L04 - TDM Techniques

TDM Techniques

Time Division Multiplexing (synchronous, statistical) Digital Voice Transmission, PDH, SDH

Agenda

• Introduction

• Synchronous (Deterministic) TDM

• Asynchronous (Statistical) TDM

• Digital Voice Transmission

• E1 Framing

• T1 Framing

2009, D.I. Manfred Lindner

L04 - TDM Techniques

Introduction

- line protocol techniques (data link procedures)
 - were developed for communication between two devices on one physical point-to-point link
 - bandwidth of physical link is used exclusively by the two stations
- in case multiple communication channels are necessary between two locations
 - multiple physical point-to-point are needed
- expensive solution

© 2009, D.I. Manfred Lindner

• in order to use one physical link for multiple channels

TDM Techniques v4 7

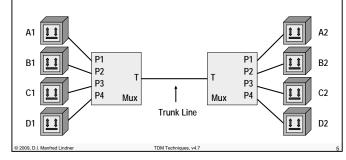
- multiplexing techniques were developed

Point-To-Point Channels A1 <u>11</u> A2 t t B1 <u>1 1</u> B2 11 C2 C1 11 D1 1 D2 point-to-point communication channels carried Location A on multiple Location B physical links © 2009, D.I. Manfred Lindr TDM Techniqu

© 2009, D.I. Manfred Lindner

TDM Techr

Page 04 - 1


© 2009, D.I. Manfred Lindner

L04 - TDM Techniques

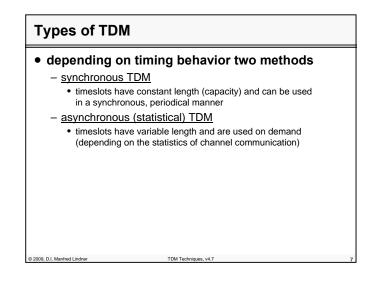
Multiplexing / Demultiplexing

• multiplexer is a device

 which can take a number of input channels and, by interleaving them, output them as one data stream on one physical trunk line

Time Division Multiplexing (TDM)

• time division multiplexer


- allocates each input channel a period of time or timeslot
- controls bandwidth of trunk line among input channels
- individual time slots
 - are assembled into frames to form a single high-speed digital data stream
- available transmission capacity of the trunk
 - is time shared between various channels
- at the destination demultiplexer reconstructs
 - individual channel data streams

© 2009, D.I. Manfred Lindner

TDM Techniques, v4.7

Institute of Computer Technology - Vienna University of Technology

L04 - TDM Techniques

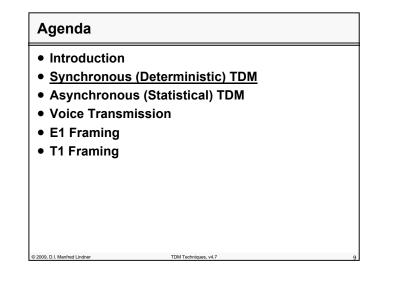
Synchronous TDM Standards

• TDM framing on the trunk line

- can be vendor dependent
- proprietary TDM products
- can be standard based

© 2009, D.I. Manfred Lindner

- two main architectures for standardizing synchronous TDM for trunk lines
- PDH <u>Plesiochronous Digital Hierarchy</u>
 e.g. E1 (2Mbit/s), E3 (34Mbit/s), E4, T1 (1,544Mbit/s), T3
- SDH <u>Synchronous Digital H</u>ierarchy
 e.g. STM-1 (155Mbit/s), STM-4 (622Mbit/s), STM-16


© 2009, D.I. Manfred Lindner

Page 04 - 3

© 2009, D.I. Manfred Lindner

TDM Techniqu

L04 - TDM Techniques

Synchronous Time Division Multiplexing

• synchronous TDM

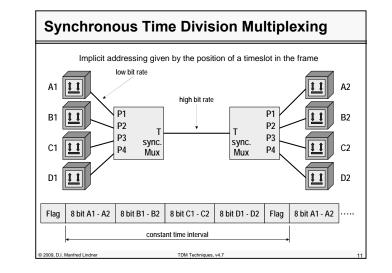
- periodically generates a frame consisting of a constant number of timeslots each timeslot of constant length
- timeslots can be identified by position in the frame
 timeslot 0, timeslot 1,
- frame synchronization achieved by extra flag field

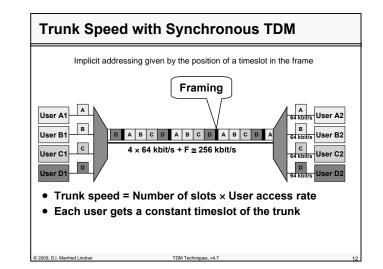
every input channel is assigned

- a reserved timeslot

- e.g. timeslot numbers refer to port numbers of a multiplexer
 - traffic of port P1 in timeslot 1 for A1- A2 channel

TDM Techniq

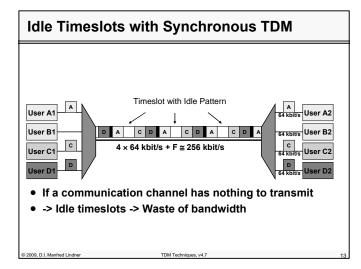

• traffic of port P2 in timeslot 2 for B1- B2 channel


•

2009, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L04 - TDM Techniques



© 2009, D.I. Manfred Lindner

Page 04 - 5

© 2009, D.I. Manfred Lindner

Advantages

compared to pure point-to-point physical links

- synchronous multiplexing adds only minimal delays
 - time necessary to packetize and depacketize a byte
 - transmission/propagation delay on trunk
- the delay for transporting a byte is constant
- the time between two bytes to be transported is constant
 - hence optimal for synchronous transmission requirements like traditional digital voice
- any line protocol could be used between devices
 - method is protocol-transparent
- to endsystems
 - channel looks like a single physical point-to-point line

2009, D.I. Manfred Lindner

TDM Techniques, v4.7

L04 - TDM Techniques

Disadvantages

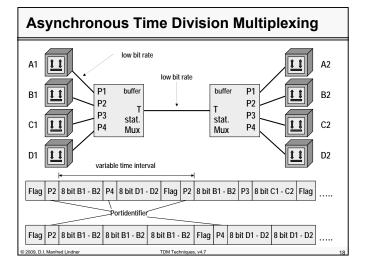
- bitrate on trunk line T
 - sum of all port bitrates (P1-P4) plus frame synchronization (flag)
 - high bitrate is required
 - hence expensive
- if no data is to be sent on a channel
 - special idle pattern will be inserted by the multiplexer in that particular timeslot
 - waste of bandwidth of trunk line
- asynchronous (statistic) time division multiplex avoids both disadvantages
 - making use of communication statistics between devices TDM Techniques v4 7

Agenda

© 2009 D I Manfred Lindner

- Introduction
- Synchronous (Deterministic) TDM
- Asynchronous (Statistical) TDM
- Voice Transmission
- E1 Framing
- T1 Framing

© 2009, D.I. Manfred Lindner


© 2009, D.I. Manfred Lindner

TDM Tech

Asynchronous Time Division Multiplexing

- usually devices communicate in a statistical manner
 - not all devices have data to transmit at the same time
- therefore it is sufficient
 - to calculate necessary bitrate of the multiplexer trunk line according to the average bitrates caused by device communication
- if devices transmit simultaneously
 - only one channel can occupy trunk line
 - data must be buffered inside multiplexer until trunk is available again (store and forward principle)
 - statistics must guarantee that trunk will not be monopolized by a single channel TDM Techniques, v4.7

2009 D L Manfred Lindner

L04 - TDM Techniques

ATDM Operation

multiplexer only generates a transmission frame

- if data octets are present at input ports
- source of data
 - must be explicitly identified in transmission frames
 - addressing
- reason for addressing
 - there exists no constant relationship between timeslot and portnumber as with synchronous TDM
 - Note: addressing in synchronous TDM is implicit by recognizing the flag of the frame and hence the position of a certain timeslot
- port identifier

© 2009 D I Manfred Lindner

© 2009, D.I. Manfred Lindner

- is used as address of source and sent across the trunk TDM Techniques v4 7

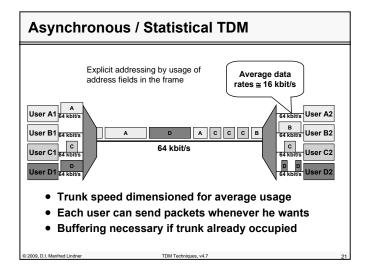
ATDM Operation / Facts

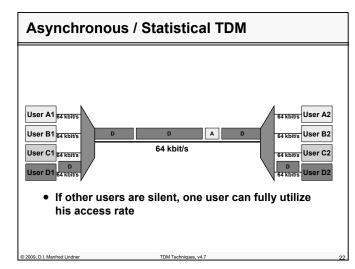
transmission frame can be assembled using

- either a single channel octet by frame
 - · suitable for character oriented terminal sessions
- or multiple channel octets per frame
 - suitable for block oriented computer sessions

in case of congestion

- buffering causes additional delays compared to synchronous TDM


delays are variable because of statistical behavior


- hence not optimal for synchronous transmission requirements like traditional digital voice
- sufficient for transmission requirements of bursty data transfers TDM Techniques, v4.7

© 2009, D.I. Manfred Lindner

Page 04 - 9

© 2009, D.I. Manfred Lindner

L04 - TDM Techniques

Agenda

- Introduction
- Synchronous (Deterministic) TDM
- Asynchronous (Statistical) TDM
- Voice Transmission
- E1 Framing
- T1 Framing

© 2009, D.I. Manfred Lindner

© 2009, D.I. Manfred Lindner

Page 04 - 11

© 2009, D.I. Manfred Lindner

TDM Technique

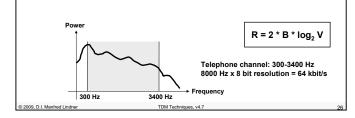
Voice Transmission

digital voice transmission

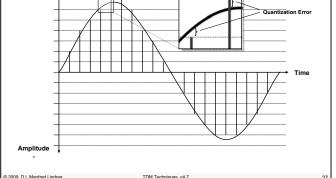
- based on Nyquist's Theorem
- analogous voice can be digitized using pulse-codemodulation (PCM) technique requiring a 64kbit/s digital channel
 - voice is sampled every 125usec (8000 times per second)
 - every sample is encoded in 8 bits
- used nowadays in the backbone of our telephone network
- today analogous transmission only between home and local office -> so called local loop

TDM Techniques v4 7

• synchronous TDM


2009, D.I. Manfred Lindner

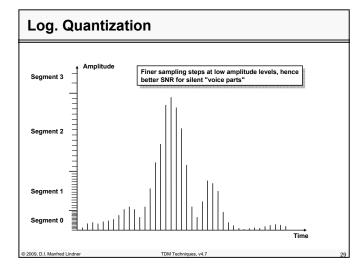
- originated from digital voice transmission

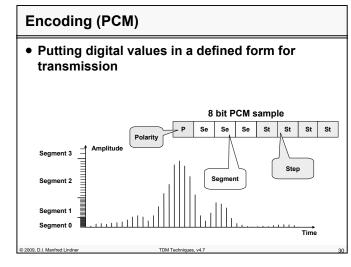

Sampling of Voice

• Nyquist's Theorem

- any analogue signal with limited bandwidth $\rm f_B$ can be sampled and reconstructed properly when the sampling frequency is 2-f_B
- transmission of sampling pulses allows reconstruction of original analogous signal
- sampling pulses are quantized resulting in binary code word which is actually transmitted

© 2009, D.I. Manfred Lindner


Page 04 - 13


© 2009, D.I. Manfred Lindner

Page 04 - 14

L04 - TDM Techniques

L04 - TDM Techniques

L04 - TDM Techniques

Voice Compression

• Waveform Coders

- Non-linear approximation of analog waveform
- PCM (no compression), ADPCM

• Vocoders

- speech is analyzed and compared to a codebook
- only codebook values are transmitted and speed synthesizer at the receiver


Hybrid coders

- Combination of waveform coders and vocoders

TDM Techniques v4 7

- 4.8 kbps to 16 kbps
- Used for mobile phones
- CELP, GSM

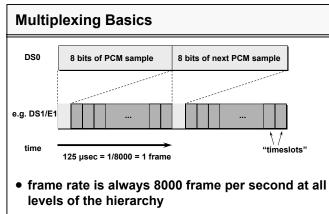
© 2009, D.I. Manfred Lindner

© 2009, D.I. Manfred Lindner

Page 04 - 15

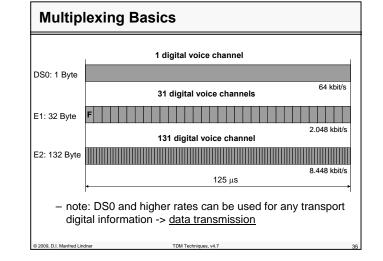
© 2009, D.I. Manfred Lindner

L04 - TDM Techniques


Digital voice channel

2009, D.I. Manfred Lindner

© 2009, D.I. Manfred Lindner


- DS0 = Digital Signal, Level 0
 - 1 timeslot in multiplexing frames
- Base for hierarchical digital communication systems
- Equals one PCM coded voice channel - 64 kbit/s
- Each samples (byte) must arrive within 125 μs
 - To receive 8000 samples (bytes) per second
 - Higher order frames must ensure the same byte-rate per user(!)

TDM Techniques v4 7

• byte interleaved multiplexing

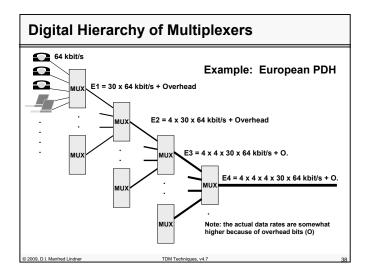
L04 - TDM Techniques

Multiplexing Hierarchies
• why hierarchy and standardization?
 only a hierarchical digital multiplexing infrastructure which is standardized
 can connect millions of (low speed) customers across the city/country/world
 two main architectures
 PDH - plesiochronous digital hierarchy plesio means nearly synchronous, clock differences are compensated by bit stuffing techniques / overhead bits PDH is still used for low-speed lines SDH - synchronous digital hierarchy overcomes deficits of PDH in North America SONET is used telecommunication backbones move very quickly to SONET/SDH

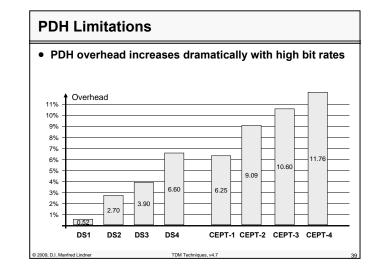
© 2009, D.I. Manfred Lindner

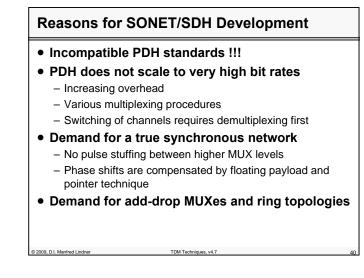
TDM Techniq

Page 04 - 17


© 2009, D.I. Manfred Lindner

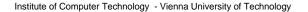
TDM Techni

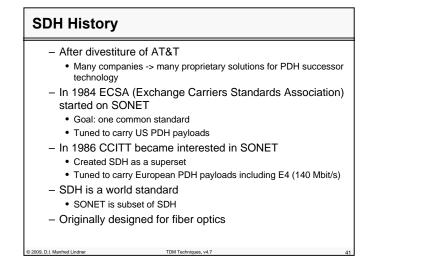

© 2009, D.I. Manfred Lindner

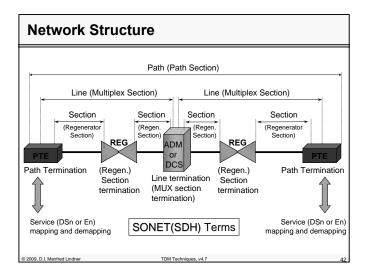

L04 - TDM Techniques

PDH	Hiera	archy						
North America / ANSI				Europe / ITU				
Signal	Carrier	Channels	Mbit/s		Signal	Carrier	Channels	Mbit/s
DS0		1	0.064		DS0	"E0"	1	0.064
DS1	T1	24	1.544		CEPT-1	E1	32	2.048
DS1C	T1C	48	3.152		CEPT-2	E2	128	8.448
DS2	T2	96	6.312		CEPT-3	E3	512	34.368
DS3	Т3	672	44.736		CEPT-4	E4	2048	139.264
DS4	T4	4032	274.176		CEPT-5	E5	8192	565.148
		•	•	signa overl				

L04 - TDM Techniques




Page 04 - 19


© 2009, D.I. Manfred Lindner

L04 - TDM Techniques

L04 - TDM Techniques

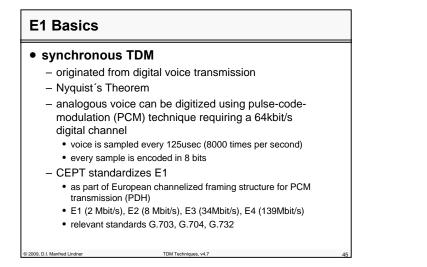
SONET/SDH Line Rates

	SDH	Line Rates	SONET	SONET
	Levels	Mbit/s	Electrical Level	Optical Levels
	STM-0	51.84	STS-1	OC-1
	STM-1	155.52	STS-3	OC-3
	STM-3	466.56	STS-9	OC-9
	STM-4	622.08	STS-12	OC-12
Defined but later	STM-6	933.12	STS-18	OC-18
removed, and only the multiples by fo	STM-8	1244.16	STS-24	OC-24
were left!	STM-12	1866.24	STS-36	OC-36
	STM-16	2488.32	STS-48	OC-48
	STM-32	4976.64	STS-96	OC-96
	STM-64	9953.28	STS-192	OC-192
(Coming soon)	STM-256	39813.12	STS-768	OC-768

Agenda

- Introduction
- Synchronous (Deterministic) TDM
- Asynchronous (Statistical) TDM
- Voice Transmission
- E1 Framing
- T1 Framing

© 2009, D.I. Manfred Lindner


© 2009, D.I. Manfred Lindner

Page 04 - 21

© 2009, D.I. Manfred Lindner

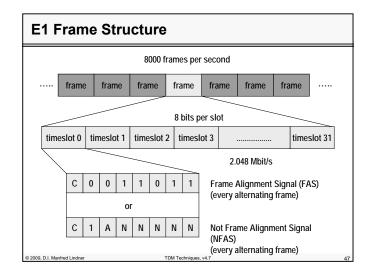
TDM Techniq

L04 - TDM Techniques

E1 Framing

2009, D.I. Manfred Lindner

• G.704 specifies framing structures for different interface rates


- E1 is specified at interface rate of 2.048Mbit/s
- 32 timeslots per frame numbered 0-31
- timeslot 0 for frame synchronization
 - allows distinction of frames and timeslots within frames

TDM Techni

- one timeslot can carry 8 bits
- frame length 256 bits
- frame repetition rate is 8000 Hz
- 32 x 8 x 8000 = 2.048 Mbit/s
- timeslot 16 can be used for signaling

Institute of Computer Technology - Vienna University of Technology

L04 - TDM Techniques

E1 Frame Structure

• every second frame

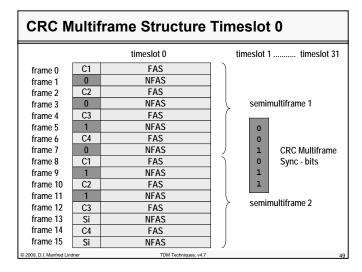
- timeslot 0 contains FAS used for frame synchronization
- C (CRC) bit
 - is part of an optional 4-bit CRC sequence
 - provides frame checking and multiframe synchronization

• A (Alarm Indication) bit

- so called Yellow (remote) alarm
- used to signal loss of signal (LOS) or out of frame (OOF) condition to the far end
- N (National) bits

© 2009, D.I. Manfred Lindner

- reserved for future use


© 2009, D.I. Manfred Lindner

Page 04 - 23

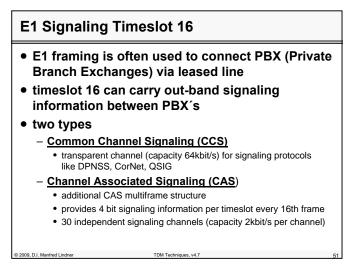
© 2009, D.I. Manfred Lindner

TDM Techniques

L04 - TDM Techniques

CRC Multiframe Structure

CRC check is optional feature


- 16 frames are combined to a multiframe
- start of multiframe can be detected by CRC Multiframe Sync bits
- semimultiframe 2 contains four CRC bits, which were calculated over semimultiframe 1

- Si bits

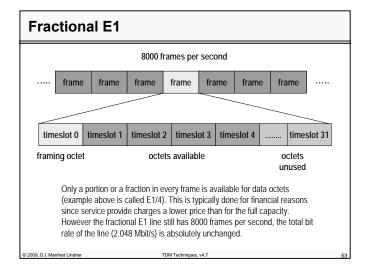
© 2009, D.I. Manfred Lindner

• are used to report CRC errors to the far end

L04 - TDM Techniques

timeslots 0-15	timeslot 16	timeslots17-31
frame 0	0 0 0 0 0 X X X X	
frame 1	A B (01) C D A B (17) C D	0000
frame 2	A B (02) C D A B (18) C D	CAS Multiframe
frame 3	A B (03) C D A B (19) C D	Alignment signal
frame 4	A B (04) C D A B (20) C D	
frame 5	A B (05) C D A B (21) C D	A B C D are signaling bits for the timeslot
frame 6	A B (06) C D A B (22) C D	indicated in ()
frame 7	A B (07) C D A B (23) C D	
frame 8	A B (08) C D A B (24) C D	Y is Multiframe Yellow
frame 9	A B (09) C D A B (25) C D	alarm bit to signal a
frame 10	A B (10) C D A B (26) C D	Loss of Multiframe
frame 11	A B (11) C D A B (27) C D	(LOM)
frame 12	A B (12) C D A B (28) C D	X bits not used (set to 1)
frame 13	A B (13) C D A B (29) C D	
frame 14	A B (14) C D A B (30) C D	
frame 15	A B (15) C D A B (31) C D	
© 2009, D.I. Manfred Lind	er TDM Techniques, v4.7	. 52

CAS Multiframe Structure Timeslot 16


© 2009, D.I. Manfred Lindner

TDM Techniques, v4.

Page 04 - 25

© 2009, D.I. Manfred Lindner

L04 - TDM Techniques

E1 Operational and Physical Aspects

• G.732 specifies

- characteristics of PCM multiplex equipment operating at 2.048Mbit/s
 - based on frame structure G.704
 - encoding law when converting analogue to digital to be A-law
 - procedures for loss and recovery of frame alignment, for fault conditions and consequent actions, for acceptable jitter levels

• G.703 specifies

- electrical and physical characteristics
 - 75 ohm coax, unbalanced
 - 120 ohm twisted pair, balanced
- encoding
 - HDB3

© 2009, D.I. Manfred Lindner

Institute of Computer Technology - Vienna University of Technology

L04 - TDM Techniques

Agenda

- Introduction
- Synchronous (Deterministic) TDM
- Asynchronous (Statistical) TDM
- Voice Transmission
- E1 Framing
- T1 Framing

T1 Basics

© 2009, D.I. Manfred Lindner

© 2009 D I Manfred Lindner

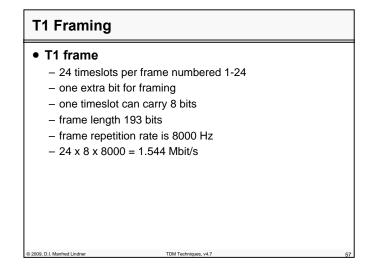
• T1 is North American channelized framing structure for PCM transmission

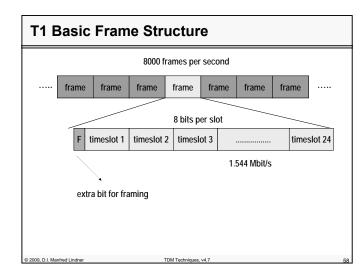
TDM Techniques v4

- synchronous TDM originated from digital voice transmission
- a 64kbit/s digital channel used for carrying PCM encoded voice is called DS0
- DS0 is basic element with lowest bitrate of North American PDH (plesiosynchronous digital hierarchy)
 - DS0, DS1 (T1), DS2, DS3 (45MBit/s), DS4 (274Mbit/s)

TDM Technic

- encoding and physics:
 - AMI or B8ZS (Bipolar 8 Zero bit Suppression)
 - 100 ohm, twisted pair

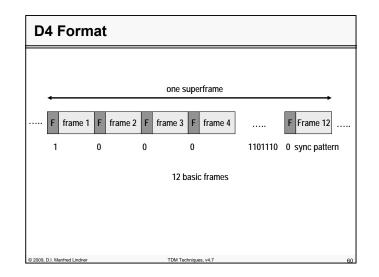

© 2009, D.I. Manfred Lindner


TDM Techniques, v4.

Page 04 - 27

© 2009, D.I. Manfred Lindner

L04 - TDM Techniques


Institute of Computer Technology - Vienna University of Technology

L04 - TDM Techniques

Superframe one framing bit is not sufficient for frame synchronization framing bits of consecutive frames are combined to form a multiframe synchronization pattern multiframe structure is called superframe D4 format 12 frames are combined to one superframe (SF) 12 consecutive framing bits are 100011011100 (1200 bits/s used for synchronization)

TDM Techniques v4 7

© 2009, D.I. Manfred Lindner

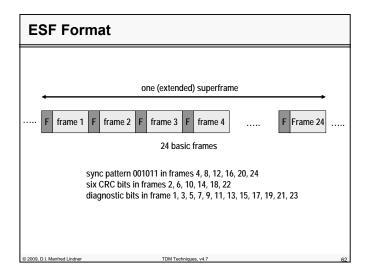
© 2009, D.I. Manfred Lindner

Page 04 - 29

© 2009, D.I. Manfred Lindner

L04 - TDM Techniques

Extended Superframe


• ESF format

2009 D I Manfred Lindner

 24 frames are combined to one extended superframe (ESF)

- 6 framing bits (2000bit/s) are used for synchronization in frames 4, 8, 12, 16, 20, 24 (pattern 001011)
- 6 framing bits (2000 bit/s) may be used for CRC error checking in frames 2, 6, 10, 14, 18, 22
- 12 framing bits (4000 bit/s) may be used for a diagnostic channel in all odd numbered frames

TDM Techniques v4 7

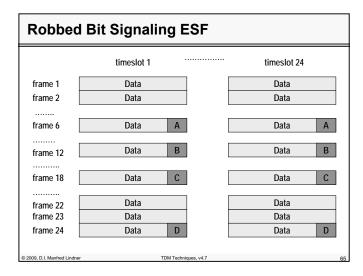
L04 - TDM Techniques

T1 Signaling

© 2009 D I Manfred Lindner

- T1 framing is often used to connect PBX (Private Branch Exchanges) via leased line and hence signaling information between PBX's must be exchanged
- T1 defines no reserved timeslot for signaling
- for Channel Associated Signaling (CAS)
 - robbed bit signaling is used
 - signaling information is transmitted by robbing certain bits, which are normally used for data
 - signaling is placed in the LSB of every time slot in the 6th and 12th frame of every D4 superframe (A, B)
 - signaling is placed in the LSB of every time slot in the 6th, 12th 18th and 24th frame of every ESF superframe (A, B, C, D)

TDM Techniques v4 7


	timeslot 1		 timeslot 24	
frame 1	Data		Data	
frame 2	Data		Data	
frame 3	Data		Data	
frame 4	Data		Data	
frame 5	Data		Data	
frame 6	Data	A	Data	Α
frame 7	Data		Data	
frame 8	Data		Data	
frame 9	Data		Data	
frame 10	Data		Data	
frame 11	Data		Data	
frame 12	Data	В	Data	В

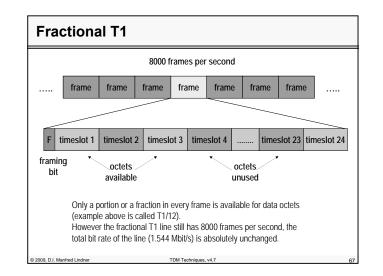
© 2009, D.I. Manfred Lindner

Page 04 - 31

© 2009, D.I. Manfred Lindner

L04 - TDM Techniques

Robbed Bit Signaling


• Robbed Bit Signaling

© 2009, D.I. Manfred Lindner

- in case of transmitting PCM samples stealing one least significant bit every 6th frame has no severe influence on speech reconstruction
- T1 system which uses this technique
 - cannot carry 24 transparent data channels of 64kbit/s each
 - only n x 56 kbit/s data channels are possible
- Common Channel Signaling (CCS)
 - can be used in the same way like E1
 - e.g. timeslot 24 is used as transparent signaling channel

TDM Techniques, v4.7

L04 - TDM Techniques

© 2009, D.I. Manfred Lindner

Page 04 - 33

© 2009, D.I. Manfred Lindner