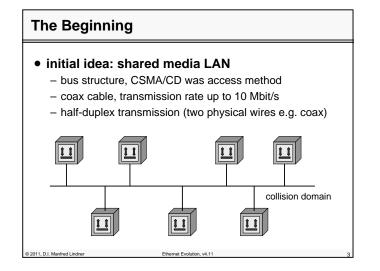
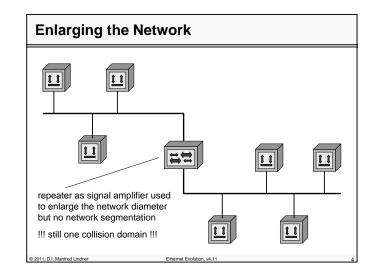
L23 - The Ethernet Evolution

The Ethernet Evolution

From 10Mbit/s to 10Gigabit/s Ethernet Technology From Bridging to L2 Ethernet Switching and VLANs

Agenda


- Ethernet Evolution
- VLAN

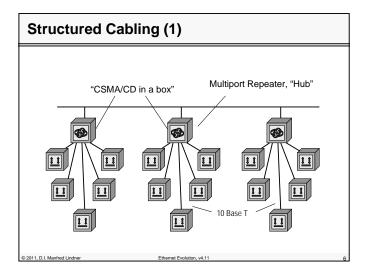

© 2011, D.I. Manfred Lindner

- High Speed Ethernet
 - Introduction
 - Fast Ethernet
 - Gigabit Ethernet
 - 10 Gigabit Ethernet

Ethernet Evolution, v4.11

L23 - The Ethernet Evolution

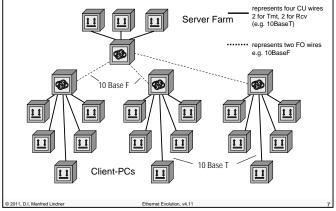
© 2011, D.I. Manfred Lindner


Page 23 - 1

Multiport Repeater

- demand for telephony-like point-to-point cabling using Twisted Pair wires
 - based on structured cabling standard
 - 10BaseT as new Ethernet type to support this demand
 - four physical wires (2 for tmt, 2 for rcv)
- network stations are connected star-like to a multiport repeater
 - multiport repeater is called "hub"
- hub simulates the bus: "CSMA/CD in a box"
- only half-duplex

2011 D I Manfred Lindner


- only one network station can use the network at a given time, all others have to wait Ethernet Evolution v4.11

© 2011, D.I. Manfred Lindner

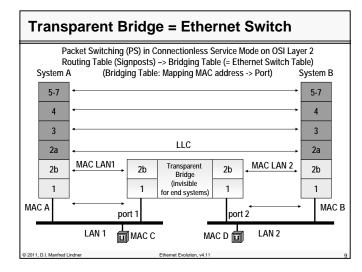
L23 - The Ethernet Evolution

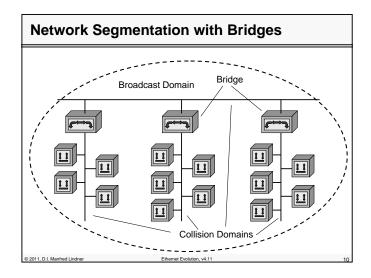
Structured Cabling (2)

Bridging

© 2011, D.I. Manfred Lindner

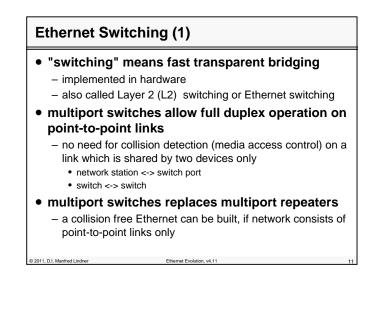
- simple physical amplification with repeaters became insufficient
 - with repeaters all nodes share the given bandwidth
 - the whole network is still one collision domain
- -> technology moved toward layer 2
- bridges segment a network into smaller collision domains
 - store and forward technology (packet switching)

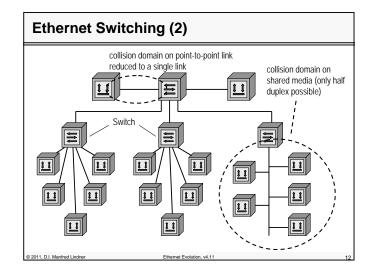

Ethernet Evo


- the whole network is still a broadcast domain
- Spanning Tree provides a unique path between each two devices and avoids broadcast storms

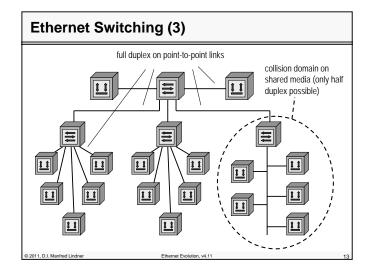
Page 23 - 3

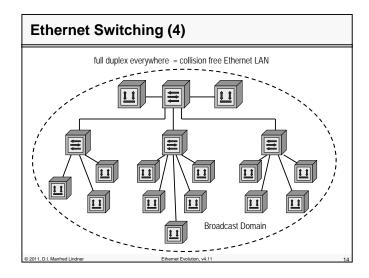
© 2011, D.I. Manfred Lindner


L23 - The Ethernet Evolution



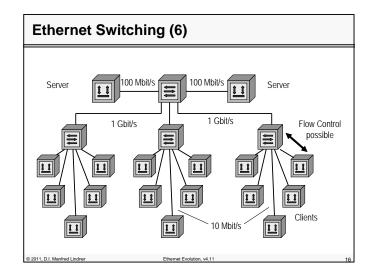
© 2011, D.I. Manfred Lindner


L23 - The Ethernet Evolution



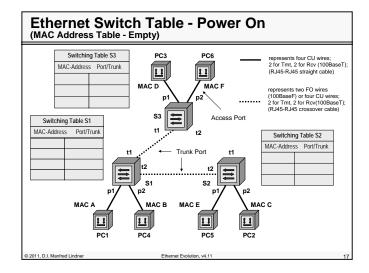
© 2011, D.I. Manfred Lindner

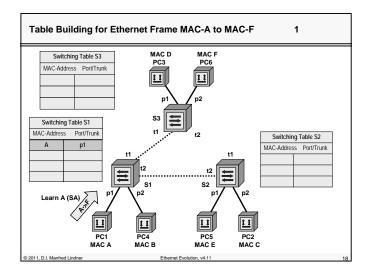
Page 23 - 5



© 2011, D.I. Manfred Lindner

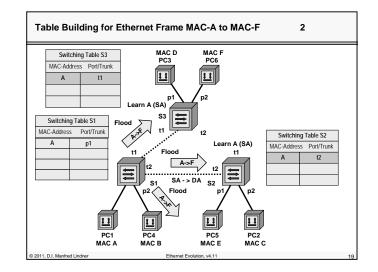
L23 - The Ethernet Evolution

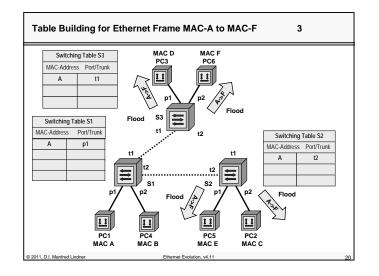




© 2011, D.I. Manfred Lindner

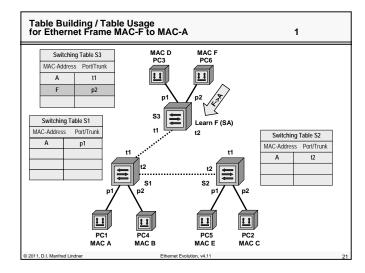
Page 23 - 7

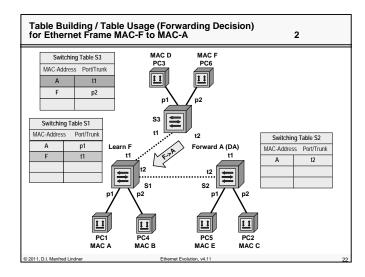

L23 - The Ethernet Evolution



© 2011, D.I. Manfred Lindner

L23 - The Ethernet Evolution

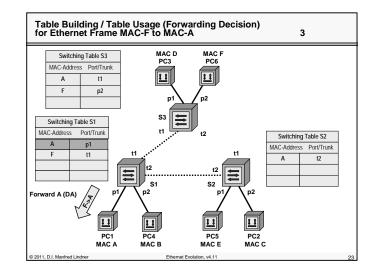


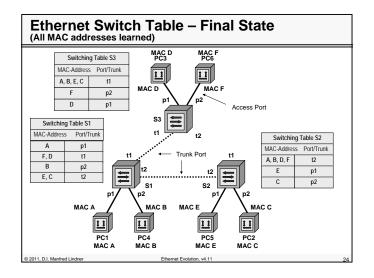


© 2011, D.I. Manfred Lindner

Page 23 - 9

L23 - The Ethernet Evolution

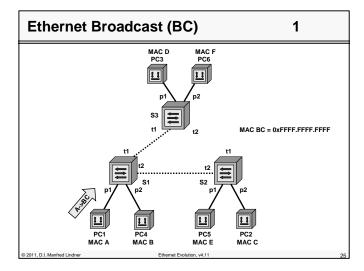


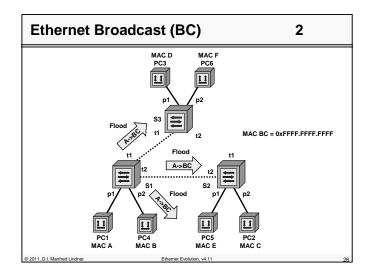


© 2011, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L23 - The Ethernet Evolution

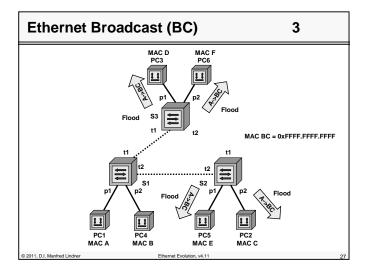


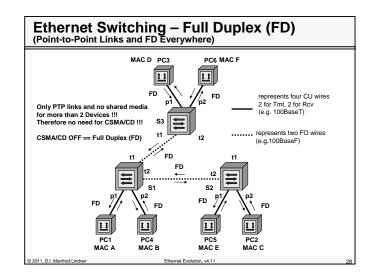


© 2011, D.I. Manfred Lindner

Page 23 - 11

L23 - The Ethernet Evolution

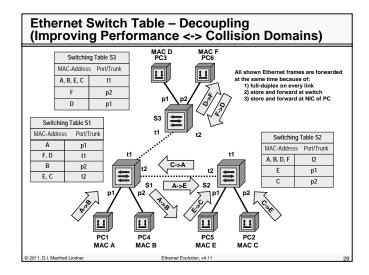


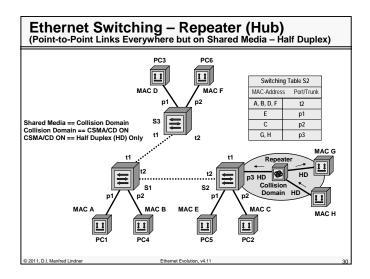


© 2011, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L23 - The Ethernet Evolution

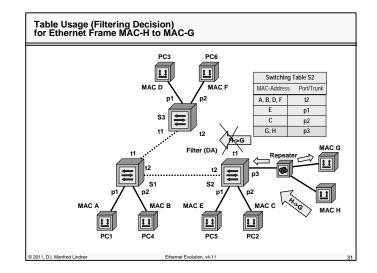


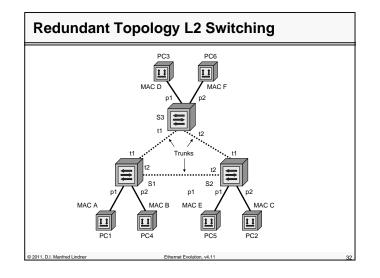


© 2011, D.I. Manfred Lindner

Page 23 - 13

L23 - The Ethernet Evolution

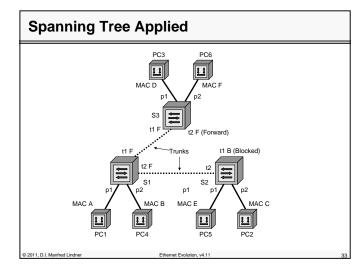


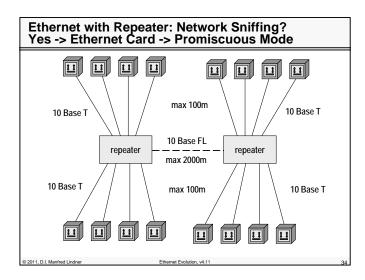


© 2011, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L23 - The Ethernet Evolution

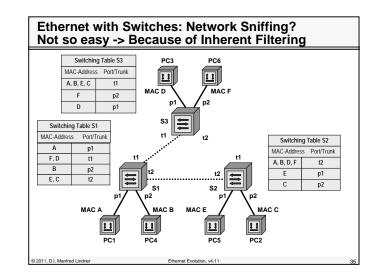




© 2011, D.I. Manfred Lindner

Page 23 - 15

L23 - The Ethernet Evolution



© 2011, D.I. Manfred Lindner

Page 23 - 17

Institute of Computer Technology - Vienna University of Technology

L23 - The Ethernet Evolution

• Ethernet Evolution	ution	
• VLAN		
High Speed Et	hernet	
 Introduction 		
 Fast Ethernet 		
 – Gigabit Ethern 	et	
 – 10 Gigabit Eth 	ernet	
2011. D.I. Manfred Lindner	Ethernet Evolution, v4.11	

© 2011, D.I. Manfred Lindner

L23 - The Ethernet Evolution

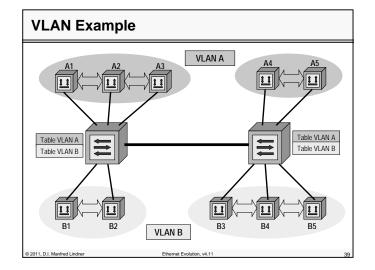
Virtual LANs (1)

- today's work-groups are expanding over the whole campus in case of local environment
- users of one workgroup should be kept separated from other workgroups
 - because of security reasons they should see their necessary working environment only
- end-systems of one workgroup should see broadcasts only from stations of same workgroup
- the network must be flexible
 - to adapt continuous location changes of the endsystems/users

Ethernet Evolution v4 11

Virtual LANs (2)

2011, D.I. Manfred Lindner


• base idea of VLAN:

- multiplexing of several LANs via same infrastructure (switches and connection between switches)
- today's switches got the ability to combine several network-stations to so-called "Virtual LANs"
 - separate bridging/switching table maintained for every single VLAN
 - separate broadcast handling for every single VLAN
 - each Virtual LAN is its own broadcast domain
 - separate Spanning Tree for every single VLAN
 - note: IEEE 802.1w specifies a method to share one Rapid Spanning Tree among all VLANs

2011, D.I. Manfred Lindner

Ethernet Evolution, v4.11

L23 - The Ethernet Evolution

VLAN Assignment

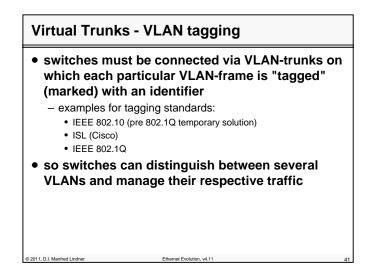
a station may be assigned to a VLAN

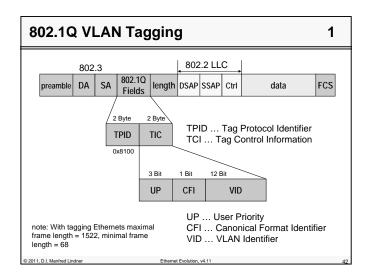
- port-based

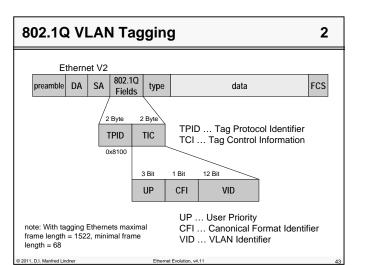
- fixed assignment port 4 -> VLAN x
- most common approach
- a station is member of one specific VLAN only
- MAC-based
 - MAC A -> VLAN x
 - allows integration of older shared-media components and automatic location change support
 - a station is member of one specific VLAN only

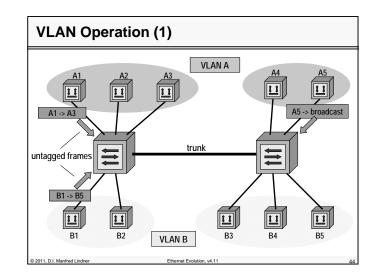
- protocol-based

- IP-traffic, port 1 -> VLAN x
- NetBEUI-traffic, port 1 -> VLAN y
- a station could be member of different VLANs
- © 2011, D.I. Manfred Lindner Ethernet Evolution, v4.1

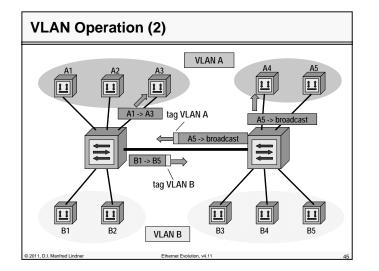

© 2011, D.I. Manfred Lindner

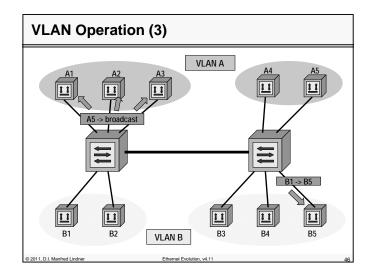

Page 23 - 19


© 2011, D.I. Manfred Lindner


L23 - The Ethernet Evolution

L23 - The Ethernet Evolution

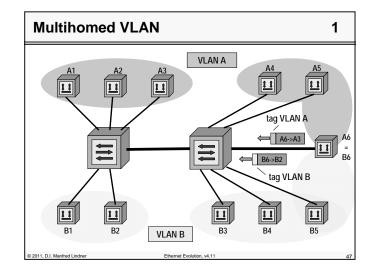


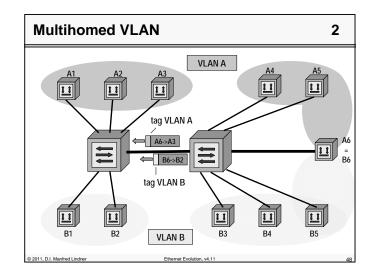

© 2011, D.I. Manfred Lindner

© 2011, D.I. Manfred Lindner

Page 23 - 21

L23 - The Ethernet Evolution

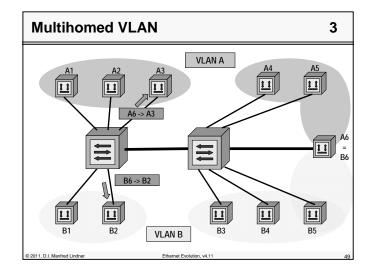




© 2011, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

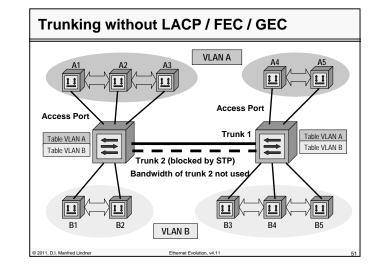
L23 - The Ethernet Evolution

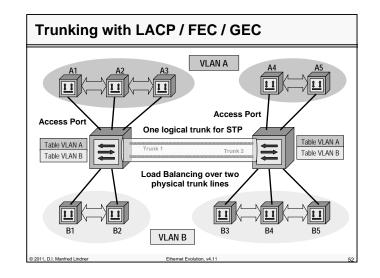




© 2011, D.I. Manfred Lindner

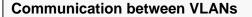
Page 23 - 23


L23 - The Ethernet Evolution



Institute of Computer Technology - Vienna University of Technology

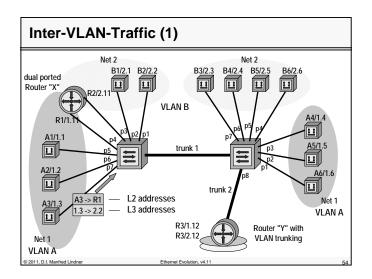
L23 - The Ethernet Evolution



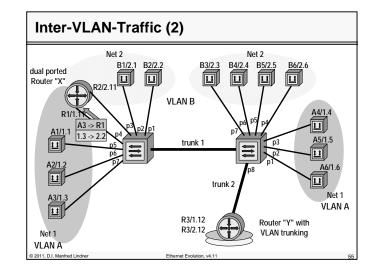
© 2011, D.I. Manfred Lindner

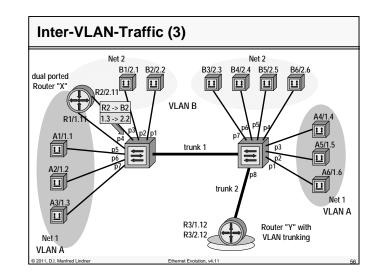
© 2011, D.I. Manfred Lindner

Page 23 - 25


L23 - The Ethernet Evolution

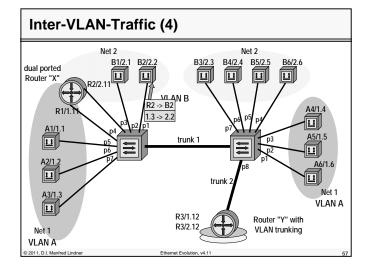
2011 D I Manfred Lindner


- switches do not allow traffic between (different) VLANs
- end-systems have to make use of routers
- routers can be either part of several VLANs (via multiple physical ports), or
- routers provide VLAN-trunk capabilities -> router must be able to recognize and change tags


Ethernet Evolution v4.11

© 2011, D.I. Manfred Lindner

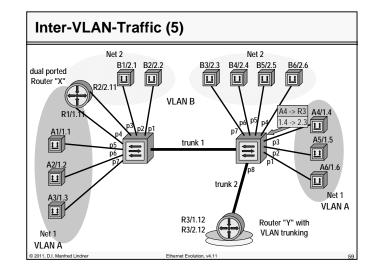
L23 - The Ethernet Evolution

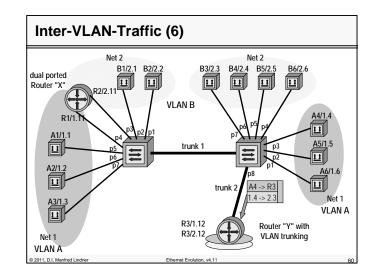


© 2011, D.I. Manfred Lindner

Page 23 - 27

L23 - The Ethernet Evolution

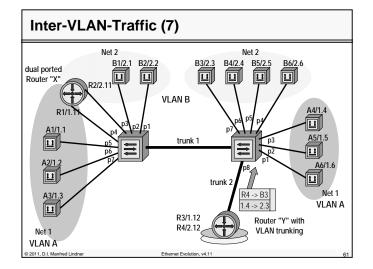


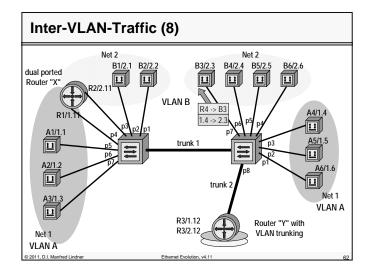

	Switchi	ng Ta	able 1			Routing	Table X
VL/	AN A		VL/	AN B	net	next hop	port (MAC)
A1	р5		B1	p2	1	local	R1
A2	p6		B2	p1	2	local	R2
A3	р7		B3	trunk 1			
A4	trunk 1		B4	trunk 1			
A5	trunk 1		B5	trunk 1			
A6	trunk 1		B6	trunk 1			
R1	p4		R2	р3			

© 2011, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L23 - The Ethernet Evolution





© 2011, D.I. Manfred Lindner

Page 23 - 29

L23 - The Ethernet Evolution

© 2011, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L23 - The Ethernet Evolution

	Switching	Table 2			Routing	Table Y
V	AN A	AN B	net	next hop	port (MAC), tagging	
A4	р3	B3	р7	1	local	trunk 2, R3, tag=red
A5	p2	B4	p6	2	local	trunk 2, , R4, tag=yellov
A6	p1	B5	p5			
A1	trunk 1	B6	p4			
A2	trunk 1	B1	trunk 1			
A3	trunk 1	B2	trunk 1			
R3	trunk 2	R4	trunk 2			

Agenda		
• Ethernet Evolu	ution	
• VLAN		
High Speed Et	<u>hernet</u>	
- Introduction		
 Fast Ethernet 		
 – Gigabit Etherne 		
 – 10 Gigabit Ethe 	ernet	
2011, D.I. Manfred Lindner	Ethernet Evolution, v4.11	

© 2011, D.I. Manfred Lindner

Page 23 - 31

IEEE 802.3 (2002)

• the latest version of IEEE 802.3 (2005) specifies

- operation for 10 Mbit/s, 100 Mbit/s, Gigabit/s and 10Gigabit/sEthernet
- full duplex Ethernet
- auto-negotiation
- flow control
- it is still backward compatible to the old times of Ethernet
 - CSMA/CD (half-duplex) operation in 100 and 1000 Mbit/s Ethernets with multiport repeater possible
 - frame bursting or carrier extension for ensuring slot-time demands in 1000 Mbit/s Ethernet
- IEEE 802.3ak (2006)

2011, D.I. Manfred Lindner Ethernet Evolution, v4.11

- operation for 10 Gigabit/s Ethernet over copper

Full-Duplex Mode

- full-duplex mode is possible on point-to-point links
 - except 100BaseT4 (Cat 3 cable), 100BaseVG which can work in half duplex mode only
 - note: 10Base2 and 10Base5 are shared links and by default half duplex medias
- if a network station is connected to an Ethernet switch via point-to-point link
 - CSMA/CD is not in necessary and can be switched off

now a network station can

2011, D.I. Manfred Lindner

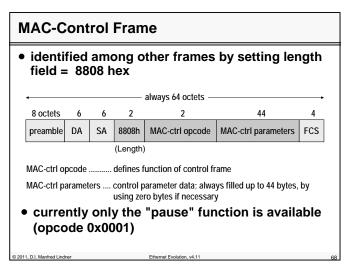
 <u>send</u> frames immediately (without CS) using the transmission-line of the cable <u>and simultaneously receive</u> data on the other line

Ethernet Evolution, v4.11

© 2011, D.I. Manfred Lindner

Page 23 - 33

L23 - The Ethernet Evolution


Flow Control

© 2011 D I Manfred Lindner

- speed-requirements for switches are very high
 - especially in full duplex operation
 - also powerful switches can't avoid buffer overflow
 - earlier, high traffic caused collisions and CSMA/CD interrupted the transmission in these situations, now high traffic is normal
- L4 flow control (e.g. TCP) between end-systems is not efficient enough for a LAN
 - switches should be involved to avoid buffer overflow

Ethernet Evolution v4.11

- therefore a MAC based (L2) flow control is specified
 - MAC-control-protocol and the Pause command

© 2011, D.I. Manfred Lindner

The Pause Command

1

2

· on receiving the pause command

- station stops sending normal frames for a given time which is specified in the MAC-control parameter field
- this pause time is a multiple of the slot time
 - 4096 bit-times when using Gigabit Ethernet or 512 bittimes with conventional 802.3
- paused station waits

2011 D I Manfred Lindner

2011, D.I. Manfred Lindner

- until pause time expires or an additional MAC-control frame arrives with pause time = 0
- note: paused stations are still allowed to send MACcontrol-frames (to avoid blocking of LAN)

Ethernet Evolution v4.11

The Pause Command

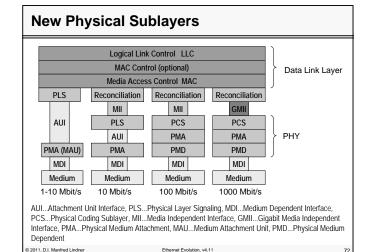
• destination address is either

- address of destination station or
- broadcast address or
- special multicast address 01-80-C2-00-00-01
- this special multicast address prevents bridges to transfer associated pause-frames to not concerned network segments
- hence flow-control (with pause commands) affects only the own segment

Ethernet Evo

L23 - The Ethernet Evolution

Demand for Higher Speed


- higher data rates need more sophisticated coding
 - 10 Mbit/s Ethernet: Manchester coding
 - Fast Ethernet (100 Mbit/s): 4B/5B block code
 - Gigabit Ethernet 1000 Mbit/s): 8B/10B block code
- new implementations should be backwardscompatible
- old physical layer signaling interface (PLS), represented by AUI, was not suitable for new coding technologies

Ethernet Evolution v4.11

• AUI has been replaced

© 2011 D I Manfred Lindner

- MII (Media Independent Interface) for Fast Ethernet
- GMII for Gigabit Ethernet

© 2011, D.I. Manfred Lindner

PHY Sublayers

- Physical Layer Signaling (PLS) serves as abstraction layer between MAC and PHY
- PLS provides
 - data encoding/decoding (Manchester)
 - translation between MAC and PHY
 - Attachment Unit Interface (AUI) to connect with PMA

Ethernet Evolution v4.1

- several new coding techniques demands for a Media Independent Interface (MII)
- today coding is done through an mediadependent Physical Coding Sublayer (PCS) below the MII

PHY Sublayers

2011 D L Manfred Lindner

- PLS has been replaced with the Reconciliation sublayer
 - Reconciliation layer transforms old MAC PLS-primitives into MII control signals
- MII serves as an interface between MAC and PHY
 - hides coding issues from the MAC layer
 - MII: often a mechanical connector for a wire; GMII is an interface specification between MAC-chip and PHY-chip upon a circuit board
 - one independent specification for all physical media
 - supports several data rates (10/100/1000 Mbits/s)

Ethernet Evolution

- 4 bit (GMII: 8 bit) parallel transmission channels to the physical layer
- 2011, D.I. Manfred Lindner

L23 - The Ethernet Evolution

PHY Sublayers

- Physical Coding Sublayer (PCS)
 - encapsulates MAC-frame between special PCS delimiters
 - 4B/5B or 8B/10B encoding respectively
 - appends idle symbols
- Physical Medium Attachment (PMA)
 - interface between PCS and PMD
 - (de) serializes data for PMD (PCS)
- Physical Medium Dependent (PMD)
 - serial transmission of the code groups
 - specification of the various connectors (MDI)

Bridging Aspects

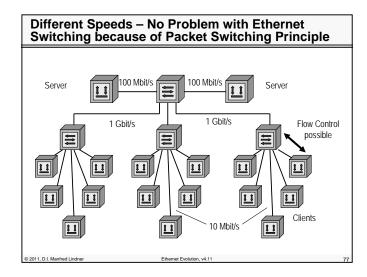
© 2011 D I Manfred Lindner

© 2011, D.I. Manfred Lindner

 new PHY-sublayers preserves old Ethernet MAC frame format

Ethernet Evolution v4 1

- bridging from 10 Mbit/s Ethernet to 100 Mbit/s Ethernet does not require a bridge to change the frame format
 - Remark: bridging from 10 Mbit/s Ethernet to FDDI (100 Mbit/s Token ring) requires frame format changing -> slower !!

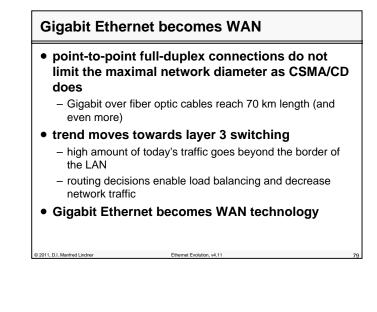

• therefore Ethernet L2 switches

 – can connect Ethernets with 10 Mbit/s, 100 Mbit/s or 1000 Mbit/s easily and fast

© 2011, D.I. Manfred Lindner

Ethernet Eve

L23 - The Ethernet Evolution


Today: Gigabit Ethernet

- continues point-to-point and full-duplex idea
- also backward compatible with initial 10 Mbit/s shared media idea -> CSMA/CD capable
- but nobody uses it as shared media!
 - multiport repeater with Gigabit Ethernet seems absurd because of small network diameter (20m)
 - 200m with carrier extension and burst mode
 - bandwidth sharing decreases performance; every collision domain produces an additional delay for a crossing packet
 - full duplex means exclusive, unshared, high performance point-to-point connections between two stations (total 2Gbit/s!)

© 2011, D.I. Manfred Lindner

, v4.11

L23 - The Ethernet Evolution

Agenda

- Ethernet Evolution
- VLAN

© 2011, D.I. Manfred Lindner

- High Speed Ethernet
- Introduction
- Fast Ethernet
- Gigabit Ethernet
- 10 Gigabit Ethernet

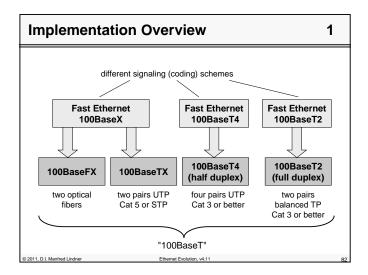
© 2011, D.I. Manfred Lindner

Ethernet Evo

Page 23 - 39

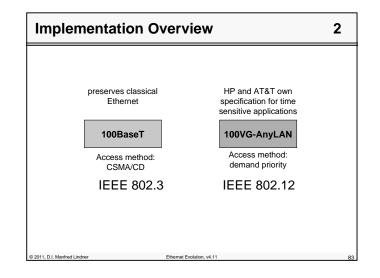
© 2011, D.I. Manfred Lindner

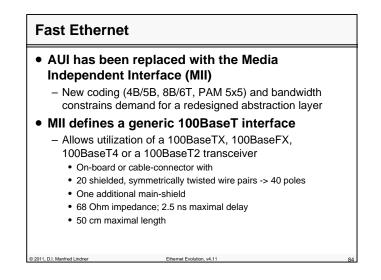
Ethernet Eve


100 Mbit/s Ethernet

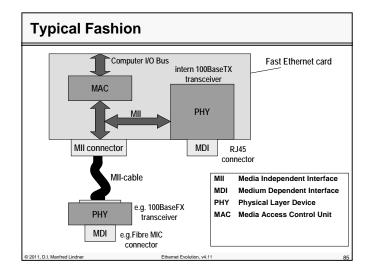
- Access method disagreement split 100 Mbit/s LAN development into two branches:
 - Fast Ethernet IEEE-802.3u (today 802.3-2002)
 - 100VG-AnyLAN IEEE-802.12 (disappeared)
- Fast Ethernet was designed as 100 Mbit/s and backwards-compatible 10Mbit/s Ethernet
 - CSMA/CD but also
 - Full-duplex connections (collision free)
- Network diameter based on collision window requirement (512 bit times)

Ethernet Evolution, v4.11


- reduced by factor 10
- e.g. 250m compared with 2500m at 10 Mbit/s


2011, D.I. Manfred Lindner

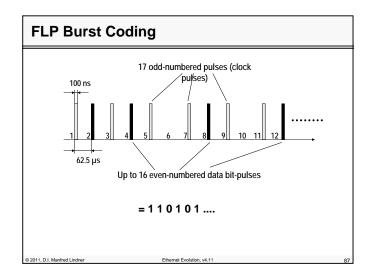
L23 - The Ethernet Evolution



© 2011, D.I. Manfred Lindner

Page 23 - 41

L23 - The Ethernet Evolution


Autonegotiation

- Autonegotiation support enables two 100BaseT devices (copper only) to exchange information about their capabilities
 - signal rate, CSMA/CD or full-duplex
- Achieved by Link-Integrity-Test-Pulse-Sequence
 - Normal-Link-Pulse (NLP) technique is already available in 10BaseT to check the link state
 - 10 Mbit/s LAN devices send every 16 ms a 100ns lasting NLP -> no signal on the wire means disconnected
- 100BaseTX uses bursts of Fast-Link-Pulses (FLP) consisting of 17-33 NLPs
 - Each representing a 16 bit word

2011, D.I. Manfred Lindner

Ethernet Evolution, v4.11

L23 - The Ethernet Evolution

Autonegotiation

- To avoid increase of traffic FLP-bursts are only sent on connection-establishments
- 100BaseT stations recognizes 10 Mbit/s stations by receiving a single NLP only
- Two 100BaseT stations analyze their FLP-bursts and investigate their largest common set of features
- Last frames are sent 3 times -> other station responds with acknowledge-bit set
- Negotiated messages are sent 6-8 times
 - FLP- session stops here

© 2011, D.I. Manfred Lindner

© 2011, D.I. Manfred Lindner

Page 23 - 43

© 2011, D.I. Manfred Lindner

Ethernet Evolution, v4.1

L23 - The Ethernet Evolution

FLP-Session

2011, D.I. Manfred Lindner

- The first FLP-burst contains the base-link codeword
- By setting the NP bit a sender can transmit several "next-pages"
 - Next-pages contain additional information about the vendor, device-type and other technical data
- Two kinds of next-pages
 - Message-pages (predefined codewords)
 - Unformatted-pages (vendor-defined codewords)
- After reaching the last acknowledgement of this FLP-session, the negotiated link-codeword is sent 6-8 times

Ethernet Evolution, v4.11

Bas	Base Page																	
		01										• /					1	
	S0	S1	S2	S3	S4	A0	A1	A2	A3	A4	A5	A6	A7	RF	Ack	NP		
													-					
		Sele	ector	field			Te	chno	log	, abili	ity fie	eld						
	_	/	-						55		,							
prov	ides	selec	tion	ofup	o to 3	2		В	it	Тес	chno	olog	у					
	rent r						ly	Α	0	10Ba	aseT							
only	2 sel	ector	r cod	es av	/ailal	ole:		Α	1	10Ba	aseT∙	full o	duple	ex				
		1000	0IE	EE 8	02.3			Α	2	100E	Base	Гх						
		0100	0I					Α	3	100E	Base	Tx-fu	ll du	plex				
				ISLA				Α	4	100E	Base	Γ4						
			((ISO-	Ethe	rnet)		A	5	Paus	se op	erati	ion fo	or fu	ll dup	olex I	inks	
								Α	6	rese	rved							
								A	7	rese	rved							
© 2011, D.I. M	Aanfred L	indner					Ethe	ernet Evo	olution, v	4.11								90

Institute of Computer Technology - Vienna University of Technology

L23 - The Ethernet Evolution

Base Page

- Remote Fault (RF)
 - Signals that the remote station has recognized an error
- Next Page (NP)

© 2011 D I Manfred Lindner

- Signals following next-page(s) after the base-page
- Acknowledge (Ack)
 - Signals the receiving of the data (not the feasibility)
 - If the base-page has been received 3 times with the NP set to zero, the receiver station responds with the Ack bit set to 1
 - If next-pages are following, the receiver responds with Ack=1 after receiving 3 FLP-bursts

Ethernet Evolution v4.11

Nex	Next-Pages Codeword															
	MO	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	Т	Ack 2	MP	Ack	NP
	Message code field															
1000 0100	Examples: 10000000000null message, station has no further information to send 01000000000next page contains technology ability information															
1010	0000	0000	,			form			Jiga	mza		any	Uniq	uen	Jenn	iner
	U0	U1	U2	U3	U4	U5	U6	U7	U8	U9	U10	Т	Ack 2	MP	Ack	NP
	_			Unfo	orma	tted	code	field								

© 2011, D.I. Manfred Lindner

© 2011, D.I. Manfred Lindner

L23 - The Ethernet Evolution

Next-Pages

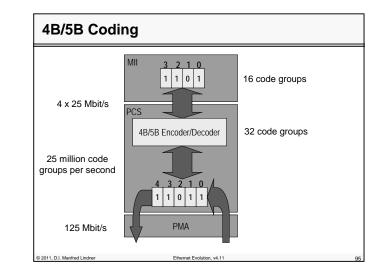
Acknowledge 2 (Ack2)

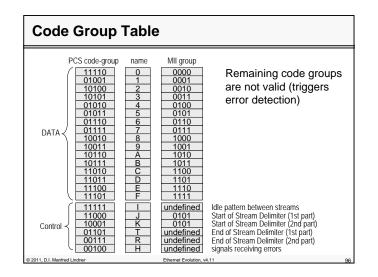
- Ack2 is set to 1 if station can perform the declared capabilities
- Message Page (MP)
 - Differentiates between message-pages (MP=1) and
 - Unformatted-pages (MP=0)
- Toggle (T)
 - Provides synchronization during exchange of next-pages information
 - T-bit is always set to the inverted value of the 11th bit of the last received link-codeword

Ethernet Evolution v4 11

Coding

2011 D I Manfred Lindner


• 4B/5B block encoding: each 4-bit group encoded by a 5 bit run-length limited "code-group"


- Code groups lean upon FDDI-4B/5B codes
- Some additional code groups are used for signaling purposes; remaining code groups are violation symbols
 -> easy error detection
- Groups determinate maximal number of transmitted zeros or ones in a row -> easy clock synchronization
 Keeps DC component below 10%
- Code groups are transmitted using NRZIencoding
 - Code efficiency: 4/5 = 100/125 = 80% (Manchestercode only 50 %)

Ethernet Evolution

2011, D.I. Manfred Lindner

L23 - The Ethernet Evolution

© 2011, D.I. Manfred Lindner

© 2011, D.I. Manfred Lindner

L23 - The Ethernet Evolution

Signaling Types

• Three signaling types :

- 100BaseX:

- refers to either the 100BaseTX or 100BaseFX specification
- 100BaseT4
- 100BaseT2

100BaseX

2011, D.I. Manfred Lindner

 combines the CSMA/CD MAC with the FDDI Physical Medium Dependent layer (PMD)

Ethernet Evolution v4 11

- allows full duplex operation on link

Signaling Types

• 100BaseT4

2011, D.I. Manfred Lindner

- allows half duplex operation only
- 8B6T code
- Uses 4 pairs of wires; one pair for collision detection, three pair for data transmission
- One unidirectional pair is used for sending only and two bi-directional pairs for both sending and receiving
- Same pinout as 10BaseT specification
- Transmit on pin 1 and 2, receive on 3 and 6; bi-directional on 4 and 5; bi-directional on 7 and 8

L23 - The Ethernet Evolution

100BaseTX and 100BaseFX

• 100BaseTX:

- 125 MBaud symbol rate, full duplex, binary encoding
- 2 pair Cat 5 unshielded twisted pair (UTP) or 2 pair STP or type 1 STP
- RJ45 connector; same pinout as in 10BaseT (transmit on 1 and 2, receive on 3 and 6)

• 100BaseFX:

© 2011 D I Manfred Lindner

- 125 MBaud symbol rate, full duplex, binary encoding
- Two-strand (transmit and receive) 50/125 or 62.5/125- μm multimode fiber-optic cable
- SC connector, straight-tip (ST) connector, or media independent connector (MIC)

Ethernet Evolution v4.11

100BaseT4 and 100BaseT2

• 100BaseT4:

- 25 MBaud, half duplex, ternary encoding
- Cat3 or better, needs all 4 pairs installed
- 200 m maximal network diameter
- maximal 2 hubs

• 100BaseT2:

© 2011, D.I. Manfred Lindner

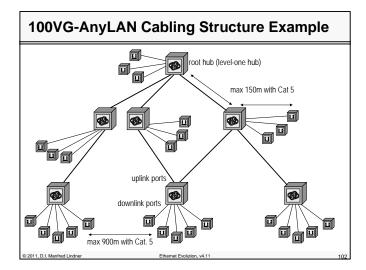
- 25 MBaud, full duplex, quinary encoding
- 2 pairs Cat3 or better

© 2011, D.I. Manfred Lindner

Ethernet Evolution

© 2011, D.I. Manfred Lindner

Ethernet Evo


L23 - The Ethernet Evolution

100VG-AnyLAN

2011 D L Manfred Lindner

- specified by HP and AT&T, standardized by IEEE 802.12
- uses 802.2 LLC but incompatible with 802.3 MAC
- designed for existing "Voice Grade" cabling (point to point only, unidirectional) in a tree structured net; hubs are arranged hierarchically
- demand priority access method which is more deterministic than CSMA/CD; eliminates collisions and can be more heavily loaded than 100BaseT

Ethernet Evolution v4 11

© 2011, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L23 - The Ethernet Evolution

100VG-AnyLAN Operation1• station is in a sending or receiving mode (never
both)•• each hub has at least one uplink port and
several downlink ports•• hubs can be cascaded 3 levels deep; level 1 hub
controls the priority domain and polls its
connected hubs•• station signals send-request to the hub•• if network is idle, station gets sending
permission immediately; station sends packet to
the hub

Ethernet Evolution v4.1

100VG-AnyLAN Operation2• on receiving more than one request: hub
schedules sending permissions using a round
robin method which can be controlled by priority
tags (packet switching task)• to ensure fairness, a hub does not grant priority
access to a port more than twice in a row• 5B/6B block code• various cabling types
- 4 wire pairs of Cat 3 UTP (100m)
- 2 wire pairs Cat 4 or Cat 5 UTP (150m)
- STP cable
- Fibre Optic

- Fibre Opti

© 2011 D I Manfred Lindner

© 2011, D.I. Manfred Lindner

© 2011, D.I. Manfred Lindner

Ethernet Evo

Page 23 - 51

L23 - The Ethernet Evolution

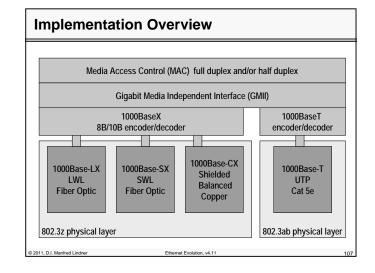
Agenda

- Ethernet Evolution
- VLAN

2011 D I Manfred Lindner

- High Speed Ethernet
 - Introduction
 - Fast Ethernet
 - Gigabit Ethernet
 - 10 Gigabit Ethernet

Gigabit-Ethernet: IEEE-802.3z / IEEE802.3ab


Ethernet Evolution v4 11

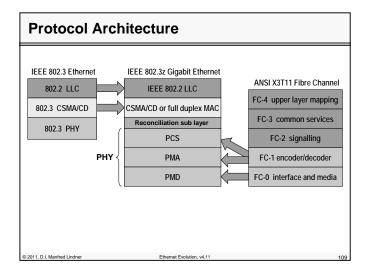
- Easy integration in existing 802.3 LAN configurations because backwards compatible
 - Through integration of 3 different transceivers for 10, 100 and 1000 Mbit/s
 - No need to change existing equipment
 - Supports also 10 Mbit/s and 100 Mbit/s (not with fibre)
 - Access methods: CSMA/CD or full duplex
- Backbone technology; has also WAN capabilities
 - Reaches 70 km length using fibre optics
 - 1 Gbit/s data rate in both directions (full duplex mode, no collisions)

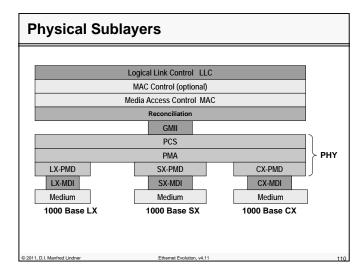
- MAC based congestion avoidance (pause frame)

© 2011, D.I. Manfred Lindner

L23 - The Ethernet Evolution

1000BaseX

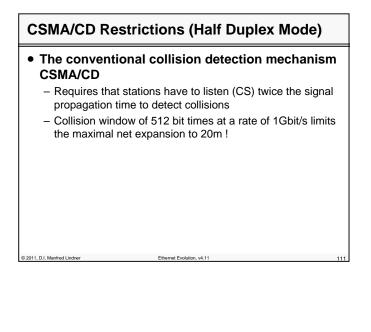

© 2011, D.I. Manfred Lindner

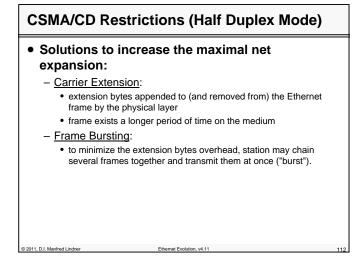

- Looks like 802.3 Ethernet from the data link layer upward
- Physical layer consists of well-tried high-speed components of the Fibre Channel implementation
- Coding is similar to Fibre Channel 8B/10B (FC1 layer) but at higher signal rate of 1.25 Gbaud
- Reconciliation layer translates between the link layer and the physical layer

© 2011, D.I. Manfred Lindner

Ethernet Evolution, v4.:

L23 - The Ethernet Evolution





© 2011, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L23 - The Ethernet Evolution

© 2011, D.I. Manfred Lindner

Page 23 - 55

L23 - The Ethernet Evolution

1

2

Frame Bursting

• With both methods the minimal frame length is increased from 512 to 4096 bits

- = 512 bytes

- The corresponding time is called slottime
- If a station decides to chain several frames to a burst frame, the first frame inside the burst frame must have a length of at least 512 bytes
 - By using extension bytes if necessary
- The next frames (inside the burst frame) can have normal length (i.e. at least 64 bytes)

Ethernet Evolution v4 11

Frame Bursting

2011 D I Manfred Lindner

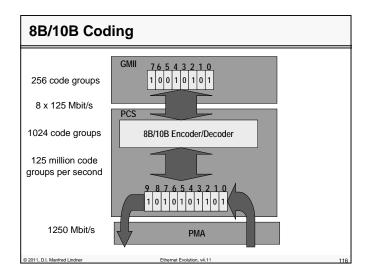
- Station may chain frames up to 8192 bytes (=burst limit)
 - Also may finish the transmission of the last frame even beyond the burst limit
- So the whole burst frame length must not exceed 8192+1518 bytes
 - Incl. interframe gap of 0.096 µs = 12 bytes

802.3 frame + byte ext	if-gap	802.3 frame	if-gap		802.3 frame
+	b	ourst limit——			
•	w	hole burst fra	me lenç	gth	
I Manford Lindow		Ethomat Fundation and	44		

L23 - The Ethernet Evolution

1000BaseX Coding

• 8B/10B block encoding: each 8-bit group encoded by a 10 bit "code-group" (symbol)


- Half of the code-group space is used for data transfer
- Some code groups are used for signaling purposes
- Remaining code groups are violation symbols
 - -> easy error detection

© 2011 D I Manfred Lindner

- Groups determine the maximal number of transmitted zeros or ones in a 10 bit symbol
 - -> easy clock signal detection (bit synchronization)
- No baselinewander (DC balanced)
- lacking DC balance would result in data-dependent heating of lasers which increases the error rate

Ethernet Evolution v4.11

- Code efficiency: 8/10 = 1000/1250 = 80%

© 2011, D.I. Manfred Lindner

Page 23 - 57

© 2011, D.I. Manfred Lindner

8B/10B Coding

- Each GMII 8 bit group (data) can be represented by an associated pair of 10 bit code groups
 - Each pair has exactly 10 ones and 10 zeros in sum
- Sender toggles Running Disparity flag (RD) to remember which code group to be sent for the next data-octet
- Hence, only non-symmetric code groups need a compensating code group
 - symmetric code groups already have equal number of ones and zeros

Ethernet Evolution v4 11

8B/10B Coding

2011 D I Manfred Lindner

2011, D.I. Manfred Lindner

- Code groups which are not registered in the code-table are considered as code-violation
 - these code groups are selected to enable detection of line errors with high probability
- 256 data and 12 control code-group-pairs are defined
- Control-code-groups are used independently or in combination with data-code-groups

L23 - The Ethernet Evolution

Ordered Sets • Control-code-groups are classified by "ordered sets" after their usage: - Configuration C for autonegotiation - Idle I used between packets - Incapsulation: R for separating burst frames S as start of packet delimiter T as end of packet delimiter V for error propagation

Implementations

- Actually 2 different wavelengths on fibre media, both full duplex, SC connector
 - 1000Base-SX: short wave, 850 nm multimode (up to 550 m length)
 - 1000Base-LX: long wave, 1300 nm multimode or monomode (up to 5 km length)
- 1000Base-CX:

© 2011, D.I. Manfred Lindner

- Twinax Cable (high quality 150 Ohm balanced shielded copper cable)
- About 25 m distance limit, DB-9 or the newer HSSDC connector

Ethernet Evol

© 2011, D.I. Manfred Lindner

Ethernet Evo

Page 23 - 59

© 2011, D.I. Manfred Lindner

1000BaseT

• 1000Base-T defined by 802.3ab task force

- UTP uses all 4 line pairs simultaneously for duplex transmission!
 - Using echo-cancelling: receiver subtracts own signal
- 5 level PAM coding
 - 4 levels encode 2 bits + extra level used for Forward Error Correction (FEC)
- Signal rate: 4 x 125 Mbaud = 4 x 250Mbit/s data rate
 - Cat. 5 links, max 100 m; all 4pairs, cable must conform to the requirements of ANSI/TIA/EIA-568-A
- Only 1 CSMA/CD repeater allowed in a collision domain

Ethernet Evolution v4 11

note: collision domains should be avoided

Autonegotiation

2011 D I Manfred Lindner

2011, D.I. Manfred Lindner

- Both 1000Base-X and 1000Base-T provide autonegotiation functions to determinate the
 - Access mode (full duplex half duplex)
 - Flow control mode
- Additionally 1000Base-T can resolve the data rate
 - Backward-compatibility with 10 Mbit/s and 100 Mbit/s
 - Also using FLP-burst sessions

L23 - The Ethernet Evolution

1000BaseX Autonegotiation

- 1000Base-X autonegotiation uses normal (1000Base-X) signalling !
 - "Ordered sets" of the 8B/10B code groups
 - No fast link pulses !
 - Autonegotiation had never been specified for traditional fiberbased Ethernet

Ethernet Evolution v4.1

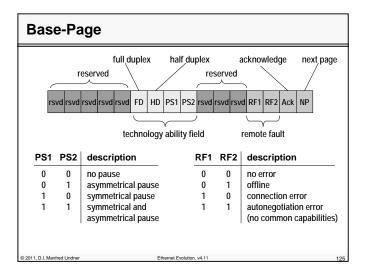
- So there is no need for backwards-compatibility
- 1000Base-X does not negotiate the data rate !
 - Only gigabit speeds possible
- 1000Base-X autonegotiation resolves
 - Half-duplex versus full-duplex operation
 - Flow control

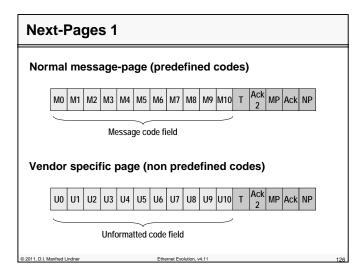
© 2011 D I Manfred Lindner

© 2011, D.I. Manfred Lindner

1000BaseX Autonegotiation

- Autonegotiation is part of the Physical Coding sublayer (PCS)
- Content of base-page register is transmitted via ordered set /C/
- On receiving the same packet three times in a row the stations replies with the Ack -bit set
- Next-pages can be announced via the next-page bit NP

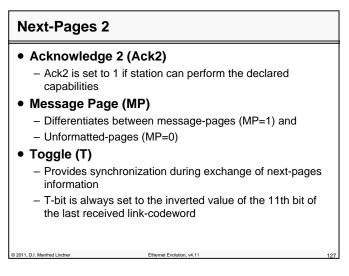

© 2011, D.I. Manfred Lindner

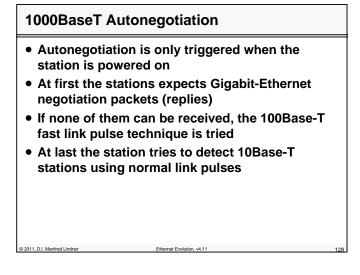

Ethernet Evo

© 2011, D.I. Manfred Lindner

Ethernet Evo

L23 - The Ethernet Evolution





© 2011, D.I. Manfred Lindner

Page 23 - 63

L23 - The Ethernet Evolution

© 2011, D.I. Manfred Lindner

L23 - The Ethernet Evolution

Agenda

- Ethernet Evolution
- VLAN

2011 D I Manfred Lindner

2011, D.I. Manfred Lindner

- High Speed Ethernet
 - Introduction
 - Fast Ethernet
 - Gigabit Ethernet
 - 10 Gigabit Ethernet

10 Gigabit Ethernet (IEEE 802.3ae)

- Preserves Ethernet framing
- Maintains the minimum and maximum frame size of the 802.3 standard

Ethernet Evolution v4 11

- Supports only full-duplex operation
 - CSMA/CD protocol was dropped
- Focus on defining the physical layer
 - Four new optical interfaces (PMD)
 - · To operate at various distances on both single-mode and multimode fibers
 - Two families of physical layer specifications (PHY) for LAN and WAN support
 - Properties of the PHY defined in corresponding PCS Ethernet Evolution v4
 - Encoding and decoding functions

L23 - The Ethernet Evolution

PMDs

- 10GBASE-L
 - SM-fiber, 1300nm band, maximum distance 10km
- 10GBASE-E
 - SM-fiber, 1550nm band, maximum distance 40km
- 10GBASE-S
 - MM-fiber, 850nm band, maximum distance 26 82m
 - With laser-optimized MM up to 300m
- 10GBASE-LX4
 - For SM- and MM-fiber, 1300nm
- Array of four lasers each transmitting 3,125 Gbit/s and four receivers arranged in WDM (Wavelength-Division Multiplexing) fashion

Ethernet Evolution v4.11

- Maximum distance 300m for legacy FDDI-grade MM-fiber
- Maximum distance 10km for SM-fiber

WAN PHY / LAN PHY and their PCS

• LAN-PHY

© 2011 D I Manfred Lindner

- 10GBASE-X
- 10GBASE-R
- 64B/66B coding running at 10,3125 Gbit/s
- WAN-PHY

© 2011, D.I. Manfred Lindner

- 10GBASE-W
 - 64B/66B encoded payload into SONET concatenated STS192c frame running at 9,953 Gbit/s
 - · Adaptation of 10Gbit/s to run over traditional SDH links

© 2011, D.I. Manfred Lindner

© 2011, D.I. Manfred Lindner

Ethernet Evolution, v4.1

L23 - The Ethernet Evolution

IEE	E 8	02.3ae P	MDs, PH	Ys, PCSs	6	
				PCS		
		10GBASE-E	10GBASE-ER	10GBASE-EW		
		10GBASE-L	10GBASE-LR		10GBASE-LW	
	PMD	10GBASE-S	10GBASE-SR		10GBASE-SW	
		10GBASE-L4		10GBASE-LX4		
			LAN	РНҮ	WAN PHY	
© 2011, D.I. N	lanfred Line	dner	Ethernet Evoluti	on, v4.11		

10 Gigabit Ethernet over Copper

• IEEE 802.3ak defined in 2004

- 10GBASE-CX4
- Four pairs of twin-axial copper wiring with IBX4 connector
- Maximum distance of 15m

• IEEE 802.3an working group

- 10GBASE-T
- CAT6 UTP cabling with maximum distance of 55m to 100m
- CAT7 cabling with maximum distance of 100m
- Standard ratification expected in July 2006

© 2011, D.I. Manfred Lindner

Ethernet Evolution, v4.11

© 2011, D.I. Manfred Lindner