
| SSL, PGP, Kerberos                                                                             |
|------------------------------------------------------------------------------------------------|
| Secure Socket Layer (Web Security),<br>Pretty Good Privacy (Email Security) and Authentication |
|                                                                                                |
|                                                                                                |
| Agenda                                                                                         |
| • <u>SSL</u><br>• PGP                                                                          |
| • Kerberos                                                                                     |
|                                                                                                |
|                                                                                                |

© 2006, D.I. Manfred Lindner



# **SSL General Aspects**

1

# Runs on top TCP

- TCP included in OS
  - timeout and retransmitting lost data done by TCP
  - that makes SSL a little simpler
- therefore OS must not be changed

# New socket layer interface

- SSL instead TCP
- application must be adapted

# Originally developed

- by Netscape to protect WEB transactions between client and server
  - version 3.0 or 3.1 is currently implemented in Web browsers

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4

# **SSL General Aspects**

2

- Web transaction security is based on SSL
  - HTTPS means standard HTTP over SSL
  - TCP port number 443 used
  - HREF = https://...
  - SSL protocols are activated in browser and server
- Although SSL is not restricted
  - for usage in Web Browsers
    - note: SSL can provide a secure connection to any application
- Web browsers are SSL's the most common application

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4

# **SSL General Aspects**

3

- SSL idea was taken by IETF
  - and further developed -> TLS
- Transport Layer Security
  - RFC 2246 (TLS Protocol)
  - RFC 2478 (Secure SMTP)
  - RFC 2595 (IMAP, POP3)
  - RFC 2712 (Kerberos Ciphersuite for TLS)
  - RFC 2817 (HTTP 1.1)
  - RFC 3268 (AES Ciphersuite for TLS)
  - RFC 3546 (TLS Service Extensions)
- TLSv1.0 and SSLv3.0 are not interoperable
  - TLS uses DH and DSS, SSL uses RSA
  - TLSv1.0 = SSLv3.1

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4

| What SSL does? | 1 | M | h | af | S | S |  | d | <u></u> | Δ | C | 7 |
|----------------|---|---|---|----|---|---|--|---|---------|---|---|---|
|----------------|---|---|---|----|---|---|--|---|---------|---|---|---|

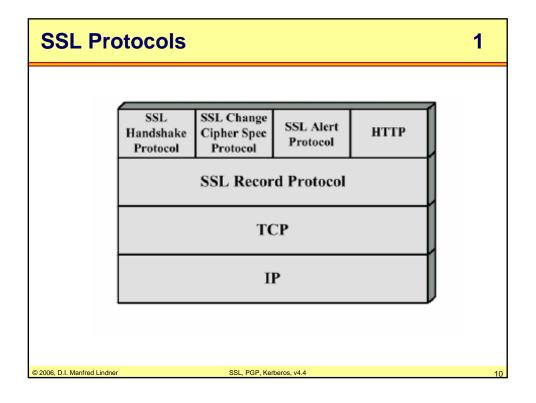
1

- Establishes a secure connection in 4 phases
  - parameter negotiation between client and server
    - session key generation method, authentication method and encryption algorithms to be used for data transfer phase
  - mutual authentication of client and server
    - note: client authentication may be optional
  - session key building and activation of cipher suite
    - integrity key and encryption key
- Secure connection can then be used for the actual data transfer
  - protected by session keys build during establishment

© 2006, D.I. Manfred Lindner

SSL. PGP. Kerberos, v4.4

#### What SSL does?


2

- Data transfer protection mechanism
  - integrity of data exchange by HMAC
    - keyed-SHA-1
    - keyed-MD5
  - confidentiality (privacy) of data exchange by encryption
    - DES-40
    - DES-CBC,
    - 3DES-EDE, 3DES-CBC,
    - RC4-40, RC4-128
- SSL Session-ID allows
  - to differentiate between a new session and a session to be resumed by caching session-ID's
    - usually not more than 24 hours lifetime

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4

# What SSL does? Four methods for session keys generation RSA shared secret S encrypted with public-key of partner Fixed DH key exchange fixed public-DH value contained in DC (certificate) session keys are based on the same base parameters Ephemeral DH key exchange (DHE) actual public-DH value signed with private-key of sender best protection because every session will have a completely different set of generated keys Anonymous DH key exchange basic DH key exchange without signatures and certificates no protection against man-in-the-middle-attack



| SSL Protocols                                                                                                                                         | 2 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| SSL Record Protocol                                                                                                                                   |   |
| <ul> <li>using the reliable octet stream service provided by TCF</li> </ul>                                                                           | כ |
| <ul> <li>partitions these octet stream into records</li> </ul>                                                                                        |   |
| <ul> <li>maximum 16384 bytes per record</li> </ul>                                                                                                    |   |
| <ul> <li>every record starts with a header (type/length) and is<br/>cryptographic protected</li> </ul>                                                |   |
| • integrity                                                                                                                                           |   |
| • privacy                                                                                                                                             |   |
| <ul> <li>four record types (content type field)</li> </ul>                                                                                            |   |
| handshake message (for connection setup and resume)                                                                                                   |   |
| <ul><li>change cipher spec (for activating new security parameter)</li><li>alert (for error messages or notification of connection closure)</li></ul> |   |
| user data                                                                                                                                             |   |
|                                                                                                                                                       |   |

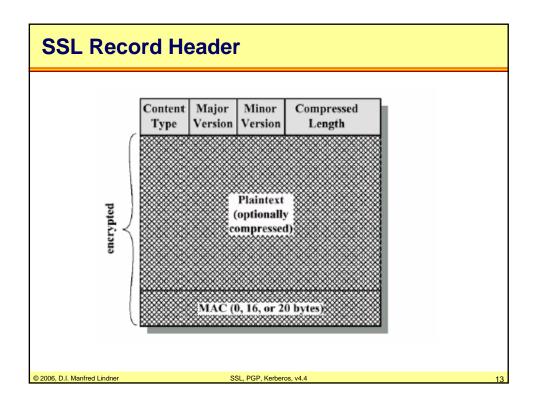
# **SSL Protocols**

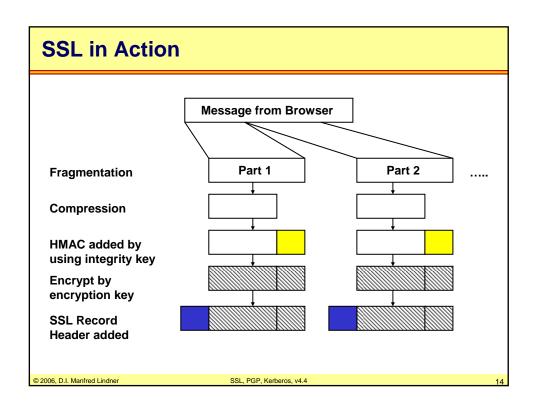
3

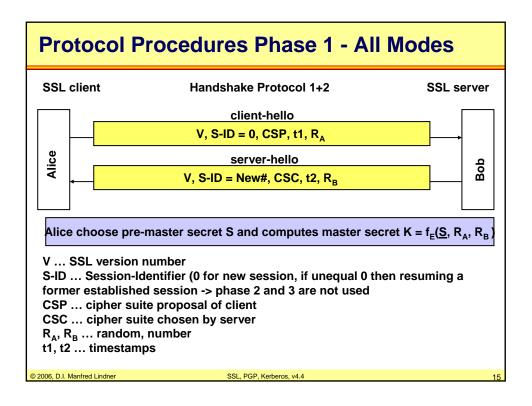
#### SSL Record Protocol

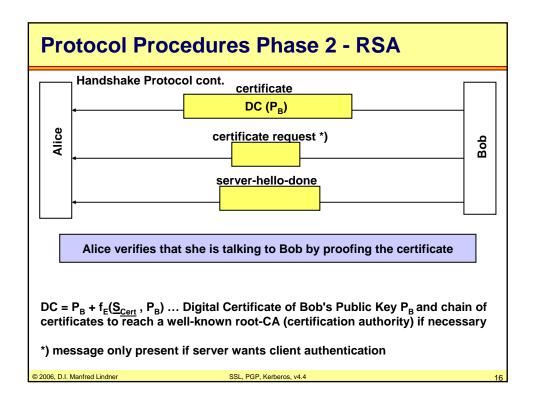
 sub protocol for three other protocols and application data transfer

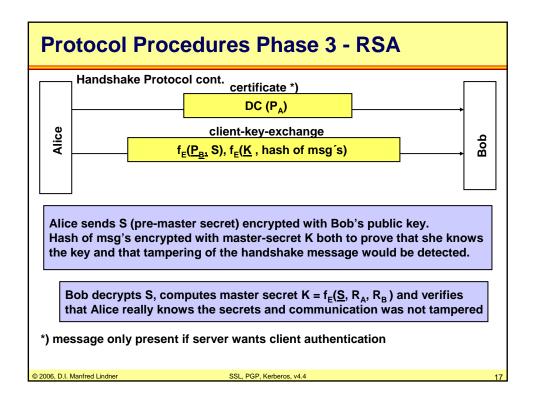
#### SSL Handshake Protocol

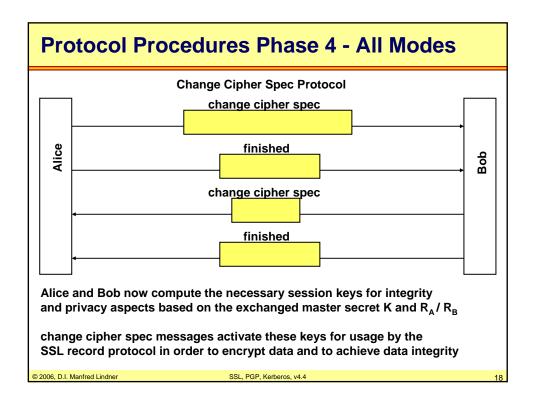

- for authentication and parameter negotiation
  - methods and keys

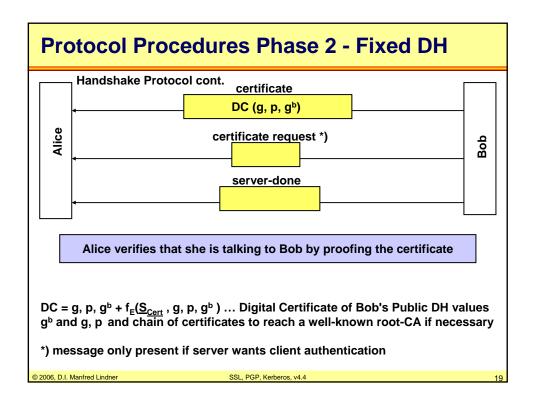

# SSL Change Cipherspecification Protocol

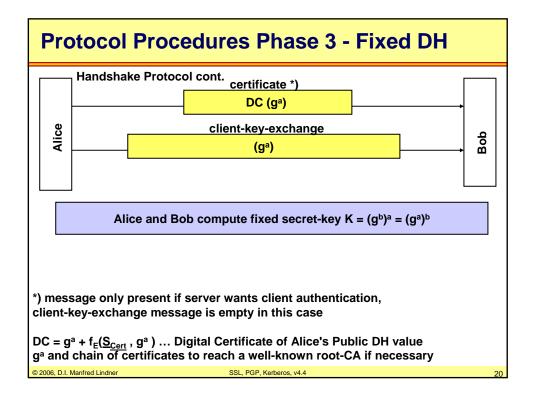

- for signalling of a change of the cipher suite to be used
- SSL Alert Protocol
  - for error signalling

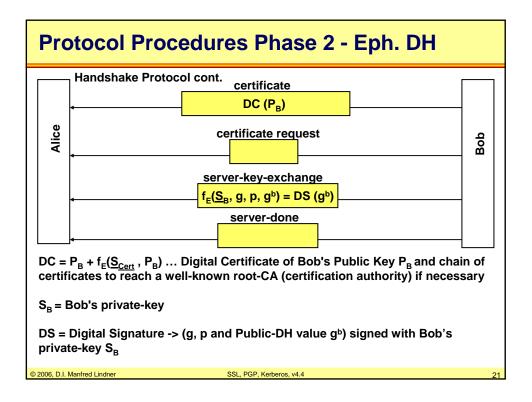

© 2006, D.I. Manfred Lindner

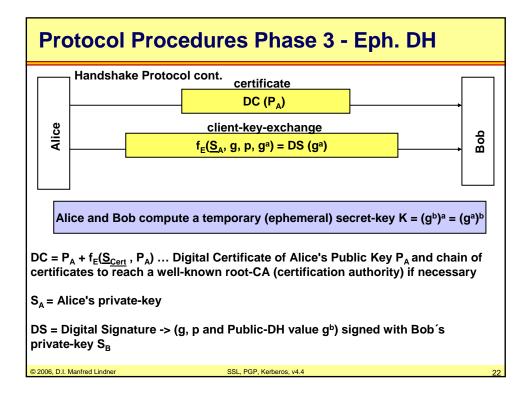

SSL, PGP, Kerberos, v4.4

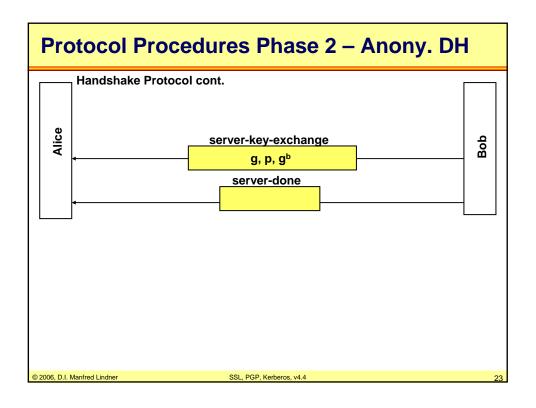


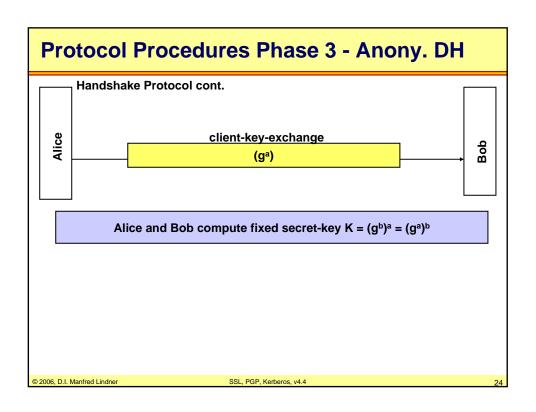














# **SSL** in Web Browsers

- Preconfigured with public-keys of various "trusted" organisations (root CA)
  - e.g. Verisign
- User may modify this list
  - adding, deleting
- Server will sent a certificate
  - which is checked against the list and verified if there is a matching entry
- If no match or no verification then Pop-up window will appear
  - user should say what to do either to import to the list of trusted root CA's or cancel

© 2006, D.I. Manfred Lindne

SSL, PGP, Kerberos, v4.4

0.5

# **Agenda**

- SSL
- PGP
- Kerberos

© 2006, D.I. Manfred Lindner

SL, PGP, Kerberos, v4.4

# **Pretty Good Privacy (PGP)**

- PGP is a complete E-mail security package providing
  - privacy, authentication, digital signature, compression
  - in an easy to use form
- Designed by Phil Zimmermann
  - roots in the 80's
  - first release 1991
  - 1993 released for free private usage in the public domain
  - US government investigation against Phil on breaking the US export rules
  - patent problems (RSA and IDEA)

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4

07

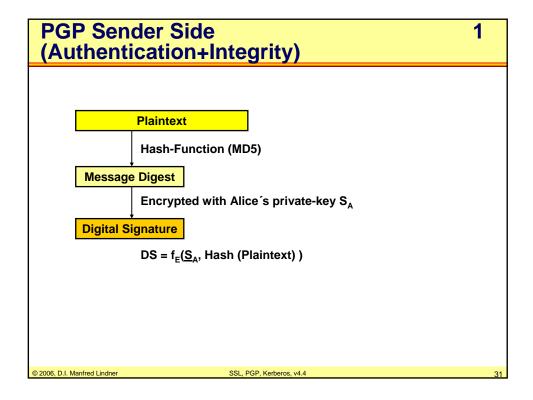
# **Pretty Good Privacy (PGP)**

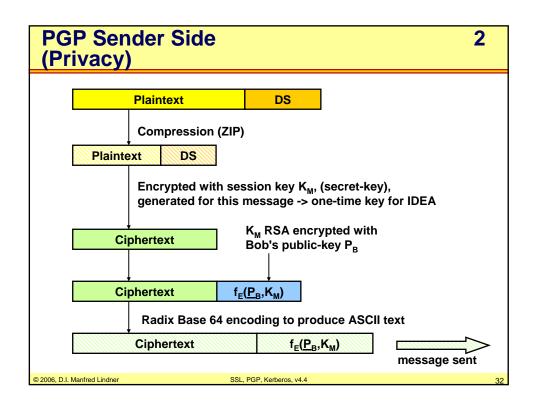
- Because of these problems several versions of PGP exist today
  - PGP classic (described in this module)
    - oldest and simplest version
  - Open PGP (RFC 2440)
  - GNU Privacy Guard (CPG)
    - Free Software Foundation
    - http://www.gnupg.org/
      - "GNU Handbuch zum Schutz der Privatsphäre"
    - · revocation of public keys is possible
  - PGP product
    - company "PGP" is now owned by Network Associates
    - -> www.pgp.com, www.nai.com/default\_pgp.asp
    - -> www.pgpi.com (Freeware)

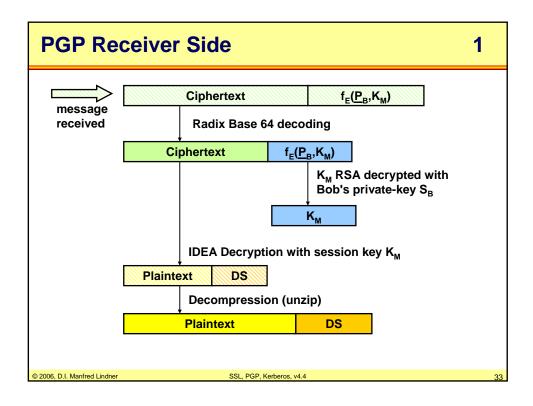
© 2006, D.I. Manfred Lindner

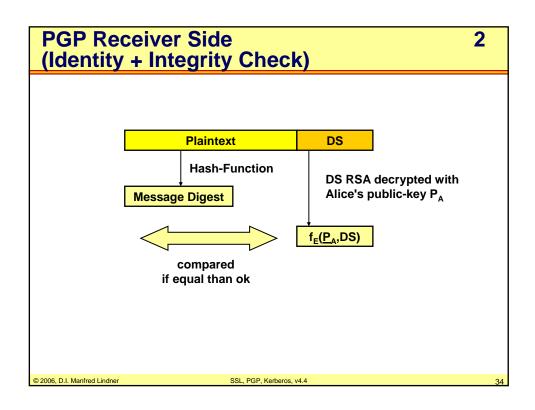
SSL, PGP, Kerberos, v4.4

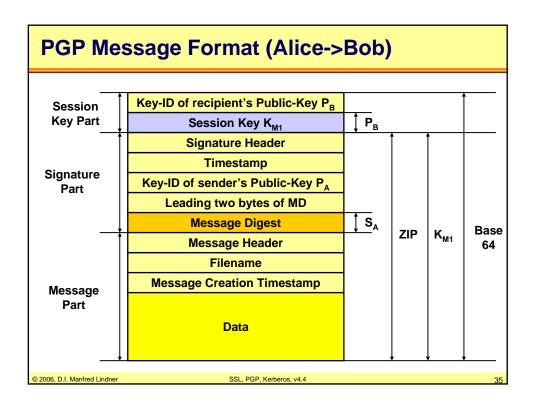
# What Does PGP?

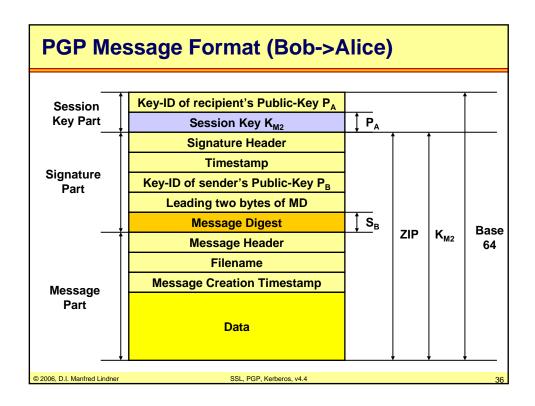

- Encryption of files using a pass-phrase as key
- Create public/private key pairs
- Provide compression
- Provide Radix-64 encoding for mail friendly delivery
- Send/receive encrypted email
- Compute digital signatures
- Manage a public-key database, including certificates
- Certify public-keys (for others)
  - Can use PGP Internet key servers


© 2006, D.I. Manfred Lindne


SSL, PGP, Kerberos, v4.4


29


# Plaintext is encrypted with session key session key is encrypted with public key ciphertext + encrypted session key














# **Performance / Security**

- RSA (asymmetric, slow) is used only for 256 bits
  - encryption of 128-bit MD5 as signature
  - encryption of 128-bit IDEA-key as session-key
- IDEA (symmetric, fast) is used
  - for bulk encryption
- PGP supports four RSA key lengths
  - Casual (384 bits):
    - can be broken easily today
  - Commercial (512 bits):
    - breakable by three letter organizations
  - Military (1024 bits):
    - · not breakable by anyone on earth
  - Alien (2048 bits):
    - · not breakable by anyone on other planets, either

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4

07

# **Management of Keys**

- After installing PGP on Alice's machine
  - a RSA public/private key pair is generated
- Storage of keys
  - public-key is stored on a data structure called <u>public-key</u> <u>ring</u> referenced by User-ID (Alice) and Key-ID (least significant 64 bits of public-key)
  - private-key is stored on the <u>private-key ring</u> in encrypted form together with User-ID and copy of corresponding public-key
  - Alice is asked for a corresponding pass-phrase in order to get access to (to decrypt) her private-key
  - after the private-key is used it is immediately discarded from memory of the used machine

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4

# **Private-Key Protection**

# Alice's pass-phrase

 is used to generate a 128-bit MD5 message digest which in turn is used as 128-bit IDEA key

#### Private-Key

 is encrypted by IDEA algorithm with key based on the pass-phrase and then stored on the private-key ring

# Pass-phrase and IDEA key are then discarded

 to protect the private-key in case of breaking into Alice's computer

# Whenever Alice wants to sign a message

 she must again specify the pass-phrase in order to IDEA decrypt the private-key

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4

00

# **Public-Key Ring**

# Storage place for public-keys

- of all partners to which Alice wants to communicate using PGP
- even her own public-key is stored here in order to be given to partners on request

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4

# Handling of Keys at the Receiver Side

- Bob's storage place for private-keys
  - is his private-key ring
- If a message is received
  - Bob must provide his pass-phrase to get access to his private-key
  - Bob's private-key is then used to decrypt the IDEA onetime session key
    - better would be the name message key because there is not anything like a session in PGP

# After IDEA decryption

 Bob will retrieve Alice's public-key from his public-key ring and verifies the signature of the message

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4

44

# **Public-Key Management**

# Originally

- decentralized, user-controlled approach
  - some call it an anarchy
  - against centralized PKI schemas
- level of trust is introduced
  - each user decides which keys to trust
  - · each user decides which users to trust
    - levels are none, partial and complete
- public-keys of others may be signed with own private-key
  - signed public-keys (= certificate) from trusted users maybe again to be trusted

#### Today

- PGP versions are interoperable with PKI infrastructure
  - CA and X.509

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4

# **How to get Public-Key Securely?**

- The problem is the man-in-the-middle attack
- Therefore
  - physically get the key on floppy disk or cdrom
  - get and verify a key via telephone
    - authentication based on voice recognition and then dictation of the key over phone
  - get the key in an email
    - · generate a fingerprint of the received key
    - call the partner and tell him to dictate the fingerprint over the phone, if the two fingerprints match, the key is certified
  - get the key signed by a trusted person
  - get the key from a key server and verify the fingerprint directly with the corresponding partner out-band
  - get the key signed from a trusted key server

© 2006, D.I. Manfred Lindner

SL, PGP, Kerberos, v4.4

43

# **Other Email Security Techniques**

- PEM (Privacy Enhanced Mail)
  - developed in late 1980's (RFC 1421-1424)
  - same topics covered as PGP
  - some differences
    - keys are certified by X.509 certificates issued by CA
    - rigid CA hierarchy starting at a single root
    - nobody want to support this single root (political problem)
  - at the end PEM approach collapsed finding no root

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4

# **Other Email Security Techniques**

- S/MIME (Secure Multipurpose Internet Mail Extensions)
  - next IETF approach but learning the lessons avoiding the rigid CA hierarchy of PEM
  - RFC 2632-2634 (obsoleted)
  - RFC 3850-3855 (actual)
  - trust anchors instead single root
  - user can have multiple so called trust anchors
  - PGP type certifications are possible but only in 1:1 relation

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4

45

# **Agenda**

- SSL
- PGP
- Kerberos

© 2006, D.I. Manfred Lindner

SL, PGP, Kerberos, v4.4

# Introduction

# Kerberos (old):

 is the watchdog of Hades, whose duty it was to guard the entrance against whom or what does not clearly appear;
 Kerberos is known to have had three heads

# • Kerberos (today):

- is an encryption-based security system that provides mutual authentication between the workstation users (clients) and the servers in a network environment in a secure way without having servers configured with tons of passwords (secrets)
- is an authentication and authorization system
- developed at the MIT for project Athena (1983)

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.

47

# Introduction

- Kerberos (today): cont.
  - version 4
    - symmetric cryptography (uses DES-CBC)
    - IP only
    - RFC 1411
  - version 5
    - symmetric cryptography (uses modified DES-CBC)
      - Plaintext Cipher Block Chaining (PCBC)
    - public-key cryptography as well
    - RFC 1510
    - ASN.1 syntax
  - used in many real systems
    - e.g. for Unix
    - e.g. for Windows NT, Windows 2000

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4

# **Requirements for Kerberos**

#### Secure

protect against eavesdropping and impersonation (need user authentication)

#### Reliable

Kerberos must provide high degree of availability

#### Transparent

minimal user interaction required for security

#### Scalable

 able to support large numbers of clients and servers in a distributed environment

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4

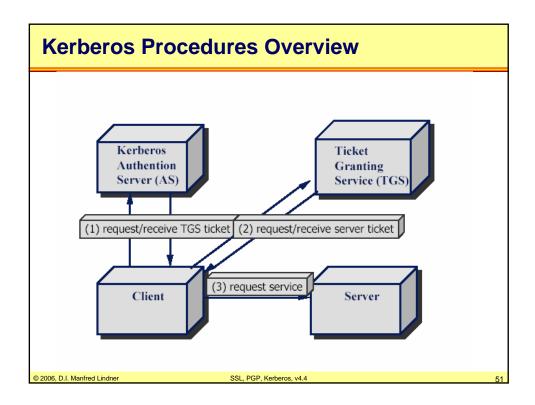
40

#### **Kerberos Structure**

# A distributed Trusted Third Party (TTP) authentication schema

- users trusted an arbitrator (Kerberos server is the trusted arbitrate; like a KDC)
- assumes that normal servers are not trustworthy
- of course Kerberos server must be specially secured

#### Two Kerberos server function involved


- Authentication Server (AS)
- Ticket Granting Server (TGS)

# Synchronized clocks

AS, TGS, client (Alice) and server (Bob)

© 2006, D.I. Manfred Lindner

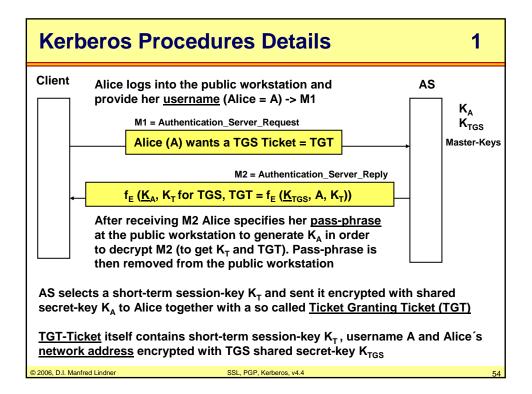
SSL, PGP, Kerberos, v4.4

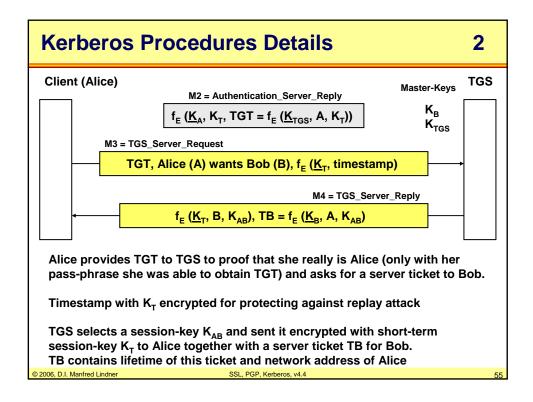


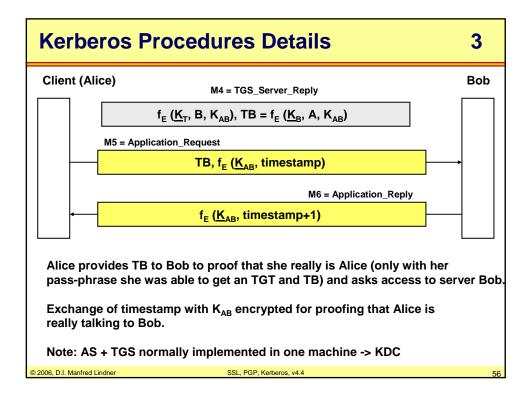
# **Kerberos Principles**

- Each user shares a long-term secret-key with the AS
  - derived by hashing a user-supplied pass-phrase
  - users are clients and servers
    - e.g. Alice as client and Bob as server
- Long-term secret-key
  - pass-phrase is distributed (agreed) off-line
  - hashed pass-phrase is entered at start of each session
  - stored only very short on the client's workstation
  - not sent over the insecure network
  - pass-phrase is used for initial log-in of user to the client computer

© 2006, D.I. Manfred Lindner


SL, PGP, Kerberos, v4.4


# **Kerberos Principles**


- Authentication at the beginning of a network connection
  - but not for the remainder of the session
- The AS uses the long long-term secret-key
  - to set up a short-term shared secret-key with the TGS
    - short-term means hours instead for days/months or years
- The TGS generates
  - shared session-keys between entities
- Does not require client to enter password
  - every time a service is requested service
- Passwords are never sent in clear

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4









#### **Kerberos Pros**

# • Attacks which Kerberos prevents:

- Eavesdropping
  - as all the data in the protocol is sent encrypted (or may be publicly known), any eavesdropper would not gain any information
- Imposture
  - it is hard to imposture someone, the knowledge of the secret key is a proof of identity
- Man-in-the-middle
  - only valid users can generate the needed output (especially to encrypt Alice's address)
- Replay Attacks
  - due to the timestamps and the lifetime fields, it is impossible to resend any ticket (hence receiving authentication as someone else)

© 2006, D.I. Manfred Lindner SSL, PGP, Kerberos, v4.4 5

# **Kerberos Cons**

#### • Kerberos Limitations:

- not effective against password guessing attacks
- only protects S/W that's been modified to use it
- requires a "trusted path" for password entry
- does not provide authorization
- not a host-to-host protocol
  - designed to authenticate a workstation end-user
  - · bad for time sharing machines & diskless workstations
- denial of service attacks not solved
- old authenticators may be stored for detecting later replay, at least during the lifetime of the ticket
  - servers should store all tickets to prevent this, but can't always do so

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4

--

#### **Kerberos Cons**

# Kerberos Limitations (cont.):

- authenticators rely upon synchronized and uncompromised clocks
  - if a host is compromised, the clock can be compromised and replay is easy
- password guessing attacks may work
  - attackers could collect tickets and try it ...
- relies upon trustworthy clients and servers
- relies upon the security of the TGS and the Kerberos server
- requires Kerberos server to work (single point of failure)

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4

# **Kerberos Realms in Version 5**

#### It is not scalable

 that the entire world will trust a single authentication server

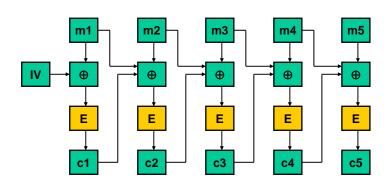
#### Therefore multiple realms

- each with its own AS and TGS

# In order to get a ticket for a server in a distant realm

 client asks his own TGS for a ticket accepted by the TGS in the distant realm

# If the distant TGS has registered


 with the local TGS (in the same way local servers do) a valid ticket for the distant realm can be given to the client

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4

61

# **DES - PCBC in Version 5**



Encryption with Plaintext Cipher Block Chaining because DES-CBC alone cannot guarantee integrity of messages and Kerberos want to provide integrity assurance without depending on the application

© 2006, D.I. Manfred Lindner

SSL, PGP, Kerberos, v4.4