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Public-Key Technique 1

• A pair of keys is used 

– Private Key used by one party
• key kept secret in one system
• to sign messages to be sent to the other party for authentication
• to decrypt messages received from the other party

– Public Key used by the other party
• key may widely be published to many systems
• to encrypt messages to be sent to the other party for privacy
• to verify messages received from the other party for authentication

• Called asymmetric algorithms
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Public-Key Technique 2

• Methodology
– S … Private Key, P … Public Key
– Security association between Alice and Bob 

• Alice generates one key pair (PA, SA), keeps SA secret in her 
system and give PA to Bob

– Security association between Bob and Alice
• Bob generates one key pair (PB, SB), keeps SB secret in his 

system and give PB to Alice

– Encrypted messages from Alice to Bob
• C = fE (PB, M)
• M = fD (SB, C) done by Bob to decrypt

– Encrypted messages from Bob to Alice
• C = fE (PA, M)
• M = fD (SA, C) done by Alice to decrypt
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Public-Key Technique (Privacy) 3

Encryption
Method encryption key, PB

Original message
(Plaintext M)

Decoded message
M = fD(SB, C)

Ciphertext
C = fE(PB, M)

Decryption
Method decryption key, SB

Alice

Bob

Alice wants to send
secretly over an insecure 
channel (privacy aspect)
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Public-Key Technique (Authentication) 4

Encryption
Method encryption key, SB

Original message
(Plaintext M)

Decoded message
M = fD(PB, C)

“Ciphertext”
C = fE(SB, M)

Decryption
Method decryption key, PB

Bob

Alice

Bob wants to sign his 
message to proof that the 
message comes from him 
(authentication aspect)

Note1: This ciphertext is 
not a real cipher because 
everybody who knows the 
public key can read it

Note2: If Alice can decode 
the message she knows 
that the message comes 
from Bob
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Public-Key Algorithms

• RSA
– for encryption and digital signature

• El-Gamal and DSS
– for digital signature

• Diffie-Helman
– allows establishment of a shared secret

• They are all very different from each other
– All hash algorithms do the same thing: they take a 

message and perform an irreversible transformation on it
– All the secret-key algorithms do the same thing: they take 

a block and encrypt in a reversible way and allow 
message ciphers by chaining mechanism of blocks

© 2006, D.I. Manfred Lindner Public-Key, v4.7 8
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• Introduction
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„Natürliche Zahlen“ 1

• a teilt n -> b -> b * a = n
• b ist der komplementäre Teiler
• p = Primzahl („prime“)

– als Teiler nur 1 und p
– Primzahlen sind ungerade Zahlen (Ausnahme p=2) 

• Untersuchung, ob eine Zahl Primzahl ist
– Überprüfen aller Zahlen bis Wurzel aus p

• Primfaktorzerlegung („prime factorisation“)
– 240 = 24*10 = 3*8*2*5 = 2*2*2*2*3*5= 24*3* 5
– 3750 = 25*15*10 = 5*5*3*5*2*5 = 2*3*54

– Primfaktoren bleiben übrig
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„Natürliche Zahlen“ 2

• ggT (größter gemeinsamer Teiler)
– gcd („greatest common divisor)
– bilde Produkt der Primfaktoren, die in beiden Zerlegungen 

gleichzeitig vorkommen
– 240 = 24*10 = 3*8*2*5 = 2*2*2*2*3*5= 24*3* 5
– 3750 = 25*15*10 = 5*5*3*5*2*5 = 2*3*54

– ggT (240, 3750) = 2*3*5 = 30

• ggT (a, n) = 1 -> teilerfremd („relatively prime“)
– 54 = 2*3*3*3= 2*33

– 65 = 5*13
– ggT (54, 65) = 1
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„Natürliche Zahlen“ 3

• kgV (kleinstes gemeinsames Vielfaches)
– bilde Produkt der höchsten Potenzen aller überhaupt 

vorkommender Primfaktoren
– 75 = 3*5*5= 3*52

– 189 = 3*3*3*7= 7*33

– kgV (75, 189) = 7*52*33 = 4725
• ggT (a, n) * kgV (a, n) = a * n

– 75 = 3*5*5= 3*52

– 189 = 3*3*3*7= 7*33

– ggT (75, 189) = 3
– kgV (75, 189) = 7*52*33 = 4725
– 3 * 4725 = 14175 = 75 * 189
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ggT durch Euklid statt Faktorisierung

• ggt lässt sich mit dem Euklid-Algorithmus leicht 
berechnen:
– Zwei Zahlen 792 (n) und 75 (a) 
– 792 = 10*75 + 42 

• (n = q*a + r) -> ggT(n,a) = ggT (a, r) mit 0 <= r < a

– 75 = 1*42 + 33
– 42 = 1*33 + 9
– 33 = 3*9 + 6
– 9 = 1*6 +3
– 6 = 2*3
– 3 ist ggT von 792 und 75
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Vielfachsummendarstellung des ggT

• Vielfachsummendarstellung:
– ist g = ggT (n, a)
– dann gibt es ganze Zahlen s und t so dass
– g = t*a + s*n
– “Lemma von Bezout”
– die Werte t und s lassen sich mit dem erweiterten Euklid-

Algorithmus leicht berechen

© 2006, D.I. Manfred Lindner Public-Key, v4.7 14

Restklassenarithmetik – Modulo (mod)

• Restklassenarithmetik verwendet natürliche 
Zahlen kleiner n
– 0, 1, 2, … n-1

• Auf diese Zahlen lassen sich alle Operationen 
wie Addition, Multiplikation, Subtraktion 
anwenden

• Das Ergebnis einer solchen Operation wird 
durch n geteilt und der dabei entstandene Rest 
als modulo von n (mod n) bezeichnet

a mod n = r 
ist gleichbedeutend  mit der Aussage

es gibt eine ganze Zahl k gibt für die gilt: a = k * n + r 
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ggT und modulo
• Wenn ggT (n, a) = 1 gilt laut Vielfachsummendarstellung

– 1 = t*a + s*n
• Betrachtet man diese Gleichung bezüglich mod n

– 1 = t*a
oder auch 

– (t*a) mod n = 1 
• t*a geteilt durch n ergibt Rest 1
• Man schreibt auch anstelle von t ≡ a-1 (mod n)

• Dann ist a ist bezüglich modulo n invertierbar
– Es existiert daher ein komplementärer Teiler t der obige Gleichung 

erfüllt 
– Anmerkung:

• in der normalen Arithmetik wäre t = 1/a = a-1 (der Kehrwert von a) und 
daher ein Bruch (rationale Zahl)

• In der Restklassenarithmetik gibt es aber keine Brüche sondern nur 
natürliche Zahlen

• dennoch lässt sich hier (wenn a und n teilerfremd sind) mittels 
“erweiterten Euklid” eine natürliche Zahl t finden, die obige Gleichung 
erfüllt

© 2006, D.I. Manfred Lindner Public-Key, v4.7 16

Introduction

• Most of the public-key algorithms
– are based on modular arithmetic

• Modular arithmetic
– uses non-negative integer numbers less than some 

positive integer n
– performs ordinary arithmetic operations like addition or 

multiplication on such numbers but replaces the ordinary 
arithmetic result a with its remainder r when divided by n

– the result r is expressed by “a mod n”
• r = a mod n 

– that means we can find an integer “k” such that
• a = k * n + r
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Modular Addition (mod 10)

8765432109
7654321098
6543210987
5432109876
4321098765
3210987654
2109876543
1098765432
0987654321
9876543210
9876543210

9
8
7
6
5
4
3
2
1
0

+

M C

K
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Encryption / Decryption (add mod 10)

• Addition of constant K mod 10
– can be used for encryption of digits
– each decimal digit maps to a different decimal digit
– reversible way
– constant K is the secret key
– cipher like “Caesar Cipher”

• Mono alphabetic substitution
– of course not a good cipher

• Decryption
– subtracting the secret constant
– if less than 0 then add 10
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Encryption / Decryption (add mod 10)

• Decryption (cont.)
– instead of subtracting you can add the “additive inverse”
– additive inverse of K is the number you have to add in 

order to get 0
• e.g. 7 is the inverse of 3 because (3 + 7) mod 10 = 0

• Encryption with K = 3
– (M + 3) mod 10 = C

• Decryption with add-inv(K) = 7
– (C + 7) mod 10 = M

Ciphertext
C = fE(K, M)

Plaintext
M = fD(K, C)
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Modular Multiplication (mod 10)

1234567890
2468024680
3692581470
4826048260
5050505050
6284062840
7418529630
8642086420
9876543210
0000000000
9876543210

9
8
7
6
5
4
3
2
1
0

x

M C

K
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Encryption / Decryption (mult mod 10)

• Encryption with K = 3
– (M * 3) mod 10 = C

• Decryption
– multiplying C with the “multiplicative inverse”
– multiplicative inverse of K is the number you have to 

multiply to get 1
• (K * mult-inv(K)) mod n = 1

– in ordinary arithmetic
• mult-inv(K) = 1/K because K * 1/K = 1
• 1/K is a fraction

– but in modulo arithmetic we have only integers
• so we cannot find mult-inv(K) for all possible values of K

Ciphertext
C = fE(K, M)
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Decryption (mult mod 10)

• Decryption (cont.)
– for our example we can find multiplicative inverse mod 10 

• just by trying if (K * mult-inv(K)) mod 10 = 1

– so we find:
• (1 * mult-inv(1)) mod 10 = 1  ->  mult-inv(1) = 1
• (3 * mult-inv(3)) mod 10 = 1  ->  mult-inv(3) = 7 
• (7 * mult-inv(7)) mod 10 = 1  ->  mult-inv(7) = 3
• (9 * mult-inv(9)) mod 10 = 1  ->  mult-inv(9) = 9

• Therefore for K = 3 we can decrypt by 
multiplying with mult-inv(K) = 7
– (C * 7) mod 10 = M

• Again that is not a good cipher

Plaintext
M = fD(K, C)
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How to Find the Multiplicative Inverse 

• Finding multiplicative inverse t in mod n arithmetic
– is not obvious especially for a large number n

• for a given a and n -> find number t such that (a*t) mod n = 1
– brute-force search with n = 100 digit number will not work

• But if the two numbers a and n are relatively prime
– then because of the general rule of “Bezout”

• 1 = t*a + s*n
– and finally if the rule of “Bezout” is performed modulo n

• (t*a) mod n = 1
– 1.) there must exists such inverse number t
– 2.) the number t can be found by the Extended Euclid's algorithm

• note to Euclid:
– Basic Euclid’s algorithm finds gcd (greatest common divisor) of two numbers 

(a, n)
• alternatively t can be found by using the Euler formula aφ(n) mod n = 1

– (t*a) mod n = aφ(n) mod n  -> t = aφ(n)-1 mod n 
– useful only if value for φ(n) is known

© 2006, D.I. Manfred Lindner Public-Key, v4.7 24

Relatively Prime

• Why are the numbers 1, 3, 7 and 9
– the only ones with multiplicative inverse mod 10?

• They are the only ones which are relatively prime 
to 10
– each of these numbers does not share any common 

factors with 10 other than 1 (gcd is 1)
• the largest integer that divides 9 and 10 is 1
• the largest integer that divides 7 and 10 is 1
• the largest integer that divides 3 and 10 is 1
• but 6 and 10 have two factors in common -> 1 and 2 
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Euler Function

• In turns out that in general
– when working with mod n all numbers which are relatively 

prime to n have a multiplicative inverse but none of the 
other numbers

• How many numbers less than n are relatively 
prime to n?
– notation for that amount is φ(n)
– φ(n) …. Euler function
– there is no simple formula but in special cases of n we can 

determine φ(n)
• -> see next slides

© 2006, D.I. Manfred Lindner Public-Key, v4.7 26

φ(n) for Prime Numbers

• If n = prime then φ(n) = n-1
– all the integers 1, 2, … n-1 are relatively prime to n

• greatest common divisor with n is 1 for all of them

– note:
• a number n is prime means that the only divisors are 1 and n itself
• it cannot written as a product of other numbers

• If n = product of two distinct prime numbers p 
and q then

φ(n) = (p-1)*(q-1)
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Explanation φ(n) 

• Why?
– p and q are prime numbers and n = p*q

• n could be divided only by p or q
• n could not divided by other numbers because p and q are prime 

(only 1, p or q are possible as factors)

– there are n = (p*q-1) numbers -> (1,2, … n-1)
• we want to exclude all numbers which are not relatively prime
• those are the numbers that are either multiples of p or q

– we have the numbers 1q, 2q, … (p-1)q which are in sum p-1 multiples 
of q which are less than p*q

– we have the numbers 1p, 2p, … (q-1)p which are in sum q-1 multiples 
of p which are less than p*q 

• the rest must be relatively prime

– φ(n) = (p*q -1) - (p-1) - (q-1) = p*q - 1 - p + 1 - q + 1 =
p*q - p - q + 1 = (p - 1) * (q - 1)

© 2006, D.I. Manfred Lindner Public-Key, v4.7 28

Example

• p = 5, q = 7
• p*q = 35 = n
• 1*7, 2*7, 3*7, 4*7

– are not relatively prime to 35 because greatest common 
divisor is 7 instead of 1

– that is p-1 times -> 4 times
• 1*5, 2*5, 3*5, 4*5, 5*5, 6*5

– are not relatively prime to 35 because greatest common 
divisor is 5 instead of 1

– that is q-1 times -> 6 times
• φ(35) = (p-1)*(q-1) = 24

– all other numbers are relatively prime to 35
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Example

35343332313029
28272625242322
21201918171615
141312111098
7654321

p = 5, q = 7

p*q = 35 = n

© 2006, D.I. Manfred Lindner Public-Key, v4.7 30

Euler

• Euler's  theorem
if two numbers a and n are relatively prime then

aφ(n) mod n = 1 (Euler 1.)
and for any integer k 

a1+k*φ(n) mod n = a (Euler 2.)
that is because
(a1 * ak*(φ(n))) mod n = (a1 * a(φ(n))k) mod n = a * 1k = a

• It turns out that
if n = product of two distinct prime numbers p and q then 
the formula’s of Euler are valid even if the number a is 
not relatively prime to n (so for all x with x <= n)

φ(n) = (p-1)*(q-1)
x(p-1)*(q-1) mod n = 1 (Euler 3.)
x1+k*(p-1)*(q-1) mod n = x (Euler 4.)
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Modular Exponentiation (mod 10)

1919191919191
6248624862481
1397139713971
6666666666661
5555555555551
6464646464641
1793179317931
6842684268421
1111111111111
0000000000000
1211109876543210

9
8
7
6
5
4
3
2
1
0

XY

M C

K
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Encryption (exp mod 10)

• Encryption with K = 3
– (M3) mod 10 = C
– K = 3 or K = 7 can be used

• because all input digits are mapped to a unique output digit

– K = 2  or 4 or 6 or 8 cannot be used
• because some input digits are mapped to the same output digit

– K = 1 or K = 5 or K = 9 makes no sense
• because input and output digits are the same

• Exists exp-inverse of K for decryption? 
– exp-inverse is the number so that (MK)exp-inv(K) mod 10 = M

• note: in ordinary arithmetic exp-inv(K) = 1/K = K-1

– Yes sometimes!

Ciphertext
C = fE(K, M)
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Decryption Aspects (exp mod 10)
• Example mod 10:

– only numbers 1, 3, 7 and 9 are relative prime to 10
– φ(10)= 4
– for K = 3

Kφ(n) mod n = 1 is valid because of Euler
Proof : 34 mod 10 = 81 mod 10 = 1
(t*K) mod n = 1 because of lemma of bezout performed modulo n

– exp-inv(K) can be found by using 

(t*K) mod n = 1 = Kφ(n) mod n     ->     t = Kφ(n)-1 mod n

(exp-inv(3)*3) mod 10 = 34 mod 10  ->    exp-inv(3)* = 34-1 mod 10 = 27 mod 10 = 7

• Therefore for K = 3 decryption with exp-inv(K) = 7
– (C7) mod 10 = M
– examples

• 23 mod 10 = 8 , 87 mod 10 = 2097152 mod 10 = 2
• 33 mod 10 = 7 , 77 mod 10 = 823543 mod 10 = 3
• 43 mod 10 = 4 , 47 mod 10 = 16384 mod 10 = 4

Plaintext
M = fD(K, M)
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Important Rule for Exponentiation

• Looking to the table
• columns 1 and 5 are the same, 2 and 6 are the same, 3 and 7 are the 

same, 4 and 8 are the same, …

• Theory proofs
– xy mod n = xy mod φ(n) mod n

• this formula is not true for all values of n but it is true if n is prime or the 
product of two primes for any x with x < n

– in our case n = 10 (prime factors are p=2 , q=5)
– numbers 1, 3, 7 and 9 are relative prime to 10
– φ(10) = 4 = (p-1)*(q-1) = 1 * 4
– xy mod 10 = x(y mod 4) mod 10
– so column i+4th and ith are the same

• Special important case for public-key algorithm (RSA)
– if y mod φ(n) = 1 then for any number x 

xy mod n = x mod n   or (xy = x) mod n
– we need this trick for later for to perform RSA decryption

• modulo function is a one-way function, in order to reverse we need a 
trapdoor, this trick shows the possible trapdoor
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RSA algorithm

• generate public and private keys
– two large primes: p and q
– build n = p*q
– φ(n) = (p-1)*(q-1)
– p and q remains secret
– select e that is relatively prime to φ(n) =(p-1)*(q-1)

• use Basic Euclid to proof you have found such an e 
– gcd (φ(n) , e) = 1 with 1 < e < φ(n)

• therefore it must also exists a multiplicative inverse d of e
– d such that (e*d) mod φ(n) = 1

• note: because of (Euler 3.)
e φ(n) mod n = 1 is valid 

from (Euler 1.): a φ(n) mod n = 1 is valid if a and n are relatively prime 
to each other but in our case e is only relatively prime to φ(n);
but if n = p*q (product of two primes) then (Euler 1.) is valid for all 
numbers x with x less n (Euler 3.) -> hence also for number e
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RSA algorithm

• generate public and private keys (cont.)
– find d that is the multiplicative inverse of e

• that is (e*d) mod φ(n) = 1

– d can be found using the Extended Euclid algorithm
• now the public key is <e, n>
• and the private key is <d, n>
• it is not feasible

– to determine the private key from the public key
• you need to know p and q in order to build φ(n) 

– but factoring is a hard problem
• finding p and q based on n

© 2006, D.I. Manfred Lindner Public-Key, v4.7 38

RSA Encryption / Decryption

• encryption with public key
– divide the plaintext message (regarded as bit string) into 

blocks of M’s where every M falls in the interval 0 < M < n
– compute C = Me mod n (with public key)
– decryption M = Cd mod n (with private key)
– privacy aspect

• sign a message using private key
– compute S = Md mod n (with private key)
– verification M = Se mod n (with public key)
– authentication and integrity aspect
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RSA Algorithm Proof

• Proof of correctness
– we have chosen (e*d) mod φ(n) = 1

• that means that we can write e*d = 1 + k*φ(n) = 1 + k*(p-1)*(q-1)
– because of (Euler 4.) the following rule is valid

x1+k*(p-1)*(q-1) mod n = x for all x less then n
– therefore for any x if we build xed mod n

• then xed mod n = x (1 + k*(p-1)*(q-1)) mod n = x mod n
– if we encrypt and decrypt:

• Encrypt: C = Me mod n
• Decrypt: M = Cd mod n

Cd = (Me)d = (Med) = M mod n
– If we sign and verify:

• Sign: S = Md mod n
• Verify: M = Se mod n

Se = (Md)e = Mde = M mod n
– q.e.d

© 2006, D.I. Manfred Lindner Public-Key, v4.7 40

RSA Example

• p = 3, q = 11
• hence n = 33, φ(n) = 20
• choose e = 3 relatively prime to 20

– take 3 (gcd = 1)
• compute d = 7

– 3d = 1 (mod 20)
• encryption C = M3 mod 33
• decryption M = C7 mod 33
• M < 33

– therefore encode every letter of the message as single 
block; numbers 1 … 26 represent A … Z
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RSA Example (cont.)

E0580318101762612505E

N14781255274414N

N14781255274414N

A0111101A

Z261280000000201757626Z

U21180108854121962121U

S191349292851228685919S 

Plaintext
Sender M3 M3 (mod 33)

Ciphertext

C7 C7 (mod 33)

Plaintext
Receiver

© 2006, D.I. Manfred Lindner Public-Key, v4.7 42

RSA Security 1

• Security depends on difficulty of factoring
– find p and q from n

• If you can factor quickly you can break RSA
– factoring the public value n into p and q, building φ(n) and 

knowing public value e allows you to find d by performing 
the same computations (Euclid's algorithm) as done by the 
key generation

• Fortunately factoring is a hard problem
– Currently 500-bit numbers are the largest which can be 

factorized
• The minimum length proposed for n is 1024 bits 

and for p and q 512 bits each
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RSA Security 2

• There is a possible misuse
– an eavesdropper can guess what is going to be 

transmitted although he is not able to decrypt
– he can encrypt all expected messages with the public key 

and compares the result with the ciphertext he has 
eavesdropped

• especially a problem with short messages 

– if there is a match then he knows what was transmitted
• Therefore is necessary to use special guidelines 

of how to format RSA message
– e.g. short messages should be concatenated with a large 

random number (e.g. 64 bits)
– PKCS … Public-Key Cryptography Standard
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RSA Performance Aspects 1

• Finding large prime numbers
– typically greater than 100100

– pseudo prime numbers (random numbers) are used and checked with 
Fermat´s theorem

• If n is prime then for 0 < a < n -> an-1 mod n = 1
– taken from (Euler 1.): a φ(n) mod n = 1 if a and n are relatively prime
– if n is prime then φ(n) =n-1
– If n is really a prime number all numbers a are relatively prime and Fermat's 

rule is valid

– primality test:
• For a number n to check  pick a number a < n
• If an-1 mod n = 1 is not fulfilled then n is certainly not prime
• If an-1 mod n = 1 is fulfilled then n may or may not be prime (risk  for 

failure is 1 to 1013  in case of randomly generated number of about 
hundred digits)

• Try multiple values of number a to make the test more reliable
• Special attention for Carmichael numbers
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RSA Performance Aspects 2

• Finding e and d
– Euclid´s algorithm

• normal -> gcd of e and φ(n) = 1
• extended -> multiplicative-inverse

• Exponentiation with big numbers
– square and multiply algorithm and do modular reduction 

after each multiply
• e.g. result of 12332 mod 678

– 1232 = 123*123 = 15129 = 213 mod 678
– 1234 = 213*213 = 45369 = 621 mod 678
– 1238 = 621*621 = 385641= 537 mod 678
– 12316 = 537*537 = 288369 = 219 mod 678
– 12332 = 219*219 = 47961 = 501 mod 678
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RSA Facts

• RSA is special type of block cipher
• Variable key-length

– usually 512 - 2048 bits
– compromise between enhanced security and efficiency
– plaintext block need to be smaller than the key length

• Ciphertext block will be the length of the key
• Typically much slower to implement than 

conventional block ciphers like DES or IDEA
– unsuitable for encrypting large messages
– 1000 times (HW) to 100 times (SW) slower 
– mostly used to encrypt a session key for performing a 

secret-key algorithm
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Agenda

• Introduction
• Number Theory
• RSA
• Diffie-Hellmann
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Diffie-Hellman (DH)

• Oldest public-key system still in use
• Compared to RSA

– it does neither encryption nor signatures
• Allows two individuals to agree on a shared key

– even though they can only exchange information in public
– this secret is used for symmetric encryption
– better performance than doing this with RSA

• DH used for key establishment 
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Diffie-Hellman Algorithm 1

• Select p prime and g < p
– g and p might be public, strong primes are used for p

-> more secure if (p-1)/2 is also a prime

• Select random secret numbers SA, SB
– SA,SB are the private DH keys
– Alice: SA -> TA = gSA mod p
– Bob: SB -> TB = gSB mod p

• Exchange TA and TB 
– these are the public DH keys

• Produce shared key K
– Alice: K = TB

SA = (gSB)SA = gSBSA = gSASB mod p
– Bob: K = TA

SB = (gSA)SB = gSASB = gSBSA mod p

© 2006, D.I. Manfred Lindner Public-Key, v4.7 50

Diffie-Hellman Algorithm 2

selects p, g
selects SA

computes
(TB)SA =
(gSB mod p)SA =
gSBSA mod p = K

Alice Bob

p, g, TA = gSA mod p

TB = gSB mod p

selects SB

computes
(TA)SB =
(gSA mod p)SB =
gSASB mod p = K
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Diffie-Hellman Algorithm 3

• Nobody else can compute 
– SA or SB and hence gSASB in reasonable time
– even though he knows TA = gSA mod p
– even though he knows TB = gSB mod p

• Based on the fact
– that discrete logarithm modulo a very large prime number 

is hard to compute
– no one has found any efficient method to do this
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Diffie-Hellman Example 

p = 47, g = 3
selects SA = 8

computes
178 mod 47 = 4

Alice Bob

47, 3, TA = g8 mod 47 = 28

TB = g10 mod 47 = 17 

selects SB = 10

computes
2810 mod 47 = 4
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Man-in-the-middle Attack 1

• Problem:
– when TA and TB are sent  over a public network and an 

active intruder is present
– Alice will establish a secret key with whoever transmitted 

TB but it might not be Bob
– Bob will establish a secret key with whoever transmitted 

TA but it might not be Alice
• There is no authentication (!) in the key 

exchange process of DH
– vulnerable against man-in-the-middle attack
– also known as bucket brigade attack

• DH is only secure against passive attacks
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Man-in-the-middle Attack 2

SA

Alice Bob

p, g, TA = gSA mod p

TB = gSB mod p

SBSZ

p, g, TA = gSZ mod p

TB = gSZ mod p

Intruder

computes
(gSZ mod p)SA =
gSZSA mod p

computes
(gSZ mod p)SB =
gSZSB mod p

uses for messages to Alice
(gSA mod p)SZ = gSASZ mod p
uses for messages to Bob
(gSB mod p)SZ = gSBSZ mod p
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Man-in-the-middle Attack 3 

• Man-in-the-middle Attack
– Intruder intercepts communication, impersonates in both 

directions
– intruder handles a different secret key with every party

• Solutions to overcome this attack
– published public numbers

• e.g. in the newspapers or PKI techniques
• not possible to make active attacks, because the advertised values 

cannot be changed or cannot at least be easily changed

– authentication via out-band channel
• TA and TB are transmitted by voice communication over telephone 

network
• authentication based on voice recognition of other party
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Man-in-the-middle Attack 3 

• Solutions to overcome this attack (cont.)
– authentication via encryption

• Alice and Bob know some sort of secret e.g. each other's public-
key

• encrypt DH value with other side's public-key 
• receiver can decrypt the message by using its own corresponding 

private-key


