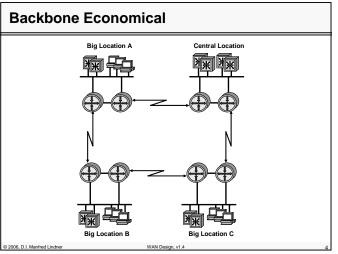
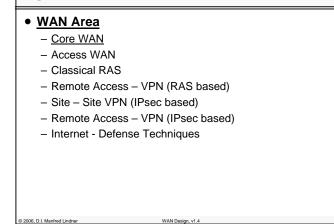
L103 - WAN Design

WAN Backbone, Floating Static Routes, Dial-On-Demand


Network Design WAN

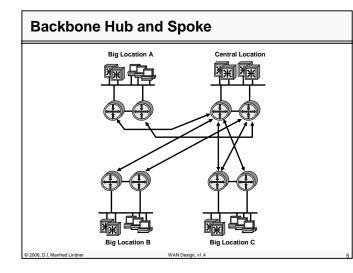
IPsec-VPN, Internet Defense

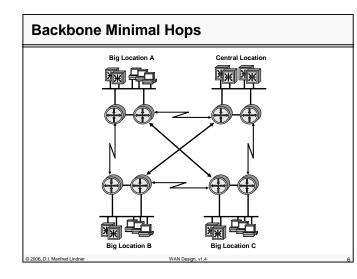

RAS, VPDN Techniques (L2TP, PPTP, L2F)

L103 - WAN Design

WAN Backbone Scenarios Big Location A **Central Location** Dial-on-Demand WAN Backbone **Big Location C** Small Location 2006 D L Manfred Lindr WAN Design v1.4

© 2006, D.I. Manfred Lindner

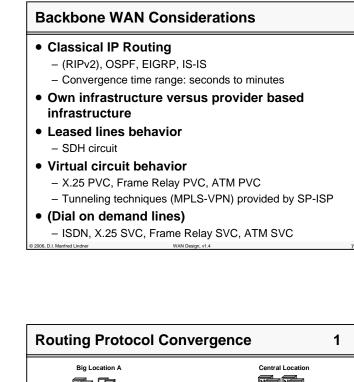


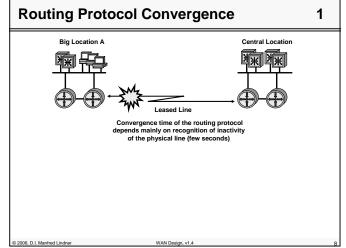

Agenda

© 2006. D.I. Manfred Lindner

Page 103 - 1

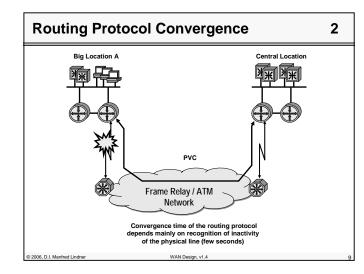
L103 - WAN Design

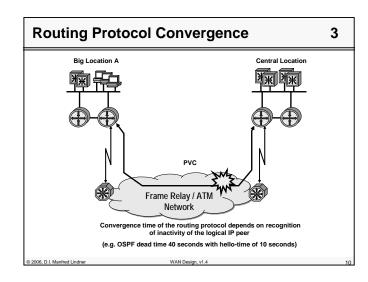




© 2006, D.I. Manfred Lindner

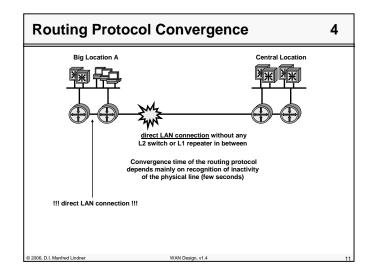
Page 103 - 3

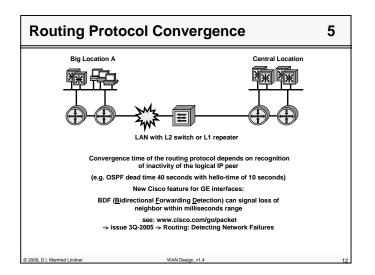

L103 - WAN Design



© 2006, D.I. Manfred Lindner

L103 - WAN Design




© 2006, D.I. Manfred Lindner

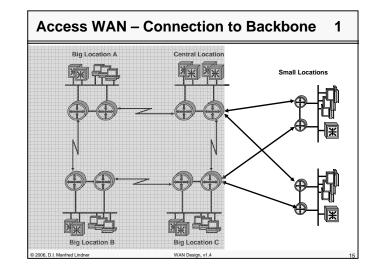
Page 103 - 5

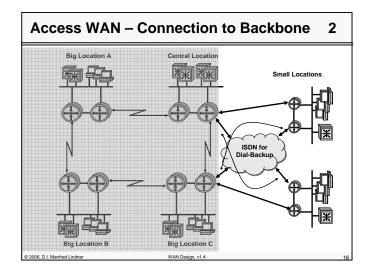
Institute of Computer Technology - Vienna University of Technology

L103 - WAN Design

© 2006, D.I. Manfred Lindner

L103 - WAN Design


Agenda		
WAN Area		
– Core WAN		
- Access WAN		
 Classical RAS 		
- Remote Access -	VPN (RAS based)	
 Site – Site VPN (IF 	Psec based)	
- Remote Access -	VPN (IPsec based)	
 Internet - Defense 	Techniques	
1006. D.I. Manfred Lindner	WAN Desian. v1.4	13


Access WAN	Scenarios	
Big Location A	Central Location	Internet
図 第 年 2		
Ð		DMZ Dial-on-Demand Home Offices
P	AN Backbone	AN Access
Big Location B © 2006, D.I. Manfred Lindner	Big Location C WAN Design, v1.4	Small Location

© 2006, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L103 - WAN Design

© 2006, D.I. Manfred Lindner Page 103 - 8

L103 - WAN Design

Access WAN Considerations

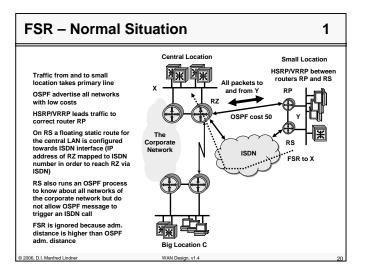
- Classical IP Routing
 - (RIPv2), OSPF, EIGRP, IS-IS
 - Convergence time range: seconds to minutes
 - Floating static routes activated by "trigger-traffic" in case of primary line failure
- Primary Lines
 - Leased lines (SDH circuit)
 - PVC (X.25, Frame Relay, ATM)
 - Tunneling techniques (GRE, MPLS-VPN) provided by SP-ISP or normal ISP
- Secondary Lines
 - Dial on demand lines (ISDN, PPP)
 - Tunneling techniques (PPTP, L2TP)
 - "Dial Backup" or as "Bandwidth-on-Demand" to provide additional bandwidth during peak hours WAN Design, v1.4

2006 D I Manfred Lindner

Floating Static Routes (FSR)

- Cisco solution described
- FSR is a special static route
 - Configured on a router
 - Describing the next hop to reach a certain IP subnet
 - With high administrative distance (200)
 - As long as a dynamic routing protocol like OSPF (admin. distance 110) announce this IP subnet the FSR is ignored by the router
 - 110 means better than 200
 - If information about that subnet is not any longer announced the FSR fires
 - If there comes a packet destined for that subnet the packet is forwarded based on the FSR next hop information

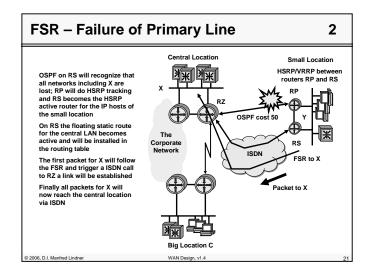
© 2006, D.I. Manfred Lindner

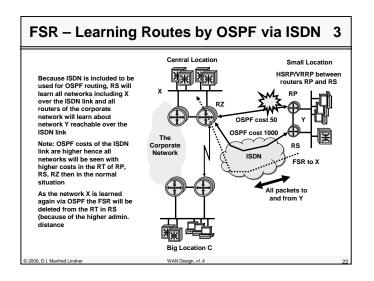

WAN Design, v1.4

L103 - WAN Design

Floating Static Routes (FSR)

- FSR usage:
 - Automatic failover to a backup line and back
 - Often combined with "Dial-On-Demand" networks like ISDN
- Prerequisite for this technique:
 - Traffic which triggers the "Dial-On-Demand" networks via FSR
 - Triggering traffic:
 - · Could be periodically keep-alive message from the clients to the central servers in idle time
 - · Could be periodically keep-alive message from the central server to clients located behind such network parts
 - Network management traffic from the central NMS which periodically tests the reachability of locations WAN Design v1.4

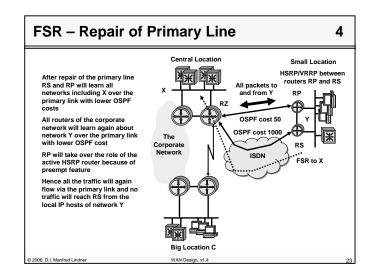

© 2006 D I Manfred Lindner

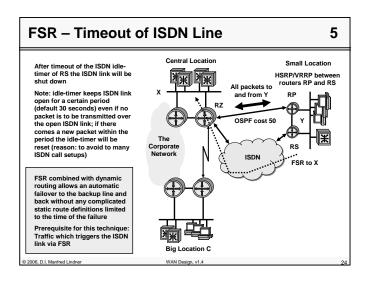


© 2006, D.I. Manfred Lindner

© 2006. D.I. Manfred Lindner

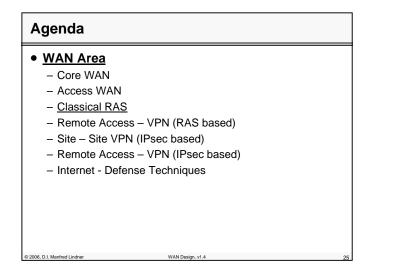
L103 - WAN Design

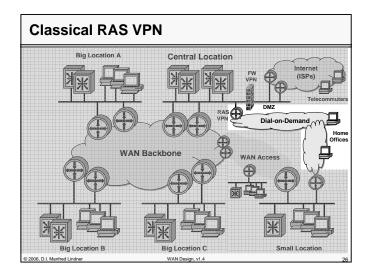




© 2006, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology


L103 - WAN Design



© 2006, D.I. Manfred Lindner Page 103 - 12

L103 - WAN Design

© 2006, D.I. Manfred Lindner

Page 103 - 13

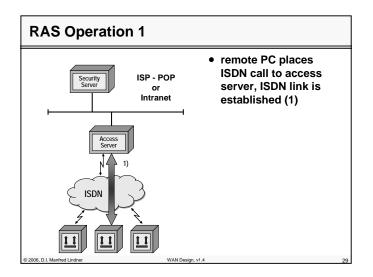
L103 - WAN Design

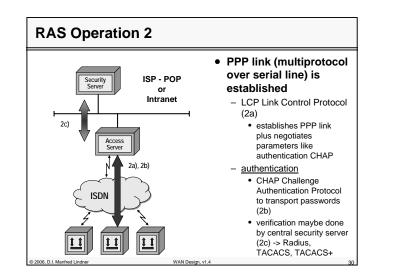
Remote Access Server (RAS) Techniques based on PPP Functionality

• Providing dial-in possibilities for IP systems

- using modems and Plain Old Telephone Network (POTS)
 using ISDN
- using ADSL (Asymmetric Digital Subscriber Line)
 - PPPoE (PPP over Ethernet), PPPoA (PPP over ATM)

• Dial-in:

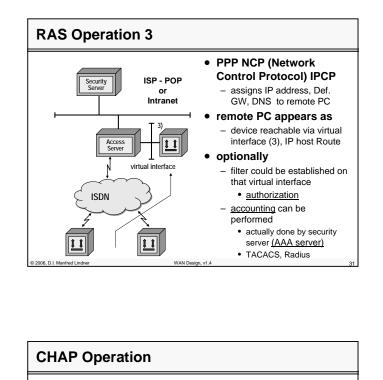

© 2006, D.I. Manfred Lindner


- Into a corporate network (Intranet) of a company
 - Here the term <u>RAS</u> (remote access server) is commonly used to describe the point for accessing the dial-in service
- Into the Internet by having an dial-in account with an Internet Service Provider (ISP)
 - Here the term <u>POP</u> (point-of-presence) is used to describe the point for accessing the service

WAN Design v1

 PPP connection is established in four phases <u>phase 1</u>: link establishment and configuration negotiation Done by Link Control Protocol – LCP (note: deals only with link operations, does not negotiate the implementation of network layer protocols) <u>phase 2</u>: optional procedures that were agreed during negotiation of phase 1 (e.g. authentication like CHAP, EAP or compression techniques) trend goes towards EAP (Extensible Authentication Protocol) which allows a unique method for Dial-In, LAN and WLAN) <u>phase 3</u>: network layer protocol configuration negotiation done by corresponding Network Control Protocols - NCPs E.g. IPCP, IPXCP, <u>phase 4</u>: link termination 	PPP Connection
 Done by Link Control Protocol – LCP (note: deals only with link operations, does not negotiate the implementation of network layer protocols) <u>phase 2</u>: optional procedures that were agreed during negotiation of phase 1 (e.g. authentication like CHAP, EAP or compression techniques) trend goes towards EAP (Extensible Authentication Protocol) which allows a unique method for Dial-In, LAN and WLAN) <u>phase 3</u>: network layer protocol configuration negotiation done by corresponding Network Control Protocols - NCPs E.g. IPCP, IPXCP, <u>phase 4</u>: link termination 	PPP connection is established in four phases
 negotiation of phase 1 (e.g. authentication like CHAP, EAP or compression techniques) trend goes towards EAP (Extensible Authentication Protocol) which allows a unique method for Dial-In, LAN and WLAN) phase 3: network layer protocol configuration negotiation done by corresponding Network Control Protocols - NCPs E.g. IPCP, IPXCP, phase 4: link termination 	Done by Link Control Protocol – LCP (note: deals only with link operations, does not negotiate the implementation of network layer
 which allows a unique method for Dial-In, LAN and WLAN) <u>phase 3</u>: network layer protocol configuration negotiation done by corresponding Network Control Protocols - NCPs E.g. IPCP, IPXCP, <u>phase 4</u>: link termination 	negotiation of phase 1 (e.g. authentication like CHAP,
done by corresponding Network Control Protocols - NCPs • E.g. IPCP, IPXCP, – <u>phase 4</u> : link termination	
	done by corresponding Network Control Protocols - NCPs
2006, D.I. Manfred Lindner WAN Design, v1.4 28	– <u>phase 4</u> : link termination
	2006, D.I. Manfred Lindner WAN Design, v1.4 28

L103 - WAN Design



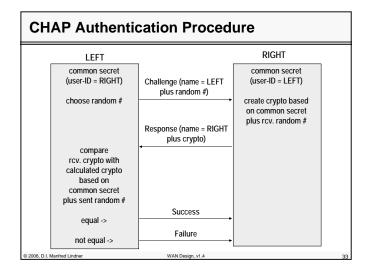
© 2006, D.I. Manfred Lindner

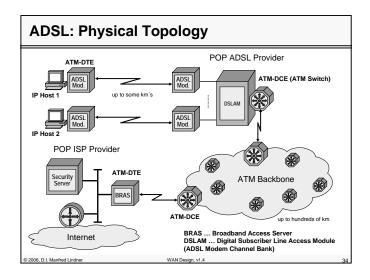
Page 103 - 15

L103 - WAN Design

three way handshake

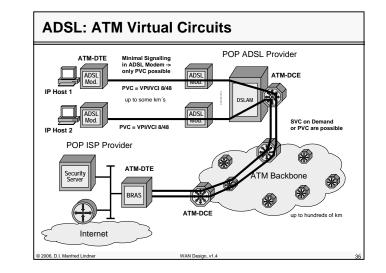
- PPP link successfully installed by LCP
- local station sends a challenge message to remote station
- challenge contain random number and own user-id
- remote station replies with value using one way hash function based on crypto negotiated for this user-id
- response is compared with stations own calculation of random number with same crypto
- if equal success messages is sent to remote station

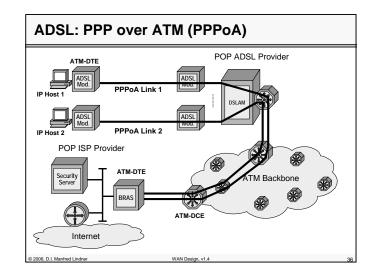

WAN D


- if unequal failure message is sent

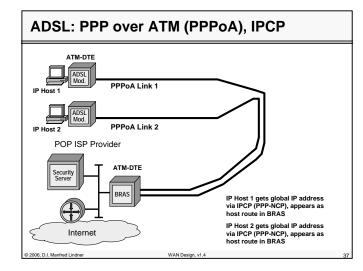
© 2006, D.I. Manfred Lindne

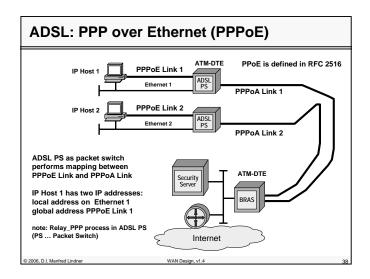
© 2006, D.I. Manfred Lindner


L103 - WAN Design



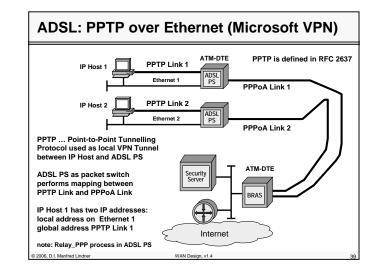
© 2006, D.I. Manfred Lindner Page 103 - 17 Institute of Computer Technology - Vienna University of Technology


L103 - WAN Design



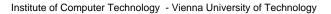
© 2006, D.I. Manfred Lindner

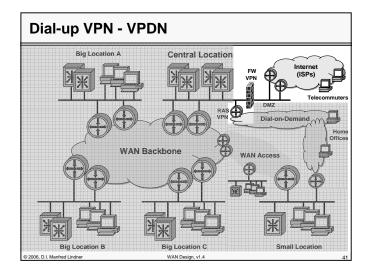
L103 - WAN Design

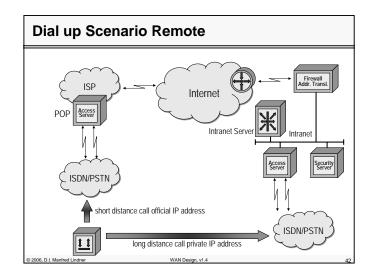


© 2006, D.I. Manfred Lindner

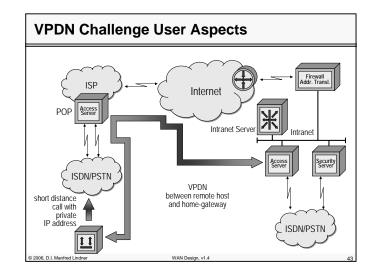
Page 103 - 19


L103 - WAN Design


Agenda		
• WAN Area		
 Core WAN 		
 Access WAN 		
 Classical RAS 	S	
 – <u>Remote Acce</u> 	ess – VPN (RAS based)	
 Site – Site VF 	PN (IPsec based)	
 Remote Acce 	ess – VPN (IPsec based)	
 Internet - Def 	ense Techniques	
2006, D.I. Manfred Lindner	WAN Design, v1.4	


© 2006, D.I. Manfred Lindner

L103 - WAN Design


L103 - WAN Design

© 2006, D.I. Manfred Lindner

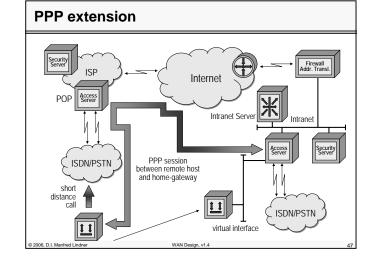
Page 103 - 21

© 2006, D.I. Manfred Lindner

L103 - WAN Design

L103 - WAN Design

© 2006, D.I. Manfred Lindner


• basic idea of VPN in a dial up environment

- extension of local PPP sessions between remote client and ISP to the native entry point of the Intranet (access server)
- this is done by encapsulation of PPP packets into IP
- several methods developed and deployed
 - <u>L2F Layer Two Forwarding Protocol</u> (Cisco; RFC 2341)
 - <u>PPTP Point-to-Point Tunneling Protocol</u> (Microsoft; RFC 2637)
- finally efforts to combine these proposals lead in

WAN Design v1.4

- L2TP Layer Two Tunneling Protocol (RFC 2661)

Layer 2 Overlay VPN Technologies	
IP	
РРР	
Layer 2 Tunnel Protocol (L2TP) Protocol) Protocol) Protocol) Protocol) Protocol (L2F Protocol) Protocol (L2F	
IP	
•Used to transport PPP frames across a shared infrastructure, to simulate virtual point to point connections	
© 2006, D.I. Manfred Lindner WAN Design, v1.4	

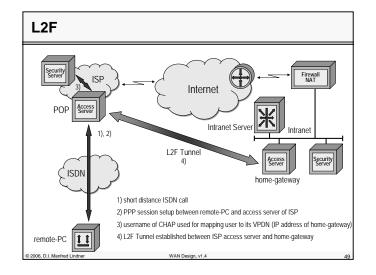
L2F Overview

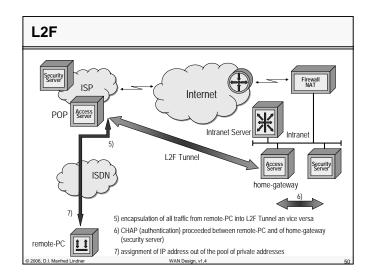
- Protocol, created by Cisco
- Not a Standard

© 2006, D.I. Manfred Lindner

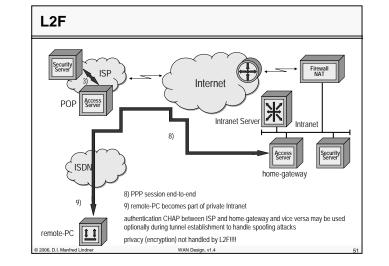
- Defined in RFC 2341, May 1998
- Tunnelling of the Link Layer over Higher layer Protocols

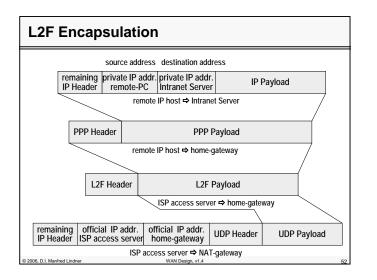
© 2006, D.I. Manfred Lindner


Page 103 - 23


© 2006, D.I. Manfred Lindner

WAN I


L103 - WAN Design


L103 - WAN Design

© 2006, D.I. Manfred Lindner

© 2006, D.I. Manfred Lindner

Page 103 - 25

L103 - WAN Design

L2F Facts

- ISP provider must know the home-gateway of a certain user
- ISP provider must establish and maintain L2F tunnel
 - different remote-clients are distinguished by "Multiplex ID"
- remote PC must know about ISDN number of local ISP POP
- remote PC becomes part of private Intranet

WAN Design v1.4

L2F Facts

© 2006, D.I. Manfred Lindner

2006, D.I. Manfred Lindner

- NAT and firewall must allow communication between ISP access server and home-gateway
- L2F supports incoming calls only
- end system transparency
 - neither the remote end system nor its home-site servers requires any special software to use this service

Institute of Computer Technology - Vienna University of Technology

L103 - WAN Design

PPTP Overview

- Created by a Vendor Consortium US-Robotics, Microsoft, 3COM, Ascend and ECI Telematics
- Supports multiprotocol VPNs with 40 and 128-bit encryption using Microsoft Point-to-Point Encryption (MPPE)

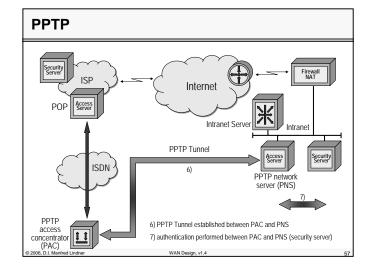
WAN Design v1.4

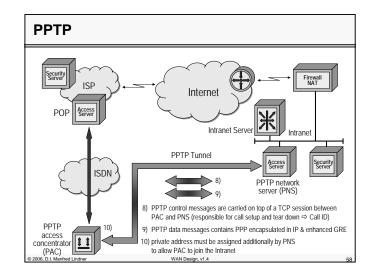
Not a Standard

© 2006 D I Manfred Lindner

- RFC 2637 ,July 1999
- Tunnelling of PPP over IP network
- A Client-Sever Architecture

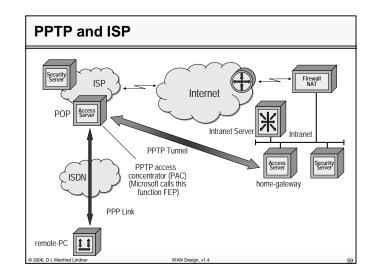
PPTP Firewall NAT Internet POF Intranet Server Intranet 1), 2) SDN home-gatewa 1) short distance ISDN call 4), 5) 2) PPP session setup between remote-PC and access server of ISP 3) username and challenge of CHAP used for user authentication 4) official IP address assigned by ISP for remote-PC <u>11</u> remote-PC 5) PPP session fully established between remote-PC and ISP access server 2006 D I Manfred Lindne WAN Design v1.4

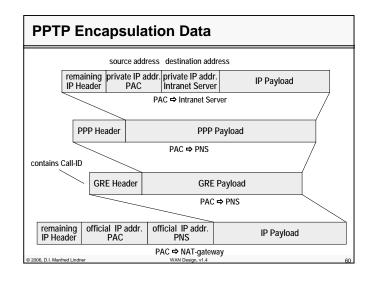

© 2006, D.I. Manfred Lindner


WAN Design, v1.4

Page 103 - 27

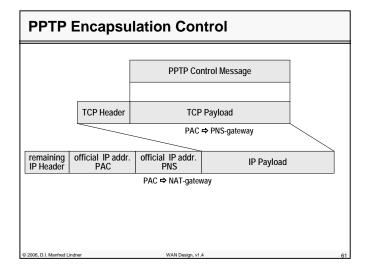
© 2006, D.I. Manfred Lindner


L103 - WAN Design



Institute of Computer Technology - Vienna University of Technology

L103 - WAN Design



© 2006, D.I. Manfred Lindner

Page 103 - 30

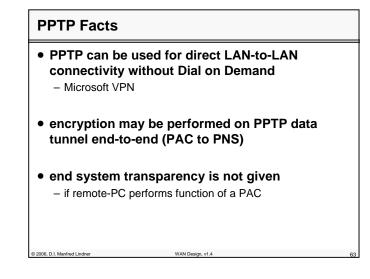
L103 - WAN Design

PPTP Facts

 remote PC must know about ISDN number of local ISP POP and will be assigned a official IP address

 private addresses are used message-internal to reach Intranet server

- NAT and Firewall must allow communication between any PAC and PNS
 - that means more overhead than L2F at NAT and Firewall
- PPTP may be used for incoming and outgoing calls


WAN Design, v1.4

2006, D.I. Manfred Lindner

© 2006. D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L103 - WAN Design

L2TP Overview

- Protocol developed by the PPTP forum, Cisco and the IETF
- A Proposed Standard

© 2006, D.I. Manfred Lindner

- Defined in RFC 2661, August 1999
- Transparent Tunnelling of PPP over Intervening Network
- Supports IPSec encryption

© 2006, D.I. Manfred Lindner

WAN I

Page 103 - 31

L103 - WAN Design

L2TP

• follows the basic ideas of L2F

- end system transparency
- only private address at remote-PC assigned
- adapts PAC / PNS terminology and concept of Control / Data messages of PPTP
 - LAC = L2TP Access Concentrator
 - ISP access server
 - LNS = L2TP Network Server
 - home-gateway
 - call establishment (assignment of CALL-ID), call management and call tear-down procedures
 sounds a little bit like ISDN Signaling Q.931

WAN Design v1 4

© 2006, D.I. Manfred Lindner

L2TP

© 2006, D.I. Manfred Lindner

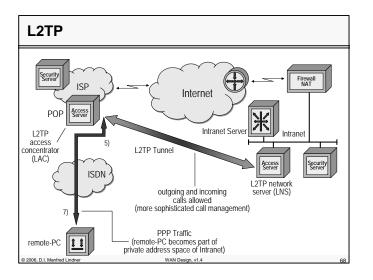
- control messages and payload messages operates over a given tunnel in parallel
 - L2TF will be encapsulated in UDP or mapped to PVC or SVC
- control messages are carried reliable
 - retransmission based on sequence numbers
- AVP (attribute value pairs) technique is used for control message format
- CALL-ID used for multiplexing
- of different calls over the same tunnel
- control messages can be sent in a secure way
 using MD5 hash as kind of digital signature
 - using MD5 hash as kind of digital signature
 tunnel peers must be authenticated by additional
 - CHAP procedure between LNS and LAC before

WAN Design

Institute of Computer Technology - Vienna University of Technology

L103 - WAN Design

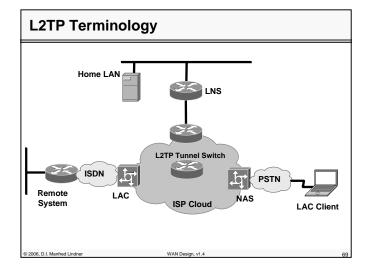
L2TP


- different tunnels may be used between a given LAC / LNS pair
 - for implementing different QoS for different users
- optionally flow control techniques can be implemented
 - to perform congestion control over the tunnel
- support of accounting
 - at LNS and LAC site
- can be used for incoming and outgoing calls

WAN Design v1.4

- integrity of payload messages
 - not covered by L2TP

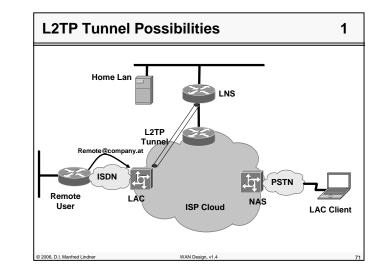
© 2006, D.I. Manfred Lindner

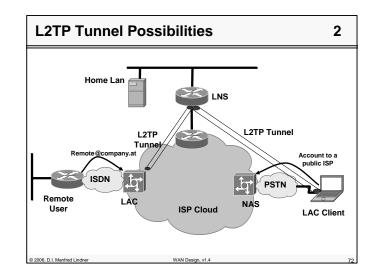

- still an end-to-end issue

© 2006, D.I. Manfred Lindner

© 2006, D.I. Manfred Lindner Page 103 - 33

L103 - WAN Design


L2TP devices L2TP Network Server (LNS) The LNS is the logical termination point of a PPP session that is tunnelled from a remote system using L2TP encapsulation L2TP Access Concentrator (LAC) Is a L2TP peer to the LNS A LAC process could be run on a NAS or on a client PC itself Metwork Access Server (NAS) Provides network access to users across a remote access network e.g. PSTN


© 2006, D.I. Manfred Lindner

Page 103 - 35

Institute of Computer Technology - Vienna University of Technology

L103 - WAN Design

© 2006, D.I. Manfred Lindner

L103 - WAN Design

L2TP Messages Types

- L2TP utilizes two types of messages
- Control Messages
 - Used for the establishment, maintenance and clearing of L2TP tunnels

WAN Design, v1.4

- Are transported across a reliable control channel
- Data Messages

© 2006, D.I. Manfred Lindner

- In L2TP encapsulated PPP frames
- Are not retransmitted when a packet loss occurs

L2TP Structure PPP Frames L2TP Control Messages L2TP Data Messages L2TP Data Channel L2TP Control Channel (unreliable) (reliable) Packet Transport (UDP, FR, ATM, etc.) © 2006, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L103 - WAN Design

T L X X S X O P X X X Ver Length (optional) Tunnel ID Session ID Ns (optional) Nr (optional)	1						8					16
Tunnel ID Session ID Ns (optional)	т	LX	х	s	х	0	Р	х	х	х	х	Ver
Session ID Ns (optional)					L	.eng	th (opti	ona)		
Ns (optional)						Т	unr	el II	D			
,						S	essi	on l	D			
Nr (optional)						Ns	(op	tion	al)			
						Nr	(op	tion	al)			
Offset Size (optional)					Off	set	Size	e (op	otior	nal)		
Offset padding (variable, optional)			Off	set	pad	ding	g (vari	able	e, op	tion	al)

	(T) hit
• Type	
	icates type of message
	data message, 1 = control message
0	th (L) bit
	1 means length field present, must be set to 1 in control message
 X bits 	5
– Are	e reserved for future use
 Sequ 	ence (S) bit
	1 indicate the presence of the Nr and Ns counters, must be 1 in trol messages
 Offse 	t (O) bit
	= 1 indicate the presence of the offset field, must be 0 in control ssages
• Prior	ity (P) bit
_ P -	1 indicates preferential treatment, typically used in data message

© 2006, D.I. Manfred Lindner

WAN Design, v1.4

Page 103 - 37

© 2006, D.I. Manfred Lindner

L103 - WAN Design

L2TP Header Fields

• Length field

- Indicates the total length of the message in bytes
- Tunnel ID
 - Identifier for Control Connection
 - Only Locally Significant
- Session ID
 - Identifier for Session in the Tunnel
 - Only Locally Significant
- Nr Sequence Number
 - Used to Acknowledge received control messages
- Ns Sequence Number
 - Send Sequence number of actual control message

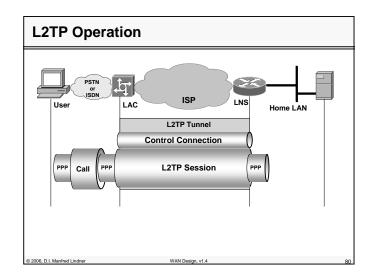
WAN Design, v1.4

Offset Field

© 2006, D.I. Manfred Lindner

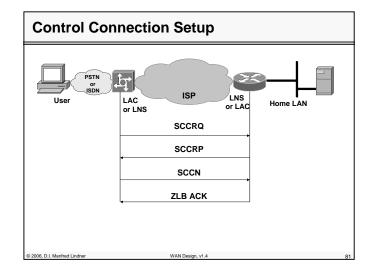
- Indicates the start of the payload data

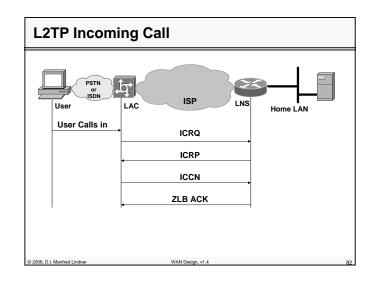
Тур	bes	of Cont	rol Messages	
		с	ontrol Connection Management	
	0	Reserved		
	1	SCCRQ	Start-Control-Connection-Request	
	2	SCCRP	Start-Control-Connection-Reply	1
	3	SCCCN	Start-Control-Connection-Connected	1
	4	StopCCN	Stop-Control-Connection-Notification]
	5	Reserved		1
	6	HELLO	Hello	1
				_
© 2006, D.I. N	Aanfred Li	ndner	WAN Design, v1.4	78


© 2006, D.I. Manfred Lindner

Page 103 - 39

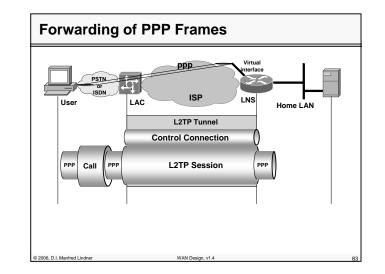
Institute of Computer Technology - Vienna University of Technology

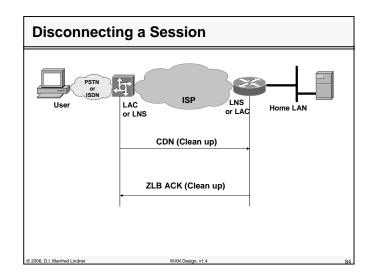

L103 - WAN Design


Types of Control Messages Call Management 7 OCRQ **Outgoing-Call-Request** 8 OCRP Outgoing-Call-Reply 9 **Outgoing-Call-Connected** OCCN 10 ICRQ Incoming-Call-Request 11 ICRP Incoming-Call-Reply 12 Incoming-Call-Connected ICCN 13 Reserved 14 CDN Call-Disconnect-Notify Error Reporting 15 WEN WAN-Error-Notify **PPP Session Control** 16 SLI Set-Link-Info © 2006, D.I. Manfred Lindn WAN Design v1.4

© 2006, D.I. Manfred Lindner

L103 - WAN Design

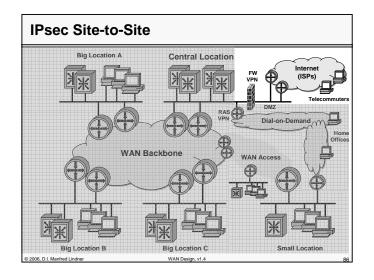



© 2006, D.I. Manfred Lindner

Page 103 - 41

Institute of Computer Technology - Vienna University of Technology

L103 - WAN Design



© 2006, D.I. Manfred Lindner

L103 - WAN Design

Agenda	
• WAN Area	
– Core WAN	
– Access WAN	
– Classical RAS	
 Remote Access – VPN (RAS based) 	
 – <u>Site – Site VPN (IPsec based)</u> 	
- Remote Access - VPN (IPsec based)	
 Internet - Defense Techniques 	
2006, D.I. Manfred Lindner WAN Design, v1.4	85

Institute of Computer Technology - Vienna University of Technology

L103 - WAN Design

What IPsec does?

IPsec enables a system

 to select required security protocols, determine the algorithm(s) to use for the service(s), and put in place any cryptographic keys required to provide the requested services

• IPsec can be used

© 2006 D L Manfred Lindner

- to protect one or more "paths" between a pair of hosts, between a pair of security gateways, or between a security gateway and a host
- security gateway could be for example, a router or a firewall implementing IPsec

WAN Design v1

 VPN concentrator is another name for such a device if several SA pairs are terminated at the same point

 What IPsec does?

 • The set of security services that IPsec can provide includes

 - access control

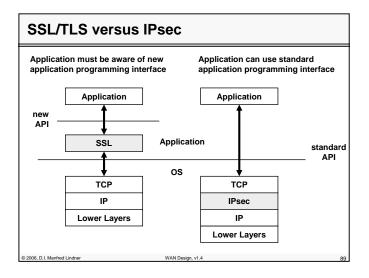
 - connectionless integrity

 - data origin authentication

 - rejection of replayed packets

 - confidentiality (encryption)

 - all these services are provided at the IP layer


 • hence they can be used by any higher layer protocol e.g., TCP, UDP, ICMP, BGP, etc.

© 2006, D.I. Manfred Lindner

Page 103 - 43

© 2006, D.I. Manfred Lindner

L103 - WAN Design

Elements of IPsec

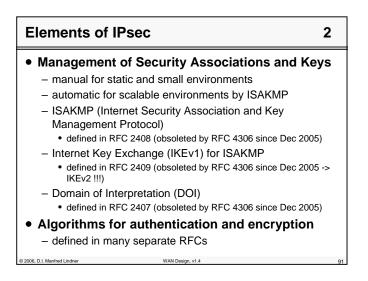
Security Associations (SA)

- what they are and how they work, how they are managed and their associated processing

1

- defined in RFC 2401 (obsoleted by RFC 4301 since Dec 2005)
- Security Policy Database (SPD), Security Association Database (SAD)

Security Protocols (for traffic security)


- Authentication Header (AH)

- defined in RFC 2402 (obsoleted by RFC 4302, 4305 since Dec 2005)
- Encapsulating Security Payload (ESP)
 - defined in RFC 2406 (obsoleted by RFC 4302, 4305 since Dec 2005)
- in this area secret-key algorithms are used because of performance reasons (HMAC, DES, 3DES, ...) WAN Design, v1.4

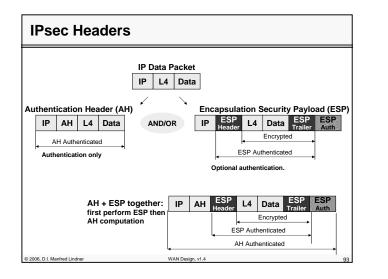
2006, D.I. Manfred Lindner

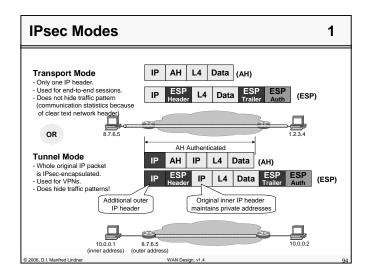
Institute of Computer Technology - Vienna University of Technology

L103 - WAN Design

IPsec in Praxis
"IPsec used anywhere"
– Firewall, Router, Hosts
 End-to-End security
– VPN
Site-to-Site
Remote-to-Site
 Scalable solutions available
 Easy to implement
Encryption performance
 Current standards: DES and Triple-DES
 Migration to AES (more efficient, longer keys)
 HW versus SW encryption power
e.g. crypto engines on router for higher performance

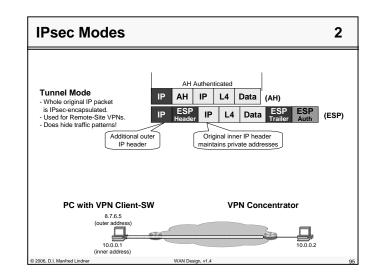
© 2006, D.I. Manfred Lindner

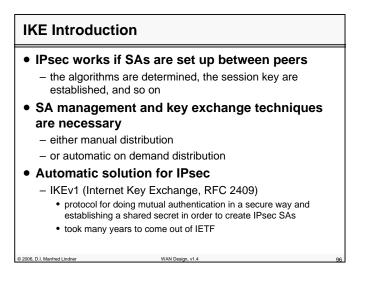

Page 103 - 45


© 2006. D.I. Manfred Lindner

WAN De

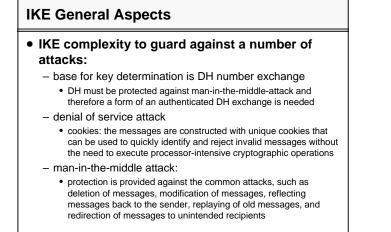
© 2006, D.I. Manfred Lindner


L103 - WAN Design



© 2006, D.I. Manfred Lindner Page 103 - 47 Institute of Computer Technology - Vienna University of Technology

L103 - WAN Design



© 2006, D.I. Manfred Lindner

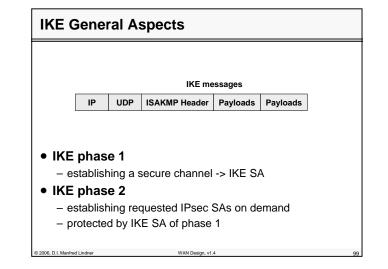
L103 - WAN Design

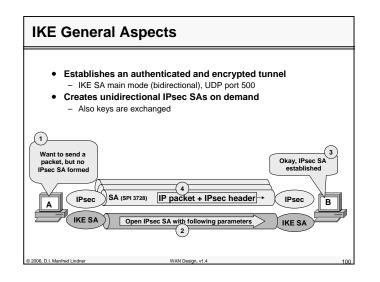
L103 - WAN Design

© 2006, D.I. Manfred Lindner

WAN Design, v1.4

IKE General Aspects

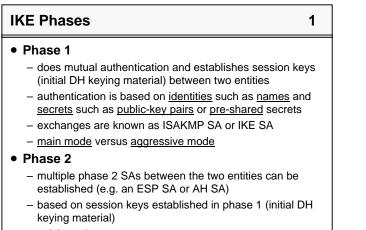

IKE complexity to guard against a number of attacks (cont.):


- perfect forward secrecy (PFS):

- compromise of past keys provides no useful clues for breaking any other key, whether it occurred before or after the compromised key; each refreshed key will be derived without any dependence on predecessor keys
- Transport of IKE messages
 - runs on top of UDP
 - port number 500 on both sides
 - starts with ISAKMP header followed by payloads
 - header fields and payload types defined by ISAKMP
 - protocol procedures defined by IKE

© 2006, D.I. Manfred Lindner

WAN Design, v1.4



© 2006, D.I. Manfred Lindner

Page 103 - 49

© 2006, D.I. Manfred Lindner

L103 - WAN Design

WAN Design v1

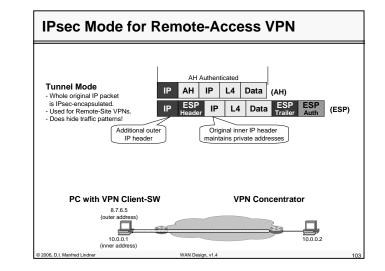
<u>quick mode</u>

2006, D.I. Manfred Lindner

Agenda

© 2006, D.I. Manfred Lindner

WAN Area


- Core WAN
- Access WAN
- Classical RAS
- Remote Access VPN (RAS based)
- Site Site VPN
- Remote Access VPN (IPsec Based)
- Internet Defense Techniques

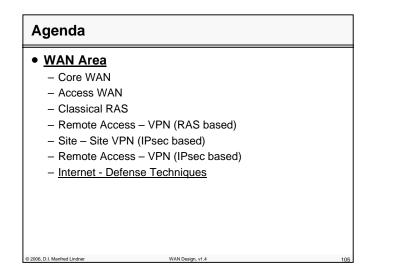
Page 103 - 51

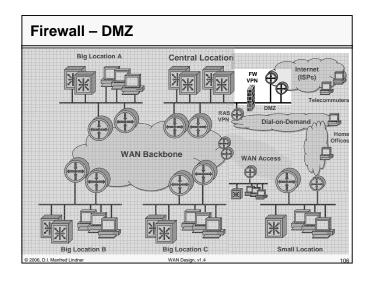
WAN De

Institute of Computer Technology - Vienna University of Technology

L103 - WAN Design

Consideration for Key Management
IPsec for site-site VPN
 Often uses preshared secrets for authentication of IKE peers Why?
 certificates means maintaining a PKI (Public Key Infrastructure) at least a private CA (Certification Authority) server is needed VPN router/concentrator can often be physically protected
 IPsec for remote-access VPN
 Different situation
 Mobile PCs calling from insecure places
 Preshared secret may be compromised hence configuration and maintenance overhead if number of clients is high
 Therefore combination of IPsec and RAS Authentication Techniques (EAP)
Client dials-in, authenticates itself at a authentication server and then the

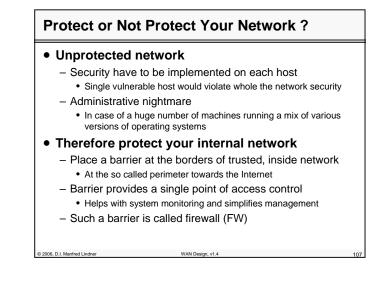

 Client dials-in, authenticates itself at a authentication server and then the necessary IPsec configuration is pushed from the VPN concentrator to the client sometimes even enhanced with activation of a host based FW function at the client side

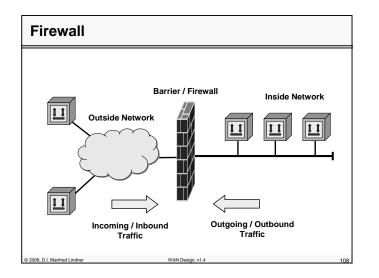

© 2006, D.I. Manfred Lindner

WAN Design, v1.4

© 2006, D.I. Manfred Lindner

L103 - WAN Design




© 2006, D.I. Manfred Lindner

Page 103 - 53

Institute of Computer Technology - Vienna University of Technology

L103 - WAN Design

© 2006, D.I. Manfred Lindner

L103 - WAN Design

Firewall Principles

- Inside network is trusted
- Outside network is potentially malicious
- All traffic from inside to outside and vice versa
 - Must pass through the firewall
- Only authorized traffic will be allowed to pass
 - What is authorized is defined by the network security policy of your company
- The firewall must be well protected
 - Immune to any kind of penetration
 - FW based on a trusted system with a secure operating system

2006, D.I. Manfred Lindner

WAN Design, v1.4

Firewall Limitations and Types

• Principle problems with any kind of FW

- If you want access from the outside you must let traffic in or you want access to the outside you must let traffic out
 - Open certain TCP/UDP ports, trust certain IP addresses
 - Malicious / unwanted traffic may disguise behind allowed traffic
- You must trust your internal network
 - FW cannot project against internal threats
- If the single entry point of FW is bypassed by any dial-in facilities (RAS) the firewall cannot only provide limited protection or even no protection at all

• Different types

- Packet Level FW (Stateless)
- Stateful Inspection FW
- Application Level / Proxy FW

2006, D.I. Manfred Lindner

L103 - WAN Design

Packet Level Firewall

• Static packet filtering based on filter rules

- Decision what can pass the barrier is based on certain header fields of intercepted packets
 - MAC header (ether-type, source MAC address, destination MAC address)
 - IP header (source IP address, destination IP address, protocol type)
- ICMP header (code type)
- TCP header (source port, destination port, flags (SYN, ACK))
- UDP header (source port, destination port)
- Typically available on L3 routers (L2 switches), but nowadays also on Linux, Windows

WAN Design v1.4

- E.g. Cisco's famous access control lists (ACL)
- E.g. iptables, ipchains, Windows XP SP2

© 2006, D.I. Manfred Lindner

Packet Level Firewall Usage

• Can secure inside hosts against

- Unwanted traffic, simple attacks and certain DoS attacks
 E.g. ICMP echo request, ICMP redirect request, ICMP
- unreachable, not supported UDP/TCP ports, IP source routing, SYN flooding
- Can limit services inside hosts can get from the outside
- Can secure against IP spoofing
 - Source address of inbound traffic is checked against inside used IP addresses -> if yes then traffic is blocked
 Prevention technique
 - Source address of outbound traffic is checked if it contains inside used IP addresses -> if no then traffic is blocked
 Be a good Internet citizen
 - Be a good internet citize

© 2006, D.I. Manfred Lindner

WAN D

© 2006, D.I. Manfred Lindner

WAN Design, v1.4

© 2006, D.I. Manfred Lindner

L103 - WAN Design

1

2

Packet Level Firewall Limitation

- Most network communication responses are stimulated by requests
 - So we have to let in the responses in order to communicate
 - But forged packets which look like harmless responses are still let in
- In principle all packets which match the filter rule and are allowed will pass
 - Malicious packets may hide behind allowed TCP/UDP ports
- Very strict filter rules
- May be an administrative nightmare and tend to be complex
 2006 DL Madred linder
 WAN Design v14

Packet Level Firewall Limitation

- Filter rules must often allow more than what is be necessary for a certain communication
 - E.g. inside client want access to outside servers
 Think about the TCP client port range
 - Often all TCP destination ports and all IP source addresses must be passed through to let TCP replies from servers in
- Ports are open permanently to allow inbound traffic
 - Security vulnerability
 - Not adequate with certain applications which dynamically negotiated port numbers

© 2006, D.I. Manfred Lindner

.4

Institute of Computer Technology - Vienna University of Technology

L103 - WAN Design

Packet Level Firewall Limitation 3 • Filtering UDP segments is a problem - Because of stateless behavior of UDP requests/replies - So very often the decision on a packet level FW is to block UDP traffic generally • Some services can't be filtered at all - Think about IPSec encrypted traffic - Check of TCP/UDP ports in encrypted payload of an IP datagram is not even possible at the firewall

• Simple NAT

© 2006 D I Manfred Lindner

- May provide similar security for certain scenarios

WAN Design v1.4

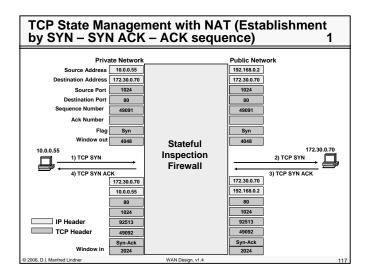
Stateful (Inspection) Firewall

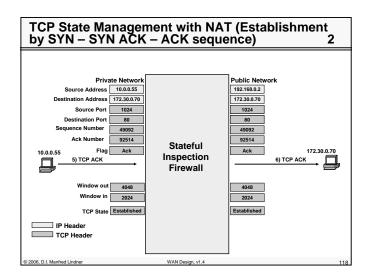
Stateful inspection

- Provides state management additionally to basic function of a packet level firewall
- Remembers (the initiating) outbound traffic so only valid responses are let in
- Creates filter rules (or better exceptions) on demand
 Dynamic ACL's are used
- Actually monitors the TCP connections and records the important TCP state values in a table
- Checks if all TCP fields are in the expected range
 - Sequence number
 - Acknowledgement number
 - Window field
- Mandatory part of "real" firewall boxes
 - Like Checkpoint's FW1 or Cisco's PIX

© 2006, D.I. Manfred Lindner

© 2006, D.I. Manfred Lindner

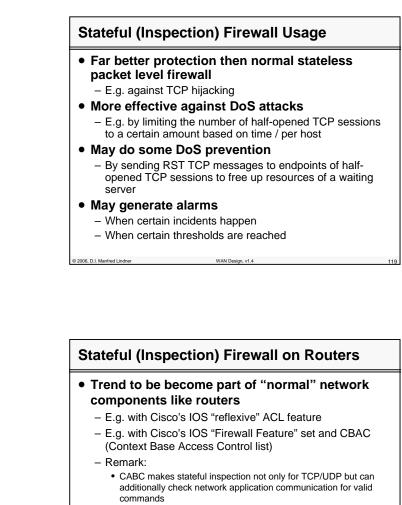

WAN Desi


Page 103 - 57

© 2006, D.I. Manfred Lindner

WAN D

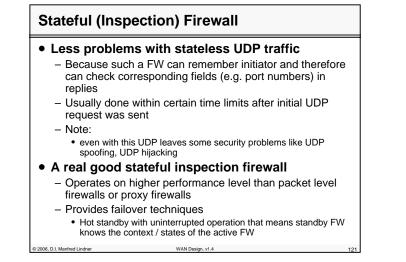
L103 - WAN Design

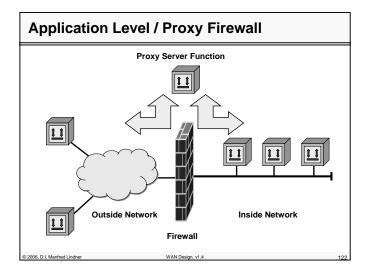


© 2006, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

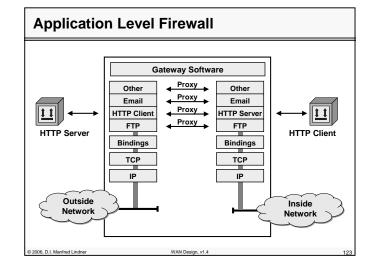
L103 - WAN Design


- E.g. valid FTP, SMTP, RPC
- E.g. HTTP Java Applet Blocking
- E.g. SIP, H.323, RTSP
- With such features a normal router can operate even up to the network application level


© 2006, D.I. Manfred Lindner

WAN Design

L103 - WAN Design


L103 - WAN Design

© 2006, D.I. Manfred Lindner

Page 103 - 61

Application Level Firewall

Inside client request are directed to a proxy function

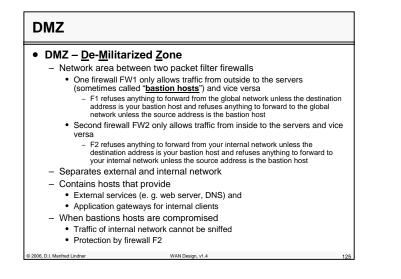
- Which open and maintain communication to the requested outside server on behalf of the inside client
 - User authentication and authorization may be checked
 Can be done for both directions (inbound, outbound)
 - Session state information is maintained
- Can do caching of information replies (e.g. HTTP proxy)

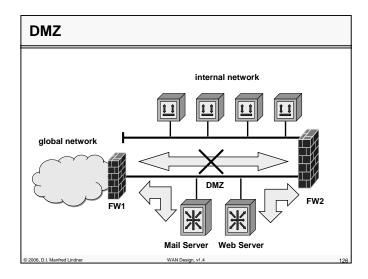
Proxy appears

- As endpoint for a certain application from both inside and outside

• Some Problems:

- Relatively slow under full load
- Support of new applications must be installed at the proxy (may be difficult under operation)


WAN D


Single point of failure

© 2006, D.I. Manfred Lindner

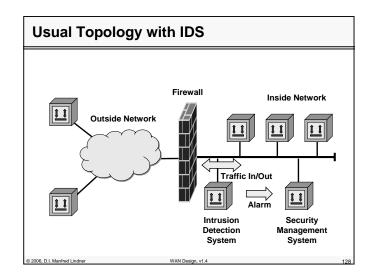
© 2006, D.I. Manfred Lindner

L103 - WAN Design

© 2006, D.I. Manfred Lindner

Page 103 - 63

L103 - WAN Design


Intrusion Detection

© 2006 D L Manfred Lindner

- Process of identifying and responding to malicious activities targeted against networks and its resources
- System that performs intrusion detection is called – Intrusion Detection System (IDS)
- Provides a level of protection beyond the normal firewall service
 - By securing the network not only against external but also against internal attacks

WAN Design v1.4

- Normally a defense mechanism behind outer barrier
- Complements defense techniques like firewalls

© 2006, D.I. Manfred Lindner

L103 - WAN Design

Intrusion Detection System

Base idea

- Sniffing the network traffic in real-time
- Comparing the current network activities with known attack forms (so called signatures)
 - E.g. several TCP SYN segments from the same source IP address to the same destination IP address to several ports within a certain time interval (maybe a DoS attack)
 - E.g. several TCP SYN segments from the different source IP addresses to the same destination IP address to several ports within a certain time interval (maybe a DDoS attack)
- Create an alarm when an attack is recognized
- Signatures need to be updated
 - Compare it with normal virus scanner on host machines

2006, D.I. Manfred Lindner

WAN Design, v1.4

Intrusion Detection / Prevention Systems (IDS / IPS)

• Network based

- Part of the network infrastructure
 - E.g. Dedicated machine
 - E.g. Part of a router / switch
- Host based
 - Part of the OS of a computer
- IDS informs network (security) administrator about attacks
- IPS additionally filters malicious packets in case of an attack
 - Optionally can sent TCP RST packets to end-points of TCP connections to terminate half-open sessions

2006, D.I. Manfred Lindner

WAN Design, v1.4

Institute of Computer Technology - Vienna University of Technology

L103 - WAN Design

Intrusion Detection Techniques 1 • Misuse-based (signature-based) - Observed behavior is compared against description of known, undesirable behavior (signatures) - Intrusion is assumed when signature appears in the captured network activity - Most commercial systems follow this approach - Advantages • Accurate reports (low false-positive rate) - Disadvantages • Needs continuous update of signatures (like a virus scanner) • Unable of detecting novel attacks

WAN Design v1.4

Intrusion Detection Techniques

Anomaly-based (or profile-based)

 Network behavior is compared against description of anticipated or recorded legal behavior (profile / baseline)

2

- Intrusion is assumed when deviation between current network activity and profile is significant
- Uses statistical methods and AI techniques
- Advantages
 - Capable of detecting novel attacks
- Disadvantages
 - Difficult to configure / train
 - E.g. What is the normal behavior?
 - E.g. People work not like machines, so deviation may vary strongly
 - Therefore often a high number of false alarms will be seen
- © 2006, D.I. Manfred Lindner

© 2006 D I Manfred Lindner

© 2006, D.I. Manfred Lindner

© 2006, D.I. Manfred Lindner