L24 - Token Ring

	Token Ring	
	Principles, Framing and Management	
© 2005, D.I. Manfred Lindner	Token Ring, v3.4	1

Agenda

Introduction

□ Station States and Access Control

Framing

© 2005, D.I. Manfred Lindner

Token Ring Management

© 2005, D.I. Manfred Lindner

Token Ring, v3.4

L24 - Token Ring

802.5 Token Ring
all stations are actively (=interruptively) connected to the ring-network
 every station acts as intermediate amplifier (repeater)
ring network is basically build as a series of unidirectional point to point connections
failure of a station would be fatal because of its active coupling
therefore stations are not directly connected to the ring, but over a bypass relay
> TCU Trunk Coupling Unit
© 2005, D.I. Manfred Lindner Token Ring, v3.4 3

© 2005, D.I. Manfred Lindner

Trunk Coupling Unit

□ TCU

- passive bypass relay, powered by the network station
- on station failure, the relais falls back in a neutral position and bypasses the trunk line
- activating a station means closing the relais and hence the station becomes an active part of the ring

□ problem:

- transmitting power of a network card (to supply a point-topoint line) must be sufficient to supply the whole ring (lobe cables + trunk cable) in worst cases (e. g. only B and C active)
- this results in a restriction for the maximal physical length of the ring: whole ring length must be less or equal the maximal possible distance between two ring stations

2005, D.I. Manfred Lindner

Token Ring, v3.4

© 2005, D.I. Manfred Lindner

L24 - Token Ring

Line Lengths

complex task

- to calculate allowed link lengths, if a cable is spanned somehow in a building
- solution
 - structured cabling
 - concentration of TCUs in the center by using a MSAU
 * Multi Station Attachment Unit
 - MSAUs are coupled via double-rings using RI/ROtechnique
- □ rule of thumb for structured cabling
 - distance between network stations and center must not exceed 100m

Token Ring v3.4

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

L24 - Token Ring

MSAU Coupling

□ MSAU provides

only a limited number of lobe-connectors

- □ Ring-In/Ring-Out ports allow
 - coupling of several MSAUs by a double ring to increase the number of ports
 - double ring can bypass a broken trunk cable

□ MSAU either passive or active

- passive MSAU contains only passive bypass-relays
 no amplification for RI/RO lines and lobe lines
- active MSAU contains amplifier for RI/RO
 * hence Ring could be expanded as far as technology allows
 * with FO several kms

2005, D.I. Manfred Lindner

Token Ring, v3.4

Institute of Computer Technology - Vienna University of Technology

L24 - Token Ring

© 2005, D.I. Manfred Lindner

L24 - Token Ring

Agenda

Introduction

Station States and Access Control

Framing

2005, D.I. Manfred Lindner

Token Ring Management

© 2005, D.I. Manfred Lindner

Token Ring v3

L24 - Token Ring

© 2005, D.I. Manfred Lindner

L24 - Token Ring

© 2005, D.I. Manfred Lindner

L24 - Token Ring

Access Method: Token
if no station wants to send, the token frame circulates around the ring
station gets permission to send after receiving a token
holding the token, the network station is allowed to send data for a certain duration
 duration: token rotation time (default 10ms)
 can send one or more frames in this time
 therefore max. frame size: about 4500 Byte (4Mbit/s), about 18000 Byte (16Mbit/s)
 after that, the token is passed to the next station on the ring deterministic method (Round Robin)
2005, D.I. Manfred Lindner Token Ring, v3.4 2

© 2005, D.I. Manfred Lindner

L24 - Token Ring

© 2005, D.I. Manfred Lindner

L24 - Token Ring

© 2005, D.I. Manfred Lindner

L24 - Token Ring

Ring Length and Bit Length

□ the physical length of a single bit

- ♦ about 50m for 4 Mbit/s
- about 12,5m for 16 Mbit/s (remark: signal propagation speed is 0,66c) (remark: for 10 Mbit/s Ethernet about 20m)

□ token frame

- ♦ length 24 bit
- needs a physical ring length of 1200m (4Mbit/s) and 300m (16Mbit/s)
 worst case: only one active station
- therefore one selected station (active monitor) inserts a constant 24-bit shiftregister into the ring

Token Ring, v3.4

2005, D.I. Manfred Lindner

Tasks of the Active Monitor 1

active monitor

- provides the clock for all stations
- □ all other stations
 - recover the clock via PLL from the received data stream
 - the recovered clock is used as send clock to the downstream station
- number of stations and hence ring diameter is limitated
 - by jitter (accumulation of inaccuracy of clock caused by the sequence of PLLs)
- □ active monitor equalizes jitter effects
 - using an additional elastic shift register
 * 6 bits length -> tolerance of +/- 3 bits

2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

Token Ring, v3.4

Institute of Computer Technology - Vienna University of Technology

L24 - Token Ring

Tasks of the Active Monitor 2 token-management generation of first token regeneration of a lost token monitors periodic token pass-by error-management station sends too often or too long station does not purge its emitted frame from ring errors caused by activating/deactivating the bypass-relais frame fragments special control frames (so called MAC-frames) are necessary for these tasks

Agenda

Introduction

- Station States and Access Control
- Framing

© 2005, D.I. Manfred Lindner

Token Ring Management

© 2005, D.I. Manfred Lindner

Page 24- 13

L24 - Token Ring

Start/End	l Delimiter
[J K 0 J K 0 0 0 SD
	J K 1 J K 1 I E ED
J, K E I	none-data symbols of diff. Manchester code Error-detection bit Intermediate-frame bit
© 2005. D.I. Manfred Lindner	Token Rina. v3.4

© 2005, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L24 - Token Ring

© 2005, D.I. Manfred Lindner

L24 - Token Ring

Access Control

T-bit defines

- \bullet T= 0 ... token, T = 1 ... data frame
- M-bit enables the active monitor to detect and remove circulating frames
 - ♦ station sends frame with M = 0
 - active monitor sets M = 1 when the frame passes by
 normally the sending station also removes frame from the ring
 - but if frame with M = 1 passes active monitor again an error has occured
 - active monitor removes this frame, cleans the ring and generates a new token

Token Ring, v3.4

2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

L24 - Token Ring

Access Control with Priority PPP/RRR-bits allow implementation of an optional priority handling PPP defines the current priority of the token or the data frame PPP = 000 lowest priority PPP = 111 highest priority RRR enables a station to request a higher priority on the fly whenever a token or data frame passes by station which currently holds the token increases after its data frame transmission the priority of the token according to the RRR-bits

Token Ring v3.4

© 2005. D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

L24 - Token Ring

Frame Control				
F F Z Z Z Z FC				
FF = 01LLC frame FF = 00MAC control frame				
ZZZZZZ defines type of MAC control frame				
bit pattern: type: 000011claim token 000010beacon 000100purge 000101active monitor present 000000standby monitor present				
© 2005, D.I. Manfred Lindner Token Ring, v3.4 37				

Frame Status					
,	A C r r FS A				
© 2005. D.I. Manfred Lindner	Tokan Pino 1/3.4				

© 2005, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L24 - Token Ring

Frame Status					
the frame status signals a low-level acknowledge- ment for LLC frames					
♦ every frame is sent with AC = 0 0					
 station with address equal destination address sets A = 1 if this station can copy the frame in its internal FIFO- buffer it sets C = 1 					
♦ otherwise C = 0 remains					
 by AC-bits the sender recognizes if target station is active on ring and if frame has been copied 					
doubling the AC - bits within frame status is done because of security reasons					
* FS is beyond the scope of FCS generation and control					
© 2005, D.I. Manfred Lindner Token Ring, v3.4 39					
Frame Status					
♦ if station recognizes DA as own address and A is set:					

© 2005, D.I. Manfred Lindner

L24 - Token Ring

Special DA	
 null address: by using the DA 0000 0000 0000 (hex) a station can send a frame itself; no other station recognizes this address 	to
 functional addresses: special Token Ring multicast addresses for selecting specific functions in the range of C000, yyyy yyyy (hey) 	
 In the tange of occor Axec (rex) examples: C000 0000 1001 (byte 5, bit 7) avtive monitor C000 0000 0002 (byte 5, bit 6) ring parameter server C000 0000 0008 (byte 5, bit 4) ring error monitor C000 0000 0010 (byte 5, bit 3) configuration report server 	
C000 0000 0080 (byte 5, bit 0) NetBios C000 0000 2000 (byte 4, bit 2) LanManager	12

© 2005, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L24 - Token Ring

Frame Format with RII									
RII = 0									
	MAC - H DA 0 SA LLC Data MAC - T					-			
RII = 1									
	MAC - H	DA	1	SA	Rout. In	ifo LLC	Data	1	MAC - T
MAC - H MAC - Header (SD, AC, FC) MAC - T MAC - Trailer (FCS, ED, FS)									
© 200	5, D.I. Manfred Lindner				1	Token Ring, v3.4			4

© 2005, D.I. Manfred Lindner

L24 - Token Ring

Routing Information Indicator

RII indicates

- if additional routing information for source route bridging is available
- ♦ RII = 0 ... frame without routing information * receiver of this frame is on the local ring
- ◆ RII = 1 ... frame with routing information
 - routing information contains the source route for the frame or must be handled by source route bridges according to the type of the roting information

Token Rina, v3.4

- * for details see source route bridging
- * receiver of this frame is on a different ring

2005, D.I. Manfred Lindner

Agenda

□ Introduction

□ Station States and Access Control

Framing

2005, D.I. Manfred Lindner

□ <u>Token Ring Management</u>

L24 - Token Ring

Token Ring Management token ring operations need management functions to initialize the ring and for error handling active monitor has to be selected, activated in a station, and also supervised after powering up a station, duplicate addresses must be detected (important for local administered addresses) and also an initialization might be necessary Ring Parameter Server (RPS) in case of a line break the location of the break should be signaled as accurate as possible Ring Error Monitor (REM) topology changes should be documented Configuration Report Server (CRS)

Token Ring, v3.4

Active Monitor Selection

initializing

© 2005, D.I. Manfred Lindner

- ♦ competition of all active stations for active monitor
- all stations periodically send Claim-Token (CT) MAC-control frame by using their source-address as parameter
- all stations are in insert-mode
- on receiving a CT-frame with lower address as own address the station continues sending and remains in insert-mode
- on receiving a CT-frame with higher address as own address the station stops sending and changes into repeater-mode
- ◆ CT-frame remains unchanged when passing this station
- on receiving a CT-frame with equal address as own address
- active monitor found

© 2005, D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner

Token Ring v3

© 2005, D.I. Manfred Lindner

Token Rin

L24 - Token Ring

Active Monitor Tasks

□ supervision:

- generation of the first token
- control if token periodically passes the active monitor (timeout)
- monitor-bit function to detect frame fragments, which have been originated by station breakdown or by powering-on new stations via bypass-relay
- emitting an Active-Monitor-Present (AMP)-control frame every 7 seconds (heartbeat-function) and triggering a ring-wide Upstream-Neighbor-Address (UNA) determination
- UNA is also called NAUN (Next Active Upstream Neighbor)

Token Ring, v3.4

2005, D.I. Manfred Lindner

Active Monitor Tasks

□ error handling:

- if frame-fragments occur, the active monitor has to cleanup the ring with the Purge (PRG)-control frame and hereafter a new token has to be inserted
- ♦ if there is no token on the ring an active monitor must be determined via claim-token procedure
- this also resolves conflicts caused by stations which are continuously sending frames
- stations which are continuously sending tokens (DTE jabbering) are detected by missing AMP-frames

□ hardware aspects:

• fixed and an elastic shiftregister, master clock

2005, D.I. Manfred Lindner

Token Ring, v3.4

© 2005, D.I. Manfred Lindner

L24 - Token Ring

Active Monitor <-> Standby Monitor

- all stations except active monitor become standby monitors:
 - control if AMP-frame and token are periodically passing by
 - on timeout, every station tries to become active monitor by using the claim-token-procedure
- upstream neighbors determination:

© 2005, D.I. Manfred Lindner

- periodical AMP-frame triggers ring-wide determination of upstream-neighbors
- every station maintains the address of the upstreamneighbor for signaling purposes in error situations and to provide statistical data for CRS

Token Ring, v3.4

Upstream-Neighbor Determination

- ♦ AMP-frame is transmitted with frame status AC = 00 and DA = broadcast
- first station after active monitor sets AC = 11 and notes the source-address of the AMP-frame as Upstream-Neighbor-Address (UNA)
- adjacent stations do not interprete this frame with respect to UNA; AMP-frame is removed from the ring by the active monitor
- subsequently this station sends <u>Standby-Monitor-Present</u> (<u>SMP</u>) MAC-control frames with AC = 00 and DA = broadcast
- now the following station determines UNA with the same method and emits also the SMP-frame

Token Ring v3.4

...until all UNAs are found

© 2005 D I Manfred Lindner

© 2005, D.I. Manfred Lindner

L24 - Token Ring

Inserting A Token Ring Station

□ insertion procedure:

- ♦ at first the station verifies its lobe line by sending a Lobe-Test (LT) control frame to the own address
- hereon the bypass-relay is activated
- waiting for the first token; then transmitting a Duplicate-Address-Test (DAT) control frame with AC = 00
- ♦ on receiving the own DAT-frame with AC = 00, no station with this address exists on the ring -> insertion successful; Report-Ring-Station-Address (RRSA) control frame is sent to CRS
- ♦ on receiving the own DAT-frame with AC = 11, duplicate address exists -> abort insertion

2005, D.I. Manfred Lindner

Token Ring, v3.4

Beaconing

transmitting a beacon

- on fatal errors (e.g. no receive signal from upstream neighbor possible because of a line break, TCU-error) -> beaconing
- ◆ Beacon-Superviory (BCN) control frame contains address of the station, specifies error type and also contains address of Upstream Neighbor (UN); BCN is sent periodically
- ♦ if UN receives this frame, the station will be removed from the ring (by deactivating its bypass-relay) and a diagnosis will be performed
- ♦ if BCN-frames arrive their home addresses, the error has been recovered by removing the UN

2005, D.I. Manfred Lindner

Token Ring, v3.4

© 2005, D.I. Manfred Lindner

L24 - Token Ring

Beaconing

- ♦ if error has been removed, a new active monitor is determined by using CT-frames and the ring is newly initialized
- ♦ if no BCN-frame arrives its home address within 16 seconds, the station removes itself from the ring and performs also a self-diagnosis
- stations which have finished their self-diagnosis successfully, are trying to return to the ring again (using the normal inserting procedure)
- during the beaconing-procedure other stations keep quiet Token Ring, v3.4

© 2005. D.I. Manfred Lindner

© 2005, D.I. Manfred Lindner