L11 - ISDN

ISDN

Integrated Services Digital Network

Agenda

2007, D.I. Manfred Lindner

- ISDN Introduction
- ISDN Terminology
- ISDN Physical Layer (I.430, BRI)
- ISDN Physical Layer (I.431, PRI)
- ISDN Data Link Layer (Q.921)
- ISDN Network Layer (Q.931)
- ISDN Telco Aspects

L11 - ISDN

Overview

- Integrated Services Digital Network (ISDN)
- based on digital telephone network
 - all-digital interface at subscriber outlet
 - able to handle data communications directly
- dial-up digital end-to-end connections
- offers transport of voice, video and data
- standardized user-to-network interface
- implementation of a circuit switching network

ISDN v4

– synchronous TDM

© 2007 D I Manfred Lindner

© 2007, D.I. Manfred Lindner

- constant delay and constant capacity

Some ISDN Facts

- First major user-visible upgrade to the worldwide public switched telephone network

 new features seen on the phone
- Technology of the '80s
 - Concept dates back to early '70s
- First real specification in mid '80s
 - Real deployment in the mid '90s
- 64 kbps channel is the fundamental building block
 - to carry digital PCM voice
- Narrowband (N-) ISDN versus Broadband (B)-ISDN (ATM)

© 2007, D.I. Manfred Lindner

Page 11 - 1

© 2007, D.I. Manfred Lindner

ISDN Services

• three types defined by ITU-T

- bearer services

· transport of information in real time

circuit mode

- 64 kbps, <u>unrestricted</u>, 8 kHz structured (transparent data)
 » without any alteration of bits and no restriction on the bit pattern
- 64 kbps, 8 kHz structured, usable for speech information transfer
 » bit integrity not guaranteed, processing techniques to achieve high quality reproduction of transmitted voice signal
- 64 kbps, 8 kHz structured, usable for 3.1 kHz audio transfer
- 2 x 64 kbps, unrestricted, 8 kHz structured
- 384 kbps, unrestricted, 8 kHz structured
- 1536 kbps, unrestricted, 8 kHz structured
- 1920 kbps, unrestricted, 8 kHz structured

packet mode

virtual call circuit, permanent virtual circuit, user signaling
 ISDN v47

ISDN Services

2007 D I Manfred Lindner

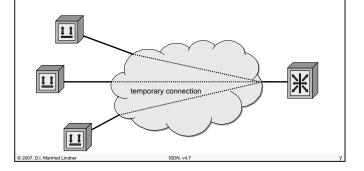
• three types defined by ITU-T (cont.)

teleservices

- combine transportation function with information-processing function
- e.g. telephony, teletex, telefax, videotex, telex, teleconference, video telephony

supplementary services

- can be used to enhance bearer- or teleservices
 - reverse charging
 - closed user group (VPN)
 - line hunting
 - call forwarding, threeparty service
 - calling-line-identification
 - multiple subscriber number (MSN)
- subaddressing
- etc.


ISDN v47

Institute of Computer Technology - Vienna University of Technology

L11 - ISDN

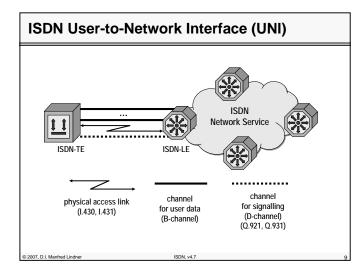
Dial-up Connection

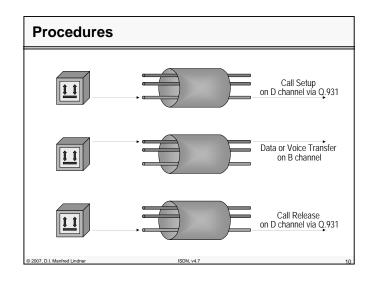
- · needs connection establishment
- during connection time, a transparent channel with full nominal bandwidth is available

User-to-Network Interface

basic building blocks are

- digital voice channels
 - 64 kbps, derived from PCM voice coding
 - 8000 samples per second, digitized with 8 bits
- B-channel
- signaling channel
 - out-band signaling
 - used to set up a connection
- D-channel

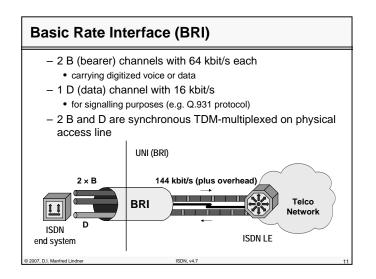

© 2007, D.I. Manfred Lindner

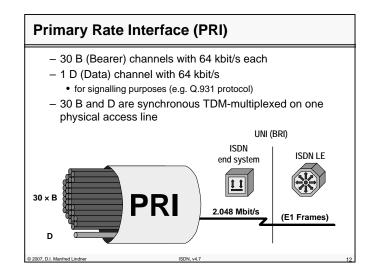

two types interfaces

- basic rate interface (BRI)
- primary rate interface (PRI)

© 2007, D.I. Manfred Lindner

ISDN v4





© 2007, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L11 - ISDN

© 2007, D.I. Manfred Lindner

Page 11 - 5

Agenda

© 2007 D I Manfred Lindner

- ISDN Introduction
- ISDN Terminology
- ISDN Physical Layer (I.430, BRI)
- ISDN Physical Layer (I.431, PRI)
- ISDN Data Link Layer (Q.921)
- ISDN Network Layer (Q.931)
- ISDN Telco Aspects

ISDN Terminology

- ISDN standards define
 - reference configuration to characterize ISDN interfaces

ISDN v47

• reference configuration consists of

- functional groupings
 - are a set of capabilities needed in an ISDN user-access interface
 - specific functions may be performed by multiple pieces of hardware or software equipment
 - examples: TE, TA, NT
- reference points

2007, D.I. Manfred Lindner

- divide functional groupings
- corresponds to a physical interface between pieces of ISDN equipment

ISDN v4

• examples: R, S, T, U

Institute of Computer Technology - Vienna University of Technology

L11 - ISDN

Terminal Equipment (TE)

• TE1

- native ISDN terminal
 - connects to ISDN using a 2 pair twisted pair cable
- used time division multiplexing to provide three channels

ISDN v47

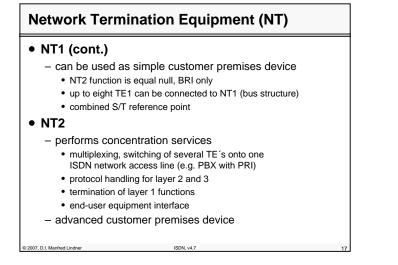
- two bearer channels (2B) and one data channel (D)
- B channels can be used independently
- D channel carries control and signaling information
- supports user data transmission in certain cases
- layer 1 7 protocol handling

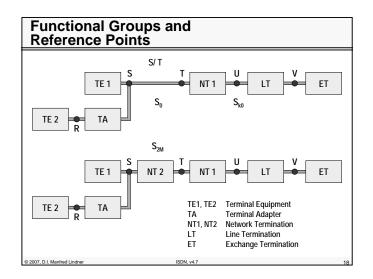
• TE2

© 2007 D I Manfred Lindner

- non-native ISDN terminal
- connects to ISDN via a terminal adapter (TA)

Network Termination Equipment (NT)


network termination (NT)


 TA and TE1 devices are connected to either an NT1 or an NT2 device

• NT1

© 2007, D.I. Manfred Lindne

- is responsible for physical layer functions such as
 - terminates transmission line from the ISDN local exchange to the customers premises
- signal conversion (4 wire subscriber interface to the conventional 2 wire local loop) and interface termination
- transmission signaling and timing (bit-synchronization)
- possible multiplexing of B and D channels at layer level 1
- possible provision for power to TE's
- ISDN "modem"

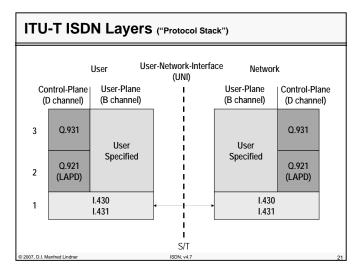
L11 - ISDN

ISDN Channels

- basic channels requested by TE – one or two B channels, 64 or 128 kbps
- special channels for applications requiring higher speed called H channels

ISDN v4

- only available on primary rate interface
- H0 channel
 - 6 B channels, 384 kbps
- H11 channel
- 24 B channels, 1536 kbps
- H12 channel


© 2007, D.I. Manfred Lindner

– 30 B channels, 1920 kbps

ITU-T ISDN Standards Overview

- I.100 Series
- General Structure
- I.200 Series
 - Service Capabilities
- 1.300 Series
 - Overall Network Aspects and Functions
- I.400 Series
 - User-Network Interfaces
- I.500
 - Internetworking Interfaces
- I.600
- Maintenance Principles

© 2007, D.I. Manfred Lindner

ITU-T ISDN Standards

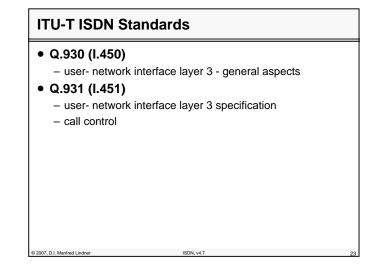
I.430

basic user-network interface layer 1 specification
 BRI Basic Rate Interface

• I.431

primary rate user-network interface layer 1 specification
Primary Rate Interface

• Q.920 (I.440)


- user-network interface data link layer - general aspects

• Q.921 (I.441)

- user-network interface data link layer specification
- LAPD

© 2007, D.I. Manfred Lindner

L11 - ISDN

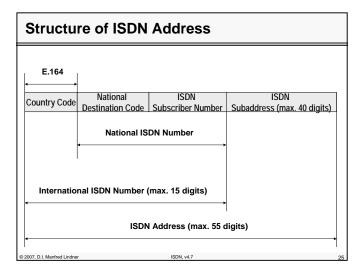
ISDN Addressing

• ISDN Number

- contains sufficient information for the network to route a call
- typically corresponds to the subscriber attachment point (reference point T)
- T can have multiple ISDN numbers

• ISDN Address

© 2007, D.I. Manfred Lindner

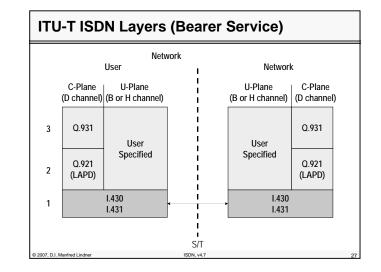

- may needed at the subscriber site to distribute a call to the appropriate party
- typically corresponds to an individual terminal TE (reference point S)
- ISDN Subaddress

© 2007, D.I. Manfred Lindner

ISDN v4

© 2007, D.I. Manfred Lindner

ISDN v4



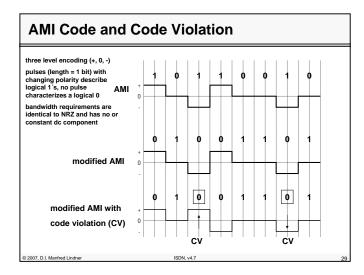
Agenda

© 2007, D.I. Manfred Lindner

- ISDN Introduction
- ISDN Terminology
- ISDN Physical Layer (I.430, BRI)
- ISDN Physical Layer (I.431, PRI)
- ISDN Data Link Layer (Q.921)
- ISDN Network Layer (Q.931)
- ISDN Telco Aspects

L11 - ISDN

BRI (I.430)	
• basic rate inte	erface (S ₀ /T interface)
 four wires with 	terminating resistor (100 ohm)
 RJ45 connect 	or with 8 leads
	Preceive with power source 1 via phantom circuit wer feeds for power source 2 and 3
	code (zero causes alternate pulses) gative pulse of 750mV + -10%
 bitstuffing pre 	vent long sequences of ones on D-channel
 – frame synchro 	nization based on code violations
- frame of 48 bi	t is transmitted in a period of 250 usec
 – 192 kbps total 	speed
 2 B channels 	at 64 kbps, 1 D channel at 16 kbps
 48 kbps for fr 	raming, DC balancing and D-channel mirroring
2007, D.I. Manfred Lindner	ISDN, v4.7


© 2007, D.I. Manfred Lindner

ISDN, v4.7

Page 11 - 13

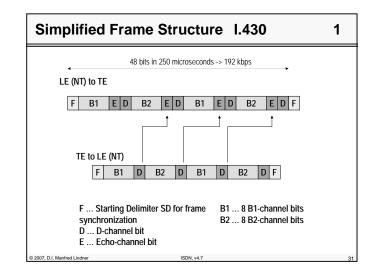
© 2007, D.I. Manfred Lindner

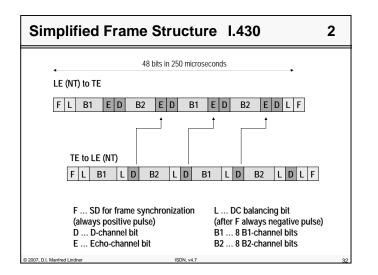
L11 - ISDN

BRI (1.430)

basic rate interface (cont.)

- allows either a point-to-point or multipoint configuration
- point-to-point
- maximum distance between TE and NT is 1000 meters
- for multipoint, physical connection is a passive bus
 - up to eight TE's can share a bus
 - maximum distance between TE and NT is 200 meters (short bus) or 500 meters (extended bus)

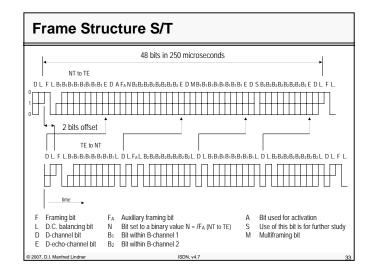

- multipoint operation


- · B channels are dynamically assigned to TE's for exclusive usage only
- D channel must be shared by all TE's in order to request usage of a B channel
- · contention mode on D channel

© 2007, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

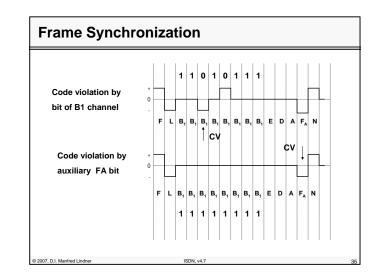
L11 - ISDN

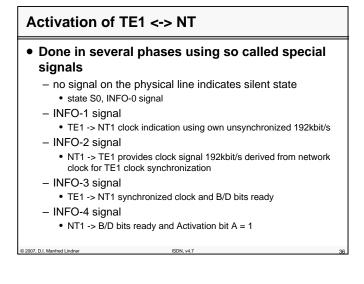

© 2007. D.I. Manfred Lindner

ISDN v47

Page 11 - 15

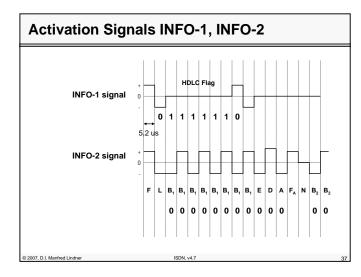
© 2007. D.I. Manfred Lindner


L11 - ISDN



Frame Synchronization, DC Balancing

- F (+) followed by L(-) marks start of frame
- to detect F in the bit stream code violations are used - normally alternate pulses (+, -) used for zeros
- general rule:
 - first zero to be transmitted after F/L violates coding
- in case of all ones in B channels FA performs code violation
 - auxiliary framing bit
 - FA always set to 0; N = inverse FA = 1
- L bits are used to guarantee DC balance
 - from NT to TE only one L bit is necessary
 - from TE to NT every part of the frame (B1, B2 and D) is balanced by individual L bits
- reason: every part of the frame (B1, B2, D) may be sent by a different TE hence every TE must balance its own part
 2002 DI Medici Indow


L11 - ISDN

© 2007, D.I. Manfred Lindner

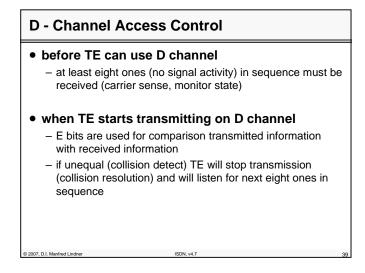
Page 11 - 17

D - Channel Access Control

• D - channel

- must be shared by different TEs in a multipoint configuration
- control of access to D channel is necessary

• control is done via E - bits


- TEs use D bits for transmission to NT
- E contains echo (sent by NT) of D bit received by NT
- note:

2007 D I Manfred Lindne

- encoding gives transmitted zeros higher priority than ones (zeros produce signal changes (pulses) but ones do not)
- if TEs send at the same time on D channel, only TE with the most zeros transmitted will see its message on E again

Institute of Computer Technology - Vienna University of Technology

L11 - ISDN

D - Channel Access Control

once the D channel was successfully occupied

- bitstuffing will prevent sequence of eight ones for the rest of the message and TE can finish its transmission without disturbance
- to give other TEs fair chance to access the D channel
 - TE must release D channel after message was sent
- TE waits then for a sequence of nine ones before access is tried again
- this allows other waiting TEs access to the D channel
 - round-robin among all TEs in worst case

© 2007, D.I. Manfred Lindner

© 2007, D.I. Manfred Lindner

Page 11 - 19

© 2007, D.I. Manfred Lindner

L11 - ISDN

Bit Stuffing on D-channel						
	Flag as SD	D channel content to be sent	Flag as ED	11111111		
Idle	01111110	LAPD frame	01111110) Idle		
011111	10 1110011	0001111100111110101	0111101 0	1111110		
Flag Flag bit stuffing (zero bit insertion by sender zero bit deletion by receiver)						
© 2007, D.I. Manfred Lindner ISDN, v4.7						

Terminal Endpoint Identifier

• D - channel

© 2007, D.I. Manfred Lindner

- will be shared by different TEs in a multipoint configuration
 identification of TEs is necessary
- each terminal equipment TE must have a unique identifier
 - called terminal end point identifier (TEI)
 - on outgoing frames, the TEI identifies the source terminal
 - on incoming frames, network uses the TEI to address the receiving terminal
 - TEI assignment is part of layer 2 procedures

Institute of Computer Technology - Vienna University of Technology

L11 - ISDN

ISDN v4

Agenda

- ISDN Introduction
- ISDN Terminology
- ISDN Physical Layer (I.430, BRI)
- ISDN Physical Layer (I.431, PRI)
- ISDN Data Link Layer (Q.921)
- ISDN Network Layer (Q.931)
- ISDN Telco Aspects

PRI (I.431)

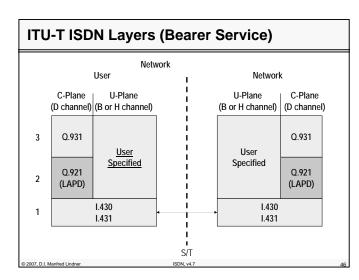
© 2007, D.I. Manfred Lindne

© 2007, D.I. Manfred Lindner

• primary rate interface

- allows point-to-point configuration only
- based on E1 or T1 specifications
- E1 (HDB3 encoding)
- 2.048 Mbps total speed
- timeslot 0 used for synchronization
- timeslot 16 used for D channel information
- timeslots 1-15 and 17-31 for 30 B-channels
- T1 (B8ZS encoding, ESF format)
 - 1.544 Mbps total speed
 - timeslot 24 used for D channel information
 - timeslots 1-23 for 23 B-channels

© 2007, D.I. Manfred Lindner


ISDN v4

Page 11 - 21

Agenda

© 2007 D I Manfred Lindner

- ISDN Introduction
- ISDN Terminology
- ISDN Physical Layer (I.430, BRI)
- ISDN Physical Layer (I.431, PRI)
- ISDN Data Link Layer (Q.921)
- ISDN Network Layer (Q.931)
- ISDN Telco Aspects

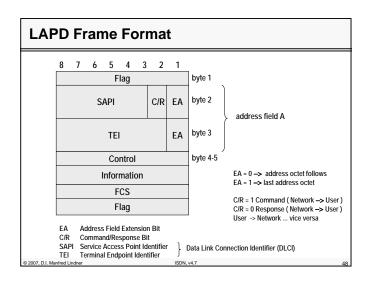
ISDN v47

© 2007, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L11 - ISDN

ISDN Data Link Layer


- only used on the D channel
- uses LAPD

© 2007, D.I. Manfred Lindner

- Link Access Procedure D-Channel
- based on HDLC ABM mode
- 2 byte address field
- may use extended sequence numbering (0-127)
- ISDN level 3 signaling
 - travels in the information field of the LAPD I-frame
- LAPD may also be used to support user traffic
 - D channel is not fully utilized by signaling messages

ISDN v47

- e.g. X.25 over D-channel

© 2007, D.I. Manfred Lindner

Page 11 - 23

SAPI and TEI

SAPI - Service Access Point Identifier

 identifies the entity where data link layer services are provided to the layer above

- examples

- 0 signaling information (s-type)
- 16 packet data (p-type)
- 63 management information

• TEI - Terminal Endpoint Identifier

- identifies an endpoint within a service access point

ISDN v4.7

- possible values

• 0 - 127

© 2007, D.I. Manfred Lindner

Frame Types (Control Field)

- information transfer frames (I frames)
- supervisory frames (S frames)
 - RR (Receive Ready)
 - RNR (Receive Not Ready)
 - REJ (Reject)

unnumbered frames (U frames)

- SABME (Set Asynchronous Balanced Mode Extended)
- DM (Disconnected Mode)
- UI (Unnumbered Information)
- DISC (Disconnect)
- UA (Unnumbered Acknowledgment)
- FRMR (Frame Reject)

© 2007, D.I. Manfred Lindner

© 2007, D.I. Manfred Lindner

ISDN v4

Page 11 - 25

Institute of Computer Technology - Vienna University of Technology

L11 - ISDN

TEI Management

• before a LAPD connection can be established

 – either a TEI value is assigned automatically between TE and network

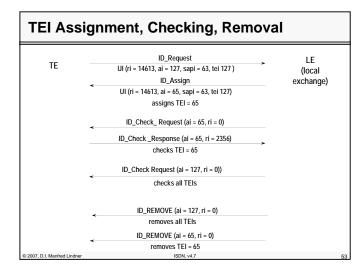
ISDN v47

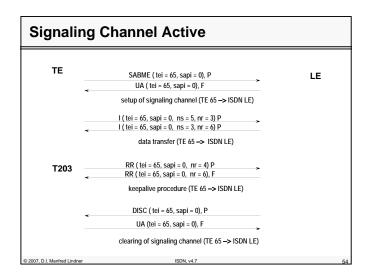
- TEI value range 64-126
- TEI assignment procedure
- or a preconfigured value may be used
- TEI value range 0-63
- TEI verification procedure for checking duplicates
- TEI = 127
 - broadcasting, means all
- on PRI

© 2007, D.I. Manfred Lindner

TEI always 0

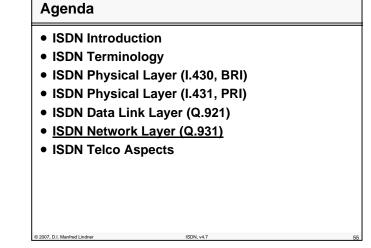
TEI Management Messages


- always UI frames with SAPI = 63 and TEI 127
- information field of UI contains
 - reference indicator (RI)
 - correlation of request and responses
 - action indicator (AI)
 - contains TEI number to be requested, assigned or checked
 - AI = 127 asks for assignment of any TEI or checks all TEs
 - message type


© 2007, D.I. Manfred Lindner

- user to network (TE to NT)
 - ID_Request, ID_Check Response, ID_Verify
- network to user (NT to TE)
- ID_Assigned, ID_Denied, ID_Check Request (ri always 0), ID_Remove (ri always 0)

ISDN v4


L11 - ISDN

© 2007, D.I. Manfred Lindner Page 11 - 28

	Netwo	k		
	User	I.	Networl	k
C-Plan (D chanr	e U-Plane nel) (B or H channel)	I I (B	U-Plane or H channel)	C-Plane (D channel)
3 Q.931	User		User	Q.931
Q.921 (LAPD			Specified	Q.921 (LAPD)
1	I.430 I.431		I.430 I.431	

Institute of Computer Technology - Vienna University of Technology

L11 - ISDN

ISDN Network Layer

- not used on B channels
- Q.931 is used on D channels for call control
 - used between TE and local ISDN switch
 - not used end-to-end
- Signaling System 7 (SS#7) is used inside the network
- several flavors exist on the market

- be careful to select the correct version of the protocol

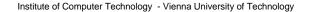
ISDN v4.7

ISDN Switch Types

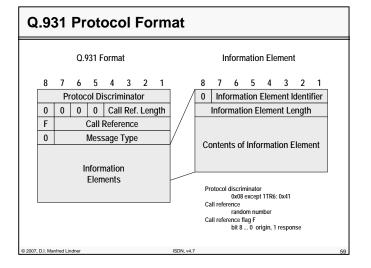
• PRI

© 2007, D.I. Manfred Lindner

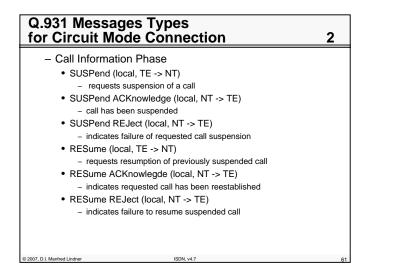
- 4ESS, 5ESS, DMS-100 (USA)
- primary-net5 (Euro ISDN)
- NTT (Japan)
- TS014


• BRI

© 2007, D.I. Manfred Lindner

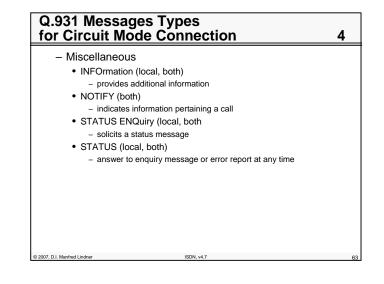

- 5ESS, DMS-100, NT1 (USA)
- NTT (Japan)
- basic 1TR6 (Germany)
- VN2, VN3 (France)
- basic-net3 (Euro ISDN)
- TS013 (Australia)

© 2007. D.I. Manfred Lindner

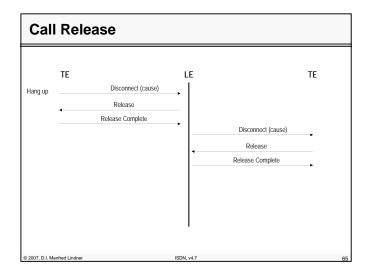

ISDN v4



L11 - ISDN


Q.931 Mess for Circuit M	ages Types Iode Connection 1	
- Call Establ	shment Phase	
SETUP (g	lobal, both: NT or TE)	
- initiate	s call establishment	
SETUP A	CKnowledge (local, both)	
	tes that call establishment has been started but requests mor ation (e.g. dial numbers)	e
ALERTing	g (global, both)	
- indicat	tes that user alerting has begun	
CALL PR	OCeeding (local, both)	
 indicat 	es that call establishment has been initiated	
 CONNect 	(global, both)	
 indicat 	es call acceptance by called TE	
 CONNect 	ACKnowledge (local, both)	
- indicat	tes that user has been awarded the call	
 PROGres 	s (global, both)	
 report 	s progress of a call	
© 2007, D.I. Manfred Lindner	ISDN, v4.7	60

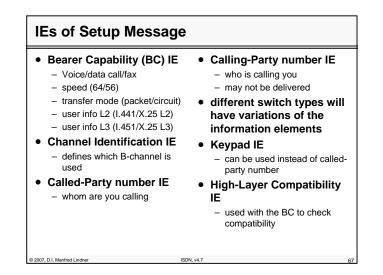
Institute of Computer Technology - Vienna University of Technology


L11 - ISDN

	S	S7	
Local TE	Local LE	Remote	Remote TE
Setup			
 Setup ACK 			
Info	•		Setup
Call Proceeding			•
			Alerting
Alerting			
		-	Connect
Connect			Connect Ack
Connect Ack			•

© 2007, D.I. Manfred Lindner

L11 - ISDN



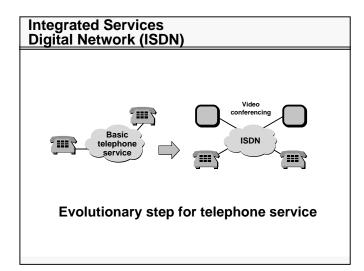
- 0x04	Bearer Capability
- 0x08	Cause (reason codes for call disconnect)
- 0x18	Channel Identification
– 0x1E	Progress Indicator
– 0x6C	Calling Party Number
- 0x6D	Calling Party Subaddress
- 0x70	Called Party Number
- 0x71	Called Party Subaddress
- 0x7C	Low-Layer Compatibility
– 0x7D	High-Layer Compatibility
2007. D.I. Manfred Lindner	ISDN. v4.7

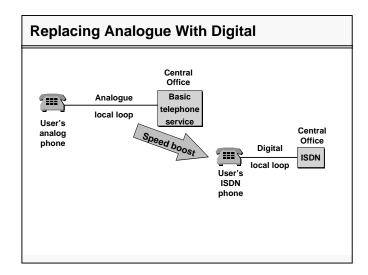
© 2007, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L11 - ISDN

A	g	е	n	d	а

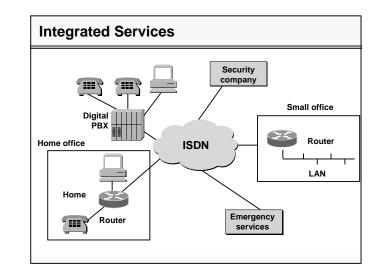

© 2007, D.I. Manfred Lindner

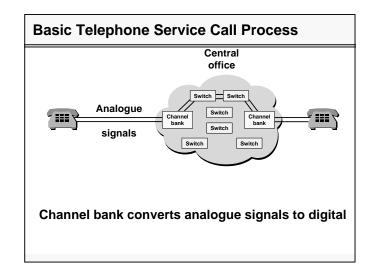

- ISDN Introduction
- ISDN Terminology
- ISDN Physical Layer (I.430, BRI)
- ISDN Physical Layer (I.431, PRI)
- ISDN Data Link Layer (Q.921)
- ISDN Network Layer (Q.931)
- ISDN Telco Aspects

© 2007, D.I. Manfred Lindner

Page 11 - 33

L11 - ISDN

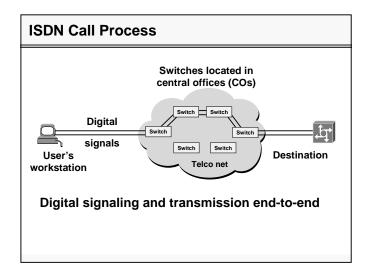


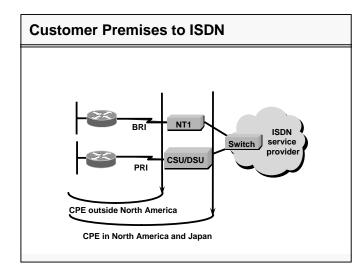


© 2007, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L11 - ISDN

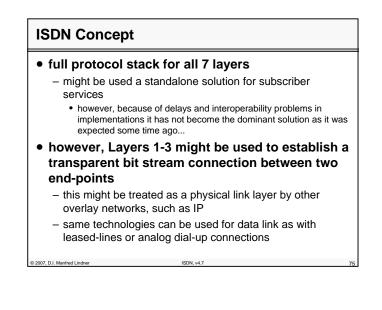


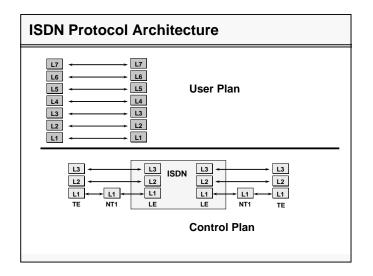


© 2007, D.I. Manfred Lindner

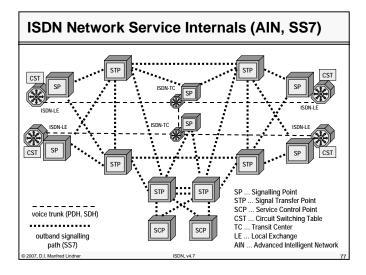
Page 11 - 35

L11 - ISDN




© 2007, D.I. Manfred Lindner

Page 11 - 37


Institute of Computer Technology - Vienna University of Technology

L11 - ISDN

L11 - ISDN

© 2007, D.I. Manfred Lindner