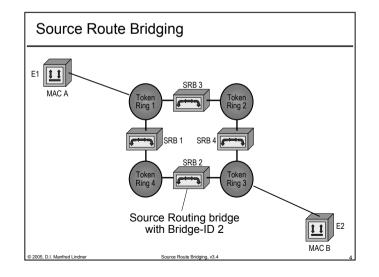
Source Route Bridging

Principles and Procedures

Source Route Bridging, v3.4

Agenda

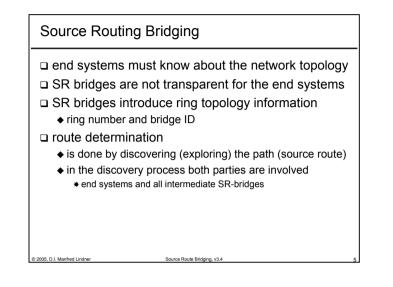
2005, D.I. Manfred Lindner


2005, D.I. Manfred Lindner

□ Introduction and Routing Information

- □ All Routes Broadcast
- □ Single Route Broadcast

L25 - Source Route Bridging


Source Route Bridging
□ method developed by IBM
 ♦ for coupling several Token Rings with Source Route Bridges (SR)
□ end system
 must explicitly insert routing information into the frame (RII = 1; Routing Info)
 takes care about routing upon layer 2
□ SR bridges
 provide relaying (switching) tasks
 routing information in a frame is used by SR Bridge to pass on this frame
© 2005, D.I. Manfred Lindner Source Route Bridging, v3.4 3

© 2005, D.I. Manfred Lindner

Source Route Bridging, v3.

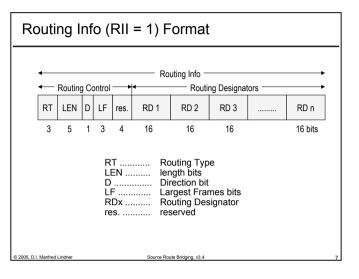
L25 - Source Route Bridging

Source Route Bridging

□ advantages:

- meshed topology can improve reliability and provide load balancing without need of a protocol (like STP)
- SR-bridges are built simple (e.g. using PCs); only frames with RII = 1 must be processed by the SR-bridges

drawbacks:


- discovery method causes additional and extensive network-traffic, which is not acceptable for big networks
- ♦ for example SRB applied on the topology of the Internet: a discovery initiation would terminate after 108 years

2005, D.I. Manfred Lindner Source Route Bridging, v3

ridging, v3.4

© 2005, D.I. Manfred Lindner

L25 - Source Route Bridging

Routing Cont	rol
□ RT (Routing T	Type): oure routed frame or discovery frame
0 x x	Non-Broadcast (NB; Route completely specified by RDs)
1 0 x	All-Routes-Broadcast (ARB; for discovery process)
1 1 x	Single-Route-Broadcast (SRB; for modified discovery process using Spanning Tree)
LEN (Length)	
♦ length of rout	ting information in bytes (2 -30)
♦ RI can hold	14 RD at maximum
♦ therefore 13	SR bridges in sequence_are possible
© 2005, D.I. Manfred Lindner	Source Route Bridging, v3.4 8

L25 - Source Route Bridging

Routing Control	
1 Routing Designators	rpret path information are interpreted from left to right are interpreted from right to left
□ LF (Largest Frame)	ed frame size between two
000 516 Byte (ISO 8473) 001 1500 Byte (E) 010 2052 Byte (3270) 011 4471 Byte (TR,4)	101 11407 Bytes (TR,16) 110 17800 Byte (TR,16)
© 2005. D.I. Manfred Lindner Source Route Bridd	ng v34 0

Routing Designators

RDx (Routing Designators)

- ◆ 12 bit Ring-ID and 4 bit Bridge ID
- marks the route from source to the destination
 these IDs are maintained by the bridges and inserted (in the RDs) during discovery in the discovery frames by the bridges
- □ Ring-IDs
 - unique in the whole Source Route Bridging network

Bridge-IDs

 different only if two or more bridges connect two rings in parallel

2005, D.I. Manfred Lindner

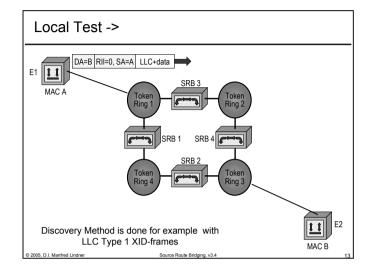
© 2005, D.I. Manfred Lindner

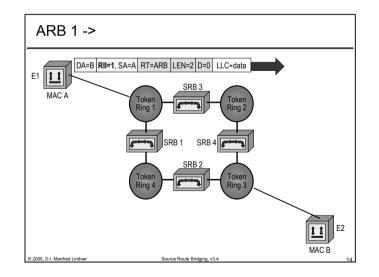
Source Route Bridging, v3

L25 - Source Route Bridging

Agenda		
□ Introduction ar □ All Routes Bro	nd Routing Information	
□ Single Route E		
© 2005. D.I. Manfred Lindner	Source Route Bridging, v3.4	

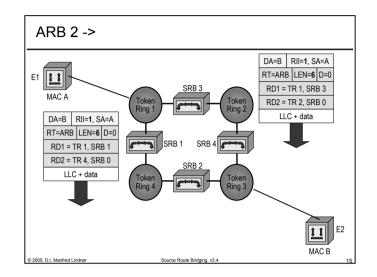
Basic Steps of Source Routing

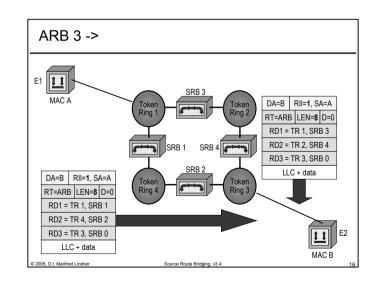

© 2005, D.I. Manfred Lindner

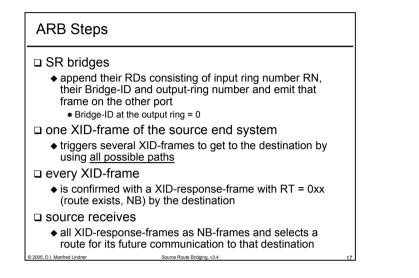

- to generate routing information the end-system sends special LLC-frame (XID or Test) with MAC-DA = destination address
- frist trial with RII = 0 to reach destination system on the local ring
- second trial with RII = 1, with RT either set as All-Routes-Broadcast (ARB) or Single-Route-Broadcast (SRB), with LEN = 2, D = 0 and LF according to the frame size
- all bridges connected to the local ring receives and process this frame because RII = 1

Source Route Bridging, v3.

© 2005, D.I. Manfred Lindner


L25 - Source Route Bridging




© 2005, D.I. Manfred Lindner

L25 - Source Route Bridging

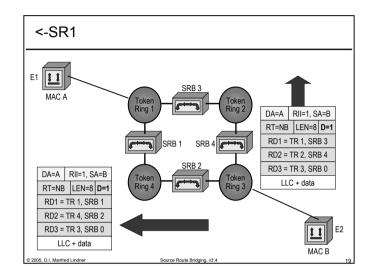
L25 - Source Route Bridging

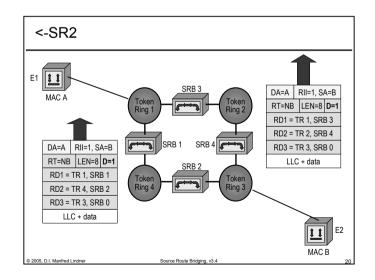
ARB Steps

2005 D L Manfred Lindner

commonly, source end systems selects the route of the first received XID-frame

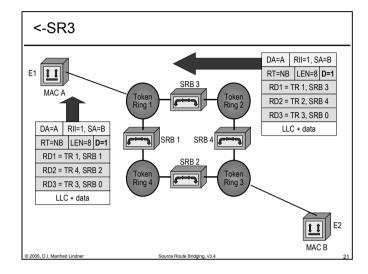
- then all following LLC-frames from source to destination end system
 - are transmitted with RII =1, RT = Non-Broadcast Route (NB) and appropriate RDs
- informations about all determinated paths
 - can be stored in a local cache of the source end system to deal fast with new connection requests


Iocation change of end-systems


 can be noticed by an aging-mechanism and thereby solved automatically

Source Route Bridging, v3.-

© 2005, D.I. Manfred Lindner


L25 - Source Route Bridging

© 2005, D.I. Manfred Lindner

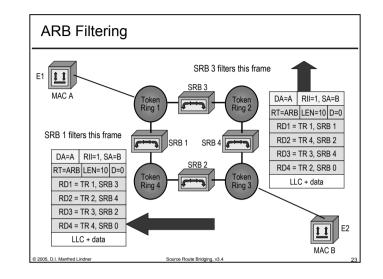
L25 - Source Route Bridging

ARB Unwanted Effects, Filtering

□ in our example SRB 2 and SRB 4

- must forward ARB-XID-frame received from the other bridge from TR3 to TR2 or TR4
- only SRB1 and SRB3 can filter these frames

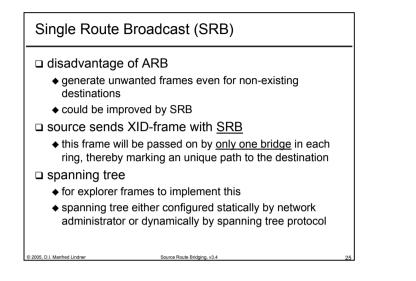
□ generic rule for filtering of frames

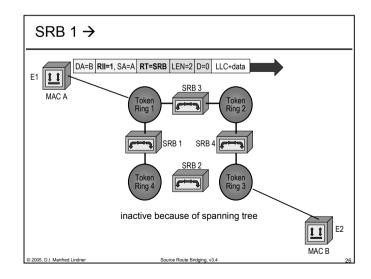

- ♦ ARB- and SRB-frames
 - ***** if RD-sequence already contains a ring number which is equal to the outgoing ring number of a bridge, then this frame must be filtered → loops are avoided
- ♦ SR-frames
 - * if RD-sequence contains no combination Ring number/Bridge-ID/ring number which is equal to the ingoing-ring number/ own Bridge-ID/outgoing ring number, then this frame must be filtered

2005, D.I. Manfred Lindner

Source Route Bridging, v3.4

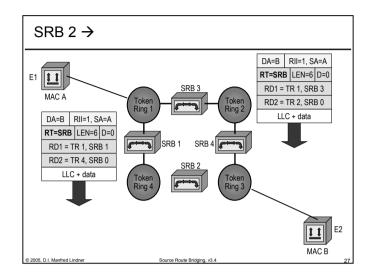
© 2005, D.I. Manfred Lindner

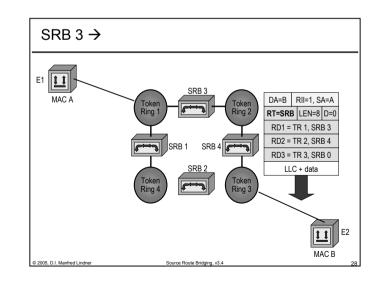

L25 - Source Route Bridging

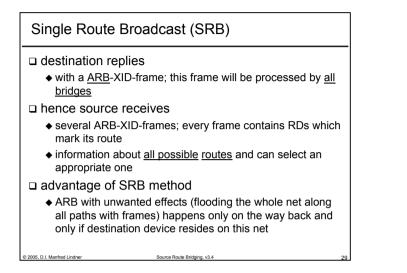


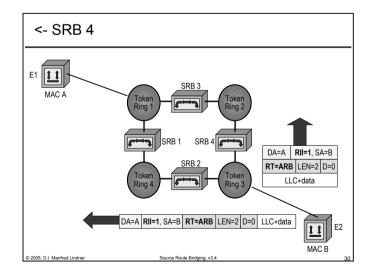
Agenda Introduction and Routing Information All Routes Broadcast Single Route Broadcast

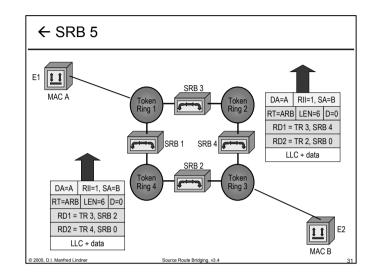
© 2005, D.I. Manfred Lindner

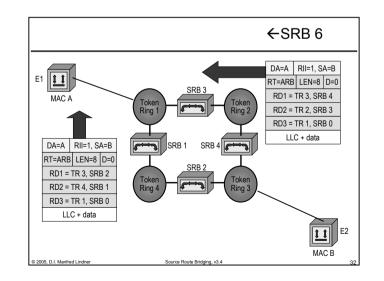

L25 - Source Route Bridging




© 2005, D.I. Manfred Lindner


L25 - Source Route Bridging


L25 - Source Route Bridging



© 2005, D.I. Manfred Lindner

L25 - Source Route Bridging

© 2005, D.I. Manfred Lindner