L93 - Secret-Key Cryptography

Agenda

- Introduction
- DES
- 3DES
- DES-Modes
- IDEA
- RC4
- AES

L93 - Secret-Key Cryptography

Secret-Key Technique

Secret-Key Techniques

- Examples

- Data Encryption Standard (DES, 56bit)
- Multiple Encryption DES (3DES, 112bit)
- International Data Encryption Algorithm (IDEA, 128bit)
- RC4, RC5
- Advanced Encryption Standard (AES, 128/168/256 bit))
- Encrypting large messages
- Electronic Code Block (ECB)
- Cipher Block Chaining (CBC)
- Output Feedback Mode (OFB)
- Cipher Feedback Mode (CFB)

L93 - Secret-Key Cryptography

Agenda

- Introduction
- DES
- 3DES
- DES-Modes
- IDEA
- RC4
- AES

DES

- History

- designed and developed by IBM
- published 1977 by NIST (National Institute of Standards and Technology) as official standard for unclassified information
- lot of US government regulations refer to DES
- widely adopted by the industry for use in security products
- Scrutinized by cryptanalysts
- for 25 years with no significant flaw found
- Simple logical operations
- can be easily implemented in hardware
- very high speed, up to gigabit/s (!) with special chips

L93 - Secret-Key Cryptography

DES Algorithm

Description of the DES algorithm

- a sequence of permutations and substitutions based on the encryption key
- 64-bit block cipher
- encrypts 64-bit of plaintext resulting in 64-bit of ciphertext
- 56-bit key
- the same key is used for encryption and decryption
- steps
- initial and final permutation
- has nothing to do with security
- make DES less efficient to implement in SW
- in software implementations sometimes ignored
- steps (cont.)
- key transformation
- initial permutation of 56-bit key, then partitioning in two 28-bit units, every unit is rotated left by the number of round
- subkey Ki (i = number of round) is derived applying final permutation
- resulting in 16 subkeys K1 - K16
- for every round the corresponding subkey is used (K1, K2, ... K16)
- round
- 32 input left, 32 input right
- input right becomes output left
- output right is EXORed of input left and a function of input right and subkey Ki
- complexity lies in this function (expansion permutation, EXORed with Ki , given to S-box substitutions, final P -box permutation)
- decryption done by same procedure
subkeys must be used in reverse order (K16, K15, K1)

L93 - Secret-Key Cryptography

DES Round (i)

L93 - Secret-Key Cryptography

DES Round (i) Function F

Security of DES

- Standardization and Design

- originally IBM specified key length 128 bit
- after invitation to discuss this matter with NSA (National Security Agency) it was reduced to 56 bit
- design process (especially S-boxes) was kept secret
- there are some "rumors" about these facts
- Cryptanalyst
- tried out a lot of methods to break it
- actually in most cases only brute-force is the danger
- Conclusion:
- the algorithm is very good and still considered to be very robust, but the key length is not

L93 - Secret-Key Cryptography

Security of DES

- Key length issues

- originally 56 bit
- in 1977 Diffie and Hellmann designed a machine to break DES by brute-force attack
- estimated cost 20Mill \$, successful break in 12 hours
- cost / time to break depending on key-length in 1996
- 40-bit (10Mill\$ / $0.02 \mathrm{sec}, 10 \mathrm{k} \$ / 12 \mathrm{~min}, 400 \$ / 5$ hours)
- 56-bit (10Mill\$ / 21 min, 10k\$ / 556 days, $400 \$$ / 38 years)
- 168-bit (10Mill\$ / 10^{17} years, $10 \mathrm{k} \$ / 10^{19}$ years, $400 \$ /$ too long)
- in 1998 EFF built a special-purpose engine
- DES Cracker for $250 \mathrm{k} \$$ finding key in 4.5 days
- in 1996 minimal recommended key length was 90 bits to provide security through 2016, in 2000128 bit is considered as good key length

Agenda

- Introduction
- DES
- 3DES
- DES-Modes
- IDEA
- RC4
- AES

L93 - Secret-Key Cryptography

How to improve DES

- Increase key length to 112 bits
$-2^{112}\left(5 \times 10^{33}\right)$ possible keys to try out by brute-force attack instead of $2^{56}\left(7 \times 10^{16}\right)$
- seems to be sufficient for the next 100 million years
- Ideas to implement this
- by running DES twice with two different 56 bit keys
- but Cryptanalyst developed a method that makes double encryption suspect and it turned out, that double encryption is not much more secure than single encryption
- Triple Encryption (3DES, 112 bit)
- three stages: first DES encrypt with K1 (56bit), then DES decrypt with K2 (56bit) and finally encrypt with K1 again (EDE) hence slower than single DES, 2 keys (112bit) are seen as save enough,
- EDE allows backward compatibility with single DES when K1 = K2

Agenda

- Introduction
- DES
- 3DES
- DES-Modes
- IDEA
- RC4
- AES

L93 - Secret-Key Cryptography

DES Modes Overview

- DES

- is basically a mono alphabetic substitution cipher using 64-bit character that means whenever the same 64-bit plaintext is encrypted the same 64-bit ciphertext will result
- For encryption of larger messages than 64-bits
- block cipher
- ECB - Electronic Codebook Mode
- CBC - Cipher Block Chaining
- For encryption of messages less than 64-bits
- stream cipher
- CFB - Cipher Feedback
- OFB - Output Feedback

- ECB - Electronic Codebook Mode

- message is broken into 64-bit blocks, padding the last one to full 64-bits
- every block is encrypted with the secret key

L93 - Secret-Key Cryptography

DES Mode - ECB

- ECB - Electronic Codebook Mode (cont.)

- problems which do not show up in the single-block case
- if message contains two identical blocks the ciphertext will be identical
- this can exploited by a cryptanalyst to help breaking DES
- this can be misused by an eavesdropper by gaining information from repeated blocks
- this can be misused by an active intruder by rearranging blocks or modifying blocks to his own advantage
- remove, repeat (replay attack), or interchange blocks at will
- vulnerable to insertion, replay and dictionary attack

L93 - Secret-Key Cryptography

DES Mode - CBC

- CBC - Cipher Block Chaining

- a method avoiding some of the problems of ECB
- by avoiding that two identical blocks of plaintext will result in the same ciphertext
- this makes cryptanalysis for breaking DES more difficult
- basic idea: introduce random numbers into ECB
- problem: how to get the same numbers for decryption
- solution: add a feedback
- plaintext is EXORed with the previous ciphertext block before encryption,
- initialization vector (IV) for the first block - random data to avoid block replay
- IV must be given to the receiver before starting decryption

Encryption with CBC

L93 - Secret-Key Cryptography

DES Mode - CBC

- CBC - Cipher Block Chaining (cont.)
- does not eliminate the problem of someone modifying the message in transit
- eavesdropper can no longer seen repeated values
- this makes cryptanalysis more difficult
- eavesdropper can no longer simple copy or move ciphertext blocks
- but he can still modify the ciphertext by altering ciphertext bits
- modification lead to change in the next block
- modification lead to garbage in the same block
- but what if not recognized or controlled by a program when decrypted
- general solution
- include a 64-bit CRC at the end before encryption and check the CRC at the receiver site
- but still there is certain probability of undetectable bit changes

L93 - Secret-Key Cryptography

DES Modes - Block versus Stream

- Cipher block chaining

- has the disadvantage of requiring an entire 64-bit block to arrive before decryption can begin
- unsuitable for usage with interactive terminals
- people type lines shorter 8 characters, stop and wait for response

- Stream ciphers

- are able to perform byte-by-byte encryption
- DES algorithm act as random number generator
- pseudorandom stream controlled by a key
- EXORing plaintext with pseudorandom stream
- pseudorandom stream bits are based on previous ciphertext
- application of one-time pad
- Cipher Feedback (CFB), Output Feedback (OFB)

DES Mode - CFB
 - CFB - Cipher Feedback

- generation of keystream
- 64-bit block as a shift queue
- remembers last 8 bytes already sent in ciphertext
- queue is encrypted by DES block cipher producing a 64-bit ciphertext
- only leftmost byte of 64-bit ciphertext is used as a keystream generator for EXORing with plaintext byte
- resulting 8-bit of ciphertext is sent on the transmission line and put back into the queue
- the oldest byte will leave the queue
- only the encryption function is used from block cipher
- at decryption we have to EXOR with the same values!
- initialization vector (IV) is needed, must be unique
- start value of shift register

L93 - Secret-Key Cryptography

DES Mode - CFB

L93 - Secret-Key Cryptography

DES Mode - CFB

DES Mode - OFB

- OFB - Output Feedback

- with CFB a single bit error on the line will influence the decryption of 8 bytes
- as long as bad byte is stored in shift queue
- but effect is localized and will not ruin the rest of the message
- if this is not acceptable then OFB
- internal feedback of keys into the keystream generator
- otherwise similar to CFB
- initialization vector (IV) is needed, must be unique
- start value of shift register
- with OFB a single bit error on the line will influence only one bit in the resulting plaintext
- but OFB is less secure than other modes
- keystream reuse attack (same key, IV used twice)

L93 - Secret-Key Cryptography

DES Mode - OFB
shift queue for storage of last encrypted 8 bytes, shifted left at next turn

C10 next character to be received

P10 resulting cleartext character

L93 - Secret-Key Cryptography

Agenda

- Introduction
- DES
- 3DES
- DES-Modes
- IDEA
- RC4
- AES
- history
- 1990, IPES - Improved Proposed Encryption Standard
- 1993, IDEA - International Data Encryption Algorithm
- best block cipher available until AES
- operations
- 16 bit EXOR, addition modulo 2^{16}, multiplication modulo $2^{16}+1$ (prime), 8 rounds mangling
- 64-bit data block, 4 sub-blocks
- 128-bit key, 52 generated subkeys of 16 bits each
- 6 keys for each iteration, 4 for final transformation
- encryption and decryption uses the same algorithm
- reversed and slightly modified subkeys

L93 - Secret-Key Cryptography

IDEA 1. Iteration (Subkeys K1 ... K6)

L93 - Secret-Key Cryptography

IDEA

- twice the speed as DES
- free of NSA guidance
- no real weaknesses found up to now
- 128 bit key length
- breaking IDEA by exhaustive search (brute-force) requires currently unbelievable computing resources
- patented
- but no license fee for non-commercial use
- part of PGP
- Pretty Good Privacy
- can be used in DES - CBC and other DES modes

Agenda

- Introduction
- DES
- 3DES
- DES-Modes
- IDEA
- RC4
- AES

L93 - Secret-Key Cryptography

RC4

- developed by Ron Rivest in 1987 for RSADSI
- secret algorithm for a long time
- RSADSI still treats it as a trade secret
- the name is trademarked
- compatible program was released on Usenet in September 1994
- variable key size stream cipher
- works in OFB mode
- the keystream is independent of the plaintext
- 8x8 S-box
- slowly evolves with use
- highly non-linear
- RSADSI claims that it is immune to differential and linear cryptanalysis

Agenda

- Introduction
- DES
- 3DES
- DES-Modes
- IDEA
- RC4
- AES

L93 - Secret-Key Cryptography

AES
 - Advanced Encryption Standard (AES)

- NIST sponsored a contest for new proposals which should replace DES and TripleDES in 1997
- contest request
- algorithm for a symmetric block cipher
- the full design must be public
- key lengths $128,192,256$ bits must be supported
- both SW and HW implementations must be possible
- the algorithm must be public or licensed on nondiscriminatory terms
- finalists of these contest were
- Rijndael (from Joan Daemon, Vincent Rijmen, 86 votes)
- Serpent (59 votes)
- Twofish (team Bruce Schneier, 31 votes)
- RC6 (from RSA lab, 23 votes)
- Mars (IBM, 13 votes)
- Advanced Encryption Standard (AES)
- Rijndael algorithm was chosen as the new standard
- Rijndael:
- supports key length and block sizes from 128 bits to 256 bits in steps of 32
- AES selects 128 bit block length and key lengths 128, 192, 256
- 128 bit key length gives a key space of 3×10^{38} keys
- is based on Galois field theory
- substitution and permutation in several rounds (10 rounds for 128 bit keys)
- all operations involve entire bytes (SW friendly)
- only one S-box is used, XOR function and rotation is used
- matrix multiplication using finite Galois field GF(2^{8})
- 2 GHZ machine should be able to do 700Mbit/s encryption

L93 - Secret-Key Cryptography

Secret-Key Algorithm Comparison		
- Blowfish - DES - IDEA - RC4 - RC5 - Rijndael - Serpent - TripleDES - Twofish	1-448 bits, 56 bits, 128 bits, 1-2048 bits, 128-256 bits, 128-256 bits, 128-256 bits, 112-168 bits, 128-256 bits,	old and slow too weak to use now good, but patented caution, some keys are weak good, but patented best choice very strong second best choice very strong, widely used
O2005. D.1. Marted Lindiner	Seceeterev, va3	

Additional Information

- TCP-IP Tutorial
- IBM Redbook
- www.redbooks.ibm.com/pubs/pdfs/redbooks/gg243376.pdf
- Chapter 21.1.1
- Chapter 21.1.2
- Internet Protocol Journal
- Volume 4 - Issue 2
- www.cisco.com/ipj/
- Article „Goodbye DES, Welcome AES"

