
Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 1

Internet Transport Layer

TCP Fundamentals, TCP Performance Aspects,
UDP (User Datagram Protocol)

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 2

Agenda

• TCP Fundamentals
• UDP
• TCP Performance

– Slow Start and Congestion Avoidance
– Fast Retransmit and Fast Recovery
– Delayed Acknowledgements
– The Nagle Algorithm
– TCP Window Scale Option and SACK Options
– Explicit Congestion Notification (ECN)

• RFC Collection

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 2

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 3

IP Transmission over

ATM
RFC 1483

IEEE 802.2
RFC 1042

X.25
RFC 1356

FR
RFC 1490

PPP
RFC 1661

Transport Layer Protocols

Physical

Link

Network

Transport

Session

Presentation

Application SMTP HTTP FTP Telnet DNS BootP
DHCP SNMP TFTP

TCP
(Transmission Control

Protocol)

UDP
(User Datagram

Protocol)

IP
ICMP

ARP

(M I M E)

IP Routing Protocols
RIP, OSPF, BGP

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 4

TCP (Transmission Control Protocol)

• TCP is a connection oriented layer 4 protocol
(transport layer) and is transmitted inside the IP
data field

• Provides a secure end-to-end transport of data
between computer processes of different end
systems

• Secure transport means:
– Error detection and recovery
– Maintaining the order of the data without duplication or

loss
– Flow control

• RFC 793

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 3

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 5

4 4

Layer 4 Protocol = TCP (Connection-Oriented)

M M

TCP and OSI Transport Layer 4

IP Host A IP Host B

Router 1 Router 2

TCP Connection (Transport-Pipe)

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 6

TCP Protocol Functions 1

• Data transmission within segments

• ARQ protocol with Continuous Repeat Request
technique and piggy-backed acknowledgments

• Error recovery through sequence numbers
(based on octets !), positive & multiple
acknowledgements and timeouts for each
segment

• Flow control with sliding window and
dynamically adjusted window size

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 4

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 7

TCP Protocol Functions 2

• In general, segments are encapsulated in single
IP packets

• Maximum segment size depends on max. packet
or frame size (fragmentation is possible)

• Call setup with "three way handshake"

• Hides the details of the network layer from the
higher layers and frees them from the tasks of
transmitting data through a specific network

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 8

TCP Ports

• TCP provides its service to higher layers
through ports

• A port can be compared to a SAP (OSI Service
Access Point) or a Novell IPX-socket

• Each communicating computer process is
assigned a port
– identified by a port number

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 5

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 9

TCP Ports and Connections

• By usage of ports the TCP software can serve
multiple processes (browser, e-mail etc.)
simultaneously

• The TCP software functions like a multiplexer
and demultiplexer for TCP connections
– Port 25 on system A:

• process 1, system A <--------> process 3, system B

– Port 53 on system A:
• process 2, system A <--------> proc. 9, system C

– (see next slide)

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 10

IP

TCP Ports and Connections

TCP

Server
Process 1

Server
Process 2

IP

TCP

IP

TCP

Client
Process 3

Client
Process 9

10.0.0.1 10.0.0.2 10.0.0.3

System
A

System
B

System
C

8025 23 3333 1234

Port: TCP
Segment

IP Address:
IP Datagram

Port

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 6

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 11

TCP Sockets and Connections

• In a client-server environment a communicating
server-process has to maintain several sessions
(and also connections) to different targets at the
same time

• Therefore, a single port has to multiplex several
virtual connections; these connections are
distinguished through sockets

• The combination IP address and port number is
called a "socket"
– similar to the OSI "CEP" Connection Endpoint Identifier

• Each socket pair uniquely identifies a
connection

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 12

TCP Sockets and Connections

IP

TCP

Server
Process

IP

TCP

IP

TCP

Client
Process

Client
Process

10.0.0.1 10.0.0.2 10.0.0.3

System
A

System
B

System
C

80 3333 1234

Socket (port 80, 10.0.0.1)
Socket (port 1234, 10.0.0.3)

Socket (port 80, 10.0.0.1)
Socket (port 3333, 10.0.0.2)Conn. 1 Conn. 2

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 7

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 13

TCP Well Known Ports

• Well known ports
– Are reserved for common applications and services (like

Telnet, WWW, FTP etc.) and are in the range from 0 to
1023

– Are controlled by IANA (Internet Assigned Numbers
Authority)

• Registered ports
– start at 1024 (e.g. Lotus Notes, Cisco XOT, Oracle,

license managers etc.). They are not controlled by the
IANA (only listed, see RFC1700)

• Port concept und port numbers also used for
UDP

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 14

TCP Well-Known Ports

• Well-known ports together with the socket
concept allow several simultaneous connections
(even from a single machine) to a specific server
application

• Server applications listen on their well-known
ports for incoming connections

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 8

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 15

Use of Port Numbers

• Client applications chose a free port number
(which is not already used by another
connection) as the source port

• The destination port is the well-known port of
the server application

• Some services like FTP or Remote Procedure
Call use dynamically assigned port numbers:
– Sun RPC (Remote Procedure Call) uses a portmapper

located at port 111...
– FTP uses the PORT and PASV commands...

• ...to switch to a non-standard port

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 16

Well Known Ports
Some Well Known Ports
7 Echo
20 FTP (Data), File Transfer Protocol
21 FTP (Control)
23 TELNET, Terminal Emulation
25 SMTP, Simple Mail Transfer

Protocol
53 DNS, Domain Name Server
69 TFTP, Trivial File Transfer

Protocol
80 HTTP Hypertext Transfer Protocol
111 Sun Remote Procedure Call (RPC)
137 NetBIOS Name Service
138 NetBIOS Datagram Service
139 NetBIOS Session Service
161 SNMP, Simple Network

Management Protocol
162 SNMPTRAP
322 RTSP (Real Time Streaming

Protocol) Server

Some Registered Ports
1416 Novell LU6.2
1433 Microsoft-SQL-Server
1439 Eicon X25/SNA

Gateway
1527 oracle
1986 cisco license managmt
1998 cisco X.25 service

(XOT)
5060 SIP (VoIP Signaling)
6000 \
..... > X Window System
6063 /

... etc.
(see RFC1700)

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 9

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 17

TCP Header

Source Port Number Destination Port Number

0 15 16 31

Sequence Number

Acknowledgement Number

Header
Length

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window Size

TCP Checksum Urgent Pointer

20
bytes

TCP Options (if any)
........... (PAD)

Data (if any)
...........

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 18

TCP Header Entries

• Source and Destination Port
– Port number for source and destination process

• Header Length
– Indicates the length of the header given as a multiple of 32

bit words (4 octets)
– necessary, because of the variable header length

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 10

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 19

TCP Header Entries

• Sequence Number (32 Bit)
– Position of the first octet of this segment within the data

stream ("wraps around" to 0 after reaching 2^32 -1)

• Acknowledge Number (32 Bit)
– Acknowledges the correct reception of all octets up to ack-

number minus 1 and indicates the number of the next
octet expected by the receiver

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 20

TCP Header Entries

• Flags: SYN, ACK

– SYN: If set, the Sequence Number holds the initial value
for a new session

• SYN is used only during the connect phase (can be used to
recognize who is the caller during a connection setup e.g. for
firewall filtering)

– Used for call setup (connect request)

– ACK: If set, the Acknowledge Number is valid and
indicates the sequence number of the next octet expected
by the receiver

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 11

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 21

TCP Header Entries

• Flags: FIN, RST

– FIN: If set, the Sequence Number holds the number of the
last transmitted octet of this session

• using this number a receiver can tell that all data have been
received; FIN is used only during the disconnect phase

– Used for call release (disconnect)

– RST: If set, the session has to be cleared immediately
• Can be used to refuse a connection-attempt or to "kill" a current

connection.

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 22

TCP Header Entries

• Window (16 Bit)
– Set by the source with every transmitted segment to signal

the current window size; this "dynamic windowing"
enables receiver-based flow control

– The value defines how many additional octets will be
accepted, starting from the current acknowledgment
number

• SeqNr of last octet allowed to sent: AckNr plus window value

– Remarks:
• Once a given range for sending data was given by a received

window value, it is not possible to shrink the window size to such a
value which gets in conflict with the already granted range

• so the window field must be adapted accordingly in order to
achieve the flow control mechanism STOP

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 12

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 23

TCP Header Entries

• Checksum
– The checksum includes the TCP header and data area

plus a 12 byte pseudo IP header
• (one´s complement of the sum of all one´s complements of all 16

bit words)

– The pseudo IP header contains the source and destination
IP address, the IP protocol type and IP segment length
(total length). This guarantees, that not only the port but
the complete socket is included in the checksum

– Including the pseudo IP header in the checksum allows
the TCP layer to detect errors, which can't be recognized
by IP (e.g. IP transmits an error-free TCP segment to the
wrong IP end system)

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 24

TCP Header Entries

• Flags: URG
– Is used to indicate important - "urgent" - data
– If set, the 16-bit "Urgent Pointer" field is valid and points to

the last octet of urgent data
• sequence number of last urgent octet = actual segment sequence

number + urgent pointer
• RFC 793 and several implementations assume the urgent pointer

to point to the first octet after the urgent data; However, the "Host
Requirements" RFC 1122 states this as a mistake!

• Note: There is no way to indicate the beginning of urgent data (!)

– When a TCP receives a segment with the URG flag set, it
notifies the application which switch into the "urgent
mode" until the last octet of urgent data is reached

– Examples for use: Interrupt key in Telnet, Rlogin, or FTP

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 13

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 25

TCP Header Entries

• Urgent Pointer
– points to the last octet of urgent data

• Options
– Only MSS (Maximum Segment Size) is used frequently

Other options are defined in RFC1146, RFC1323 and
RFC1693

• Pad
– Is used to make the header length an integral number of

32 bits (4 octets) because of the variable length options

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 26

TCP Header Entries

• Flags: PSH

– "PUSH": If set, the segment should be forwarded to the
next layer immediately without buffering

A TCP instance can decide on its own, when to send data to the
next instance. One strategy could be, to collect data in a buffer and
forward the data when the buffer exceeds a certain size. An
application which needs a low latency or a constant data stream
would like to bypass this buffer with the PSH flag. Also the last
segment of a request could use the PSH flag.

– Today often ignored

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 14

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 27

TCP Connect Phase

Ack = ?
Seq = 921 (random)

Ack = ?
Seq = ? (waiting)Ack = ?, Seq = 921, SYN

Ack = 922
Seq = 433 (random)

Ack = 922, Seq =

433, SYN, ACK
Ack = 434
Seq = 922

Ack = 434, Seq = 922, ACK

Ack = 922
Seq = 434

Ack =434
Seq = 922

Synchronized

Client (Initiator) Server (Listener)

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 28

TCP Connect Phase

• TCP uses the unreliable service of IP, hence TCP
segments of old sessions (e.g. retransmitted or
delayed segments) could disturb a TCP connect

• Random starting sequence numbers and an
explicit negotiation of starting sequence
numbers makes a TCP connect immune against
spurious packets

• Disturbing Segments (e.g. delayed TCP
segments from old sessions etc.) and old "half-
open" connections are deleted with the RST flag

• --> "Three Way Handshake"

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 15

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 29

TCP Duplicates after Connect

• Duplicates of old TCP sessions (same
source/destination IP address and TCP socket)
can disturb a new session

• Thus sequence numbers must be unique for
different sessions of the same socket.

• Initial sequence number (ISN) must be chosen
with a good algorithm

• RFC793 suggests to pick a random number at
boot time (e.g. derived from system start up
time) and increment every 4 µs. Every new
connection will increment additionally by 1

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 30

TCP Data Transfer Phase

Ack = 434
Seq = 922

Ack = 434
Seq = 945

Ack = 922
Seq = 434

Ack = 960
Seq = 434

Ack = 945
Seq = 434

23 Bytes, Ack=434, Seq=922

0 Bytes, Ack=945, Seq=434

15 Bytes, Ack=434, Seq=945

0 Bytes, Ack=960, Seq=434
Ack = 434
Seq = 960

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 16

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 31

TCP Data Transfer Phase

• Acknowledgements are generated for all octets
which arrived in sequence without errors
(positive acknowledgement)
– Note: duplicates are also acknowledged
– If a segment arrives out of sequence, no acknowledges

are sent until this "gap" is closed
• The acknowledge number is equal to the

sequence number of the next octet to be
received
– Acknowledges are "cumulative": Ack(N) confirms all octets

with sequence numbers up to N-1
– Thus, lost acknowledgements are not critical since the

following ack confirms all previous segments

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 32

Ack = 57
includes 49

TCP "Cumulative" Acknowledgement

Data (12), Seq = 9

Ack = 21Data (14), Seq = 21

Ack = 35Data (4), Seq = 35

Ack = 39Data (10), Seq = 39

Ack = 49Data (8), Seq = 49

Ack = 57

= all "ack-1" are received

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 17

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 33

TCP Timeout

• Timeout will initiate a retransmission of
unacknowledged data

• Value of retransmission timeout influences
performance (timeout should be in relation to
round trip delay)
– High timeout results in long idle times if an error occurs
– Low timeout results in unnecessary retransmissions

• Adaptive timeout
– KARN algorithm uses a backoff method to adapt to the

actual round trip delay

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 34

TCP Duplicates

• Reasons for retransmission:
– Because original segment was lost:

No problem, retransmitted segment fills gap, no duplicate
– Because ACK was lost or retransmit timeout expired:

No problem, segment is recognized as duplicate through
the sequence number

– Because original was delayed and timeout expired:
No problem, segment is recognized as duplicate through
the sequence number

• 32 bit sequence numbers provide enough
"space" to differentiate duplicates from originals
– 232 Octets with 2 Mbit/s means 9h for wrap around

(compare to usual TTL = 64 seconds)

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 18

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 35

TCP Duplicates, Lost Original (old TCP)

Data (12), Seq = 9

Ack = 21Data (14), Seq = 21

= no timeout, ack in time

Data (14), Seq = 21

Ack = 39

timeout: retransmission

Data (4), Seq = 35

no Ack 39

Accumulative Ack !

NOTE: Instead of suspending Acks, the
receiver may also repeat the last valid Ack
= Duplicate Ack in order to notify the
sender immediately about a missing
segment (hereby aiding “slow start and
congestion avoidance")

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 36

TCP Duplicate-Ack (new TCP)

Data (12), Seq = 9

Ack = 21Data (14), Seq = 21

= no timeout, ack in time

Data (14), Seq = 21
Ack = 49

timeout: retransmission

Data (4), Seq = 35

Ack 21

Accumulative Ack !

Data (10), Seq = 39

Ack 21

Duplicate Acks !

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 19

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 37

TCP Duplicates, Delayed Original

Data (12), Seq = 9
Ack = 21

Data (14), Seq = 21

Ack = 44

Data (4), Seq = 35
no Ack 39

Data (14), Seq = 21
Ack = 39

Data (5), Seq = 39
Ack = 44

timeout: retransmission

= no timeout, ack in time

duplicate !!!

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 38

TCP Duplicates, Lost Acknowledgement

Data (12), Seq = 9

Ack = 21Data (14), Seq = 21

Data (14), Seq = 21

Ack = 35

timeout: retransmission
Ack = 35

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 20

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 39

TCP Disconnect

• A TCP session is disconnected similar to the
three way handshake

• The FIN flag marks the sequence number to be
the last one; the other station acknowledges and
terminates the connection in this direction

• The exchange of FIN and ACK flags ensures,
that both parties have received all octets

• The RST flag can be used if an error occurs
during the disconnect phase

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 40

TCP Disconnect

Ack = 367
Seq = 921

Ack = 921
Seq = 367

Seq 921 Ack 367 FIN ACK
Ack = 922
Seq = 367

Seq 367 Ack 922 ACK

Ack = 367
Seq = 922

Ack = 922
Seq = 368

Ack =368
Seq = 922

Seq 367 Ack 922 FIN ACK

Seq 922 Ack 368 ACK

Ack = 922
Seq = 367Session A->B closed

Session B->A closed

Host A Host B

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 21

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 41

Flow control: "Sliding Window"

• TCP flow control is done with dynamic
windowing using the sliding window protocol

• The receiver advertises the current amount of
octets it is able to receive
– using the window field of the TCP header
– values 0 through 65535

• Sequence number of the last octet a sender may
send = received ack-number -1 + window size
– The starting size of the window is negotiated during the

connect phase
– The receiving process can influence the advertised

window, hereby affecting the TCP performance

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 42

Sliding Window: Initialization

45 46 47 48 49 50 51

[SYN] S=44 A=? W=8
[SYN, ACK] S=72 A=45 W=4

[ACK] S=45 A=73 W=8

Advertised Window
(by the receiver)

bytes in the send-buffer
written by the application

process

System A System B

first byte that
can be send last byte that

can be send

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 22

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 43

Sliding Window: Principle

1 2 3 4 5 6 7 8 9 10 11 12

Advertised Window
(by the receiver)

bytes to be sent
by the sender

Sent and already
acknowledged

Sent but not yet
acknowledged

Will send as
soon as possible

can't send until
window moves

....

Usable window

Sender's point of view; sender got {ACK=4, WIN=6} from the receiver.

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 44

Sliding Window

• During the transmission the sliding window
moves from left to right, as the receiver
acknowledges data

• The relative motion of the two ends of the
window open or closes the window
– the window closes when data - already sent - is

acknowledged (the left edge advances to the right)
– the window opens when the receiving process on the

other end reads data - and hence frees up TCP buffer
space - and finally acknowledges data with a appropriate
window value (the right edge moves to the right)

• If the left edge reaches the right edge, the sender
stops transmitting data - zero usable window

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 23

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 45

Closing the Sliding Window

1 2 3 4 5 6 7 8 9 10 11 12

Advertised Window

Bytes 4,5,6 sent
but not yet

acknowledged

....

[ACK] S=... A=7 W=3

1 2 3 4 5 6 7 8 9 10 11 12

Advertised
Window

....

Now the sender may send bytes 7, 8, 9. The receiver didn't open the window (W=3, right edge
remains constant) because of congestion. However, the remaining three bytes inside the

window are already granted, so the receiver cannot move the right edge leftwards.

received from the other side:

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 46

Flow Control -> STOP, Window Closed

1 2 3 4 5 6 7 8 9 10 11 12

Advertised
Window

....

Bytes 7,8,9 sent
but not yet

acknowledged

1 2 3 4 5 6 7 8 9 10 11 12

received from the other side:

[ACK] S=... A=10 W=0

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 24

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 47

Opening the Sliding Window

1 2 3 4 5 6 7 8 9 10 11 12

Advertised Window

Bytes 4,5,6 sent
but not yet

acknowledged

....

[ACK] S=... A=7 W=5

1 2 3 4 5 6 7 8 9 10 11 12

Advertised Window

....

The receiver's application read data from the receive-buffer and acknowledged bytes 4,5,6.
Free space of the receiver's buffer is indicated by a window value that makes the right edge of

the window move rightwards. Now the sender may send bytes 7, 8, 9,10,11.

received from the other side:

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 48

Sliding Window

• The right edge of the window must not move
leftward !
– however, TCP must be able to cope with a peer doing this
– called shrinking window

• The left edge cannot move leftward because it is
determined by the acknowledgement number of
the receiver
– only a duplicate Ack would imply to move the left edge

leftwards, but duplicate Acks are discarded

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 25

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 49

TCP Enhancements

• So far, only basic TCP procedures have been
mentioned

• TCP's development still continues; it has been
already enhanced with additional functions
which are essential for operation of TCP
sessions in today's IP networks:
– Slow Start and Congestion Avoidance Mechanism
– Fast Retransmit and Fast Recovery Mechanism
– Delayed Acknowledgements
– The Nagle Algorithm
–

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 50

TCP Enhancements

• Slow Start and Congestion Avoidance
Mechanism:
– controls the rate of packets which are put into a network

(sender-controlled flow control as add on to the receiver-
controlled flow control based on the window field)

• Fast Retransmit and Fast Recovery Mechanism:
– to avoid waiting for the timeout in case of retransmission

and to avoid slow start after a fast retransmission

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 26

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 51

Delayed Acknowledgements

• Immediate acknowledgements may cause an
unnecessary amount of data transmissions
– normally, an acknowledgement would be send

immediately after the receiving of data
– but in interactive applications, the send-buffer at the

receiver side gets filled by the application soon after an
acknowledgement has been send (e.g. Telnet echoes)

• In order to support piggy-backed
acknowledgements (i.e. acks combined with
user data), the TCP stack waits 200 ms before
sending the acknowledgement
– during this time, the application might also have data to

send

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 52

The Nagle Algorithm

• Several applications send only very small
segments - "tinygrams"
– e.g. Telnet or Rlogin where each key-press generates 41

bytes to be transmitted: 20 bytes IP header, 20 bytes TCP
header and only 1 byte of data (!)

• Frequent tinygrams can lead to congestion at
slow WAN connections

• Nagle Algorithm:
– When a TCP connection waits for an acknowledgement,

small segments must not be sent until the
acknowledgement arrives

– In the meanwhile, TCP can collect small amounts of
application data and send them in a single segment when
the acknowledgement arrives

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 27

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 53

Agenda

• TCP Fundamentals
• UDP
• TCP Performance

– Slow Start and Congestion Avoidance
– Fast Retransmit and Fast Recovery
– Delayed Acknowledgements
– The Nagle Algorithm
– TCP Window Scale Option and SACK Options
– Explicit Congestion Notification (ECN)

• RFC Collection

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 54

IP Transmission over

ATM
RFC 1483

IEEE 802.2
RFC 1042

X.25
RFC 1356

FR
RFC 1490

PPP
RFC 1661

Transport Layer Protocols

Physical

Link

Network

Transport

Session

Presentation

Application SMTP HTTP FTP Telnet DNS BootP
DHCP SNMP TFTP

TCP
(Transmission Control

Protocol)

UDP
(User Datagram

Protocol)

IP
ICMP

ARP

(M I M E)

IP Routing Protocols
RIP, OSPF, BGP

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 28

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 55

UDP (User Datagram Protocol, RFC 768)

• UDP is a connectionless layer 4 service
(datagram service)

• Layer 3 Functions are extended by port
addressing and a checksum to ensure integrity

• UDP uses the same port numbers as TCP (if
applicable)

• Less complex than TCP, easier to implement

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 56

4 4

Layer 4 Protocol = UDP (Connectionless)

M M

UDP and OSI Transport Layer 4

IP Host A IP Host B

Router 1 Router 2

UDP Connection (Transport-Pipe)

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 29

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 57

UDP Usage

• UDP is used
– where the overhead of a connection oriented service is

undesirable
• e.g. for short DNS request/reply

– where the implementation has to be small
• e.g. BootP, TFTP, DHCP, SNMP

– where retransmission of lost segments makes no sense
• Voice over IP
• note: digitized voice is critical concerning delay but not against

loss
– Voice is encapsulated in RTP (Real-time Transport Protocol)
– RTP is encapsulated in UDP
– RTCP (RTP Control Protocol) propagates control information in the

opposite direction
– RTCP is encapsulated in UDP

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 58

UDP Header

Source Port Number Destination Port Number

0 15 16 31

UDP Checksum
8 bytes

UDP length

Data (if any)
...........

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 30

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 59

UDP Header Entries

• Source and Destination Port
– Port number for addressing the process (application)
– Well known port numbers defined in RFC1700

• UDP Length
– Length of the UDP datagram (Header plus Data)

• UDP Checksum
– Checksum includes pseudo IP header (IP src/dst addr.,

protocol field), UDP header and user data. One´s
complement of the sum of all one´s complements

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 60

Important UDP Port Numbers
– 7 Echo
– 53 DOMAIN, Domain Name Server
– 67 BOOTPS, Bootstrap Protocol Server
– 68 BOOTPC, Bootstrap Protocol Client
– 69 TFTP, Trivial File Transfer Protocol
– 79 Finger
– 111 SUN RPC, Sun Remote Procedure Call
– 137 NetBIOS Name Service
– 138 NetBIOS Datagram Service
– 161 SNMP, Simple Network Management Protocol
– 162 SNMP Trap
– 322 RTSP (Real Time Streaming Protocol) Server
– 520 RIP
– 5060 SIP (VoIP Signaling)
– xxxx RTP (Real-time Transport Protocol)
– xxxx+1 RTCP (RTP Control Protocol)

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 31

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 61

Agenda

• TCP Fundamentals
• UDP
• TCP Performance

– Slow Start and Congestion Avoidance
– Fast Retransmit and Fast Recovery
– Delayed Acknowledgements
– The Nagle Algorithm
– TCP Window Scale Option and SACK Options
– Explicit Congestion Notification (ECN)

• RFC Collection

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 62

How to Improve TCP Performance?

• Problem:
– in case of packet loss sender can use the window given

by the receiver but when window becomes closed the
sender must wait until retransmission timer times out

– that means during that time sender cannot use offered
bandwidth of the network

– -> TCP performance degradation
• Assumption:

– packet loss in today´s networks are mainly caused by
congestion but not by bit errors on physical lines

• optical transmission
• digital transmission

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 32

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 63

Congestion

• Problem of bottle-neck inside of a network
– Some intermediate router must queue packets
– Queue overflow -> retransmission -> more overflow !
– Can't be solved by traditional receiver-imposed flow

control (using the window field)
• Ideal case: rate at which new segments are

injected into the network = acknowledgment-rate
of the other end
– Requires a sensitive algorithm to catch the equilibrium

point between high data throughput and packet dropping
due to queue overflow:

Van Jacobson’s Slow Start and Congestion Avoidance

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 64

Slow Start 1

• Duplicate Ack can be used for catching this
equilibrium
– That is the base for Slow Start and Congestion Avoidance

• Slow start (and congestion avoidance) is
mandatory for today's TCP implementations !

• Slow start requires TCP to maintain an additional
window: the "congestion window" (cwnd)
– Rule: The sender may transmit up to the minimum of the

congestion window and the advertised window

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 33

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 65

Slow Start 2

• When a new TCP connection is established, the
congestion window is initialized to one segment
– Using the maximum segment size (MSS) of the receiver

(learned via a TCP option field)
• Note: RFC 2414 suggests increasing the initial congestion window

to 2-4 segments

• Each time the sender receives an
acknowledgment, the congestion window is
increased by one segment size

• This way, the segment send rate doubles every
round trip time until congestion occurs; then the
sender has to slow down again

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 66

Slow Start 3

Sender
1 Data-Segment

Receiver

Sender
1 Ack

Receiver

cwnd=1

cwnd=2

Sender
2 Data-Segments

Receiver
cwnd=2

Sender
2 Acks

Receiver
cwnd=4

Sender Receiver
cwnd=4

4 Data-Segments

T

T

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 34

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 67

Congestion

• Slow start encounters congestion, when
– routers connect pipes with different bandwidth
– routers combine several input pipes and the bandwidth of

the output pipe is less than the sum of the input
bandwidths

– and hence TCP segment(s) is (are) dropped by a router
• Congestion can be detected by the sender

through timeouts or duplicate
acknowledgements

• Slow start reduces its sending rate with the help
of another algorithm, called ”Congestion
Avoidance"

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 68

Congestion Avoidance 1

• Slow start with congestion avoidance is a
sender-imposed flow control
– Congestion Avoidance requires TCP to maintain a

variable called "slow start threshold" (ssthresh)

– Initially, ssthresh is set to TCPs maximum possible MSS
(i.e. 65,535 octets)

• On detection of congestion, ssthresh is set to
half the current window size
– here, window size means: minimum of advertised window

and congestion window (but at least 2 segments)
– Note: ssthresh marks a safe window size because

congestion occurred at a window size of 2 x ssthresh

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 35

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 69

Congestion Avoidance 2

• If the congestion is indicated by
– a timeout:

• cwnd is set to 1 -> forcing slow start again
– a duplicate ack:

• cwnd is set to ssthresh (= 1/2 current window size)

• cwnd ≤ ssthresh:
– slow start, doubling cwnd every round-trip time
– exponential growth of cwnd

• cwnd > ssthresh:
– congestion avoidance, cwnd is incremented

by MSS × MSS / cwnd every time an ack is received
– linear growth of cwnd

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 70

Slow Start and Congestion Avoidance

2

4

6

8

10

12

14

16

18

20

cwnd

round-trip times

Ack missing

Timeout

ssthresh = 8

Duplicate Ack

ssthresh = 6

cwnd=16

cwnd=12

High Congestion: Every segment
get lost after a certain time

Low Congestion: only single
segment get lost

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 36

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 71

Long Term View of TCP Throughput

Time

Relative
Throughput

Rate

ssthresh

Duplicate Ack Duplicate Ack Duplicate Ack Duplicate Ack

slow start congestion
avoidance

congestion
avoidance

congestion
avoidance

max.
achievable
throughput

"Wave Effect"

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 72

Limitation of ARQ Protocols

• The performance of any connection-oriented
protocol with error-recovery (ARQ) is limited by
bandwidth and delay by nature!
– Optimum can be achieved by using Continous RQ with

sliding window technique where the window is large
enough to avoid stopping of sending

– Large enough means to cover the time of the serialization
and propagation delays

– Note: senders and receivers window size maybe also be
limited because of memory constraints

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 37

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 73

Limitation of ARQ Protocols

• The sender's window must be big enough so
that the sender can fully utilize the channel
volume

• Channel volume is increased
– by delays caused by buffers
– limited signal speed
– Bandwidth

• The channel volume can be expressed by the
Delay-Bandwidth Product

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 74

The Delay-Bandwidth Product

• In order to fill the "pipe" between sender and receiver
with data packets:
– the window-size advertised by the receiver should be not smaller than

the Delay-Bandwidth Product of the pipe
– window size ≥ capacity of pipe (bits)

= bandwidth (bits/sec) x round-trip time (sec)

21 3 4

8 7 6 5

pipe providing e.g.
256 kbit/s

Sender Receiver

e.g. 1000 Byte Segments (with Payload)

Acknowledgements

Example: For a given RTT = 0.25 s (Round-trip time = elapsed time between the sending of
segment n and the receiving of the corresponding ack n) the minimum window size is 256 kbit/s
x 0.25 sec = 64 kbit. Using a segment size of 1 kB, the sender can transmit 8 segments before
waiting for any acknowledgement.

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 38

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 75

Filling the Pipe (1/2)

Sender's Pipe

Receiver's Pipe

Sender

4

4

Receiver

5 4

6 5

7 6

4

5 4

5

7 6 5

4

7

8

9 8

7 6

54 6

54 6 7

65 7

6 7

cwnd=4

cwnd=5

cwnd=6

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 76

Filling the Pipe (2/2)
Sender

8

Receiver

13 12 11 10

98

98 10

98 10 11

10 9 8

7

10 9 811

11 10 912

14 13 12 11

15 14 13 12

Pipe reflects sum of all delays (propagation
and transmission) between sender and
receiver. We assume the pipe contains no
intermediate bottleneck (e.g. achieved by a
constant bitrate end-to-end).

In this case, the pipe is fully utilized with
cwnd=8. Without having a bottleneck in-
between, further doubling of cwnd would
not matter, as long as the advertised
window is still big enough.

cwnd=7

cwnd=8

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 39

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 77

Delay-Bandwidth Relations

4

1

Given pipe with given RTT and bandwidth:

1) Doubled bandwidth:

2 3 4

321

5 6 7 8

4321 8765

2) Doubled RTT:
Additional capacity

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 78

Agenda

• TCP Fundamentals
• UDP
• TCP Performance

– Slow Start and Congestion Avoidance
– Fast Retransmit and Fast Recovery
– Delayed Acknowledgements
– The Nagle Algorithm
– TCP Window Scale Option and SACK Options
– Explicit Congestion Notification (ECN)

• RFC Collection

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 40

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 79

Receiver Requirements

• Initially, TCP could detect packet loss only by
expiration of the retransmission timer
– receiver stops sending Acks until the sender retransmits

all missing segments
– causes long delays

• Fast Retransmit requires a receiver to send an
immediate duplicate acknowledgement in order
to notify the sender which segments are (still)
expected by the receiver

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 80

Sender Aspects and Fast Retransmit

• When should retransmission occur?
– Note: the receiver will also send duplicate

acknowledgements when segments are arriving in the
wrong order

– Typically reordering problems cause one or two duplicate
acks on the average

• Therefore, TCP sender awaits two duplicate
acknowledgements and starts retransmission
after the third duplicate acknowledgement
– that mechanism is called “Fast Retransmit”

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 41

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 81

Fast Recovery 1

• “Fast Retransmit” automatically commences
“Fast Recovery” in order to rapidly repair single
packet loss

• “Fast Recovery” mechanism:
– ssthresh is set to half the current window size
– cwnd is set to ssthresh plus 3 times the segment size

• Remember:
Fast Retransmit waits for 3 duplicate acks; from this can be
concluded that the receiver must have received 3 segments
already

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 82

Fast Recovery 2

• “Fast Recovery” mechanism cont.
– congestion avoidance, but not slow start is performed

• Remember:
The receiver can only generate a duplicate ack when another
segment is received. That is: there are still segments flowing
through the network! Slow start would reduce this flow abruptly!

– For each additional duplicate ack, the sender increases
cwnd by 1 segment size

– Upon receiving an ack that acknowledges new data
• cwnd is set to ssthresh
• sender resumes normal congestion avoidance mode

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 42

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 83

Fast Recovery 3

• Fast Recovery
– allows the sender to continue to maintain the ack-clocked

data rate for new data while the packet loss repair is being
undertaken

• note: if send window would be closed abruptly the synchronization
via duplicate acks would be lost

– still the single packet loss indicates congestion and back
off to normal congestion avoidance mode must be done

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 84

Fast Retransmit and Fast Recovery

2

4

6

8

10

12

14

16

18

20

cwnd

round-trip times

ssthresh = 8

1st duplicate ack

cwnd = 10

cwnd=12

ssthresh = 7

3rd duplicate ack:
indication for

single packet failure
single packet repair

further duplicate acks

cwnd = 7

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 43

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 85

Agenda

• TCP Fundamentals
• UDP
• TCP Performance

– Slow Start and Congestion Avoidance
– Fast Retransmit and Fast Recovery
– Delayed Acknowledgements
– The Nagle Algorithm
– TCP Window Scale Option and SACK Options
– Explicit Congestion Notification (ECN)

• RFC Collection

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 86

Interactive Traffic

• Immediate acknowledgements may cause an
unnecessary amount of data transmissions

• Normally, an acknowledgement would be send
immediately after the receiving of data

• But in interactive applications, the send-buffer at
the receiver side gets filled by the application
soon after an acknowledgement has been send
(e.g. Telnet echoes)

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 44

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 87

Interactive Traffic

Client Server

data byte

Ack

echo of data byte

Ack

Key pressed TCP received data,
acknowledges it, and
forwards the data to
the server application

Client application
shows data on the

display

Echo from server
application

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 88

Delayed Acknowledgements

• In order to support piggy-backed
acknowledgements (i.e. Acks combined with
user data), the TCP stack waits 200 ms before
sending the acknowledgement

• During this time, the receiving application might
also have data to send

• That is: 50% less (interactive!) traffic using
delayed acknowledgements

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 45

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 89

Interactive Traffic with Delayed ACK

Client Server

data byte

echo of data byte
+ Ack

Ack

Key pressed TCP received data,
delayed
acknowledgement, and
forwards the data to the
server application

Client application
shows data on the

display

Echo plus Ack from
server application

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 90

Agenda

• TCP Fundamentals
• UDP
• TCP Performance

– Slow Start and Congestion Avoidance
– Fast Retransmit and Fast Recovery
– Delayed Acknowledgements
– The Nagle Algorithm
– TCP Window Scale Option and SACK Options
– Explicit Congestion Notification (ECN)

• RFC Collection

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 46

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 91

The Nagle Algorithm

• Several applications send only very small
segments - "tinygrams"
– E.g. Telnet or Rlogin where each key-press generates 41

bytes to be transmitted: 20 bytes IP header, 20 bytes TCP
header and only 1 byte of data (!)

• Frequent tinygrams can lead to congestion at
slow WAN connections

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 92

The Nagle Algorithm

Nagle Algorithm:

• When a TCP connection waits for an
acknowledgement, small segments must not be
sent until the acknowledgement arrives

• In the meanwhile, TCP can collect small amounts
of application data and send them in a single
segment when the acknowledgement arrives

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 47

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 93

Agenda

• TCP Fundamentals
• UDP
• TCP Performance

– Slow Start and Congestion Avoidance
– Fast Retransmit and Fast Recovery
– Delayed Acknowledgements
– The Nagle Algorithm
– TCP Window Scale Option and SACK Options
– Explicit Congestion Notification (ECN)

• RFC Collection

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 94

TCP Header Window Field

Source Port Number Destination Port Number

0 15 16 31

Sequence Number

Acknowledgement Number

Header
Length

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window Size

TCP Checksum Urgent Pointer

20
bytes

TCP Options (if any)
........... (PAD)

Data (if any)
...........

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 48

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 95

TCP Options

• Window-scale option
– a maximum segment size of 65,535 octets is inefficient for

high delay-bandwidth paths
– the window-scale option allows the advertised window

size to be left-shifted (i.e. multiplication by 2)
– enables a maximum window size of 2^30 octets !
– negotiated during connection establishment

• SACK (Selective Acknowledgement)
– if the SACK-permitted option is set during connection

establishment, the receiver may selectively acknowledge
already received data even if there is a gap in the TCP
stream (Ack-based synchronization maintained)

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 96

Agenda

• TCP Fundamentals
• UDP
• TCP Performance

– Slow Start and Congestion Avoidance
– Fast Retransmit and Fast Recovery
– Delayed Acknowledgements
– The Nagle Algorithm
– TCP Window Scale Option and SACK Options
– Explicit Congestion Notification (ECN)

• RFC Collection

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 49

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 97

The Limits of Interpreting Symptoms Only

• Slow start and congestion avoidance try to
maximize the traffic throughput without
inclusion of network information
– Host-based congestion control
– Original IP idea: "Keep the network simple !"
– Slow start and songestion avoidance suspects congestion

only by observing symptoms of the network
• Further improvements require an active

inclusion of the intermediate network
• Led to the introduction of an Explicit Congestion

Notification, which requires the help from
routers that are expecting congestion

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 98

Explicit Congestion Notification (ECN)

• During TCP connection establishment, the ECN
capability is negotiated
– ECN utilizes bit 6 and 7 of the IPv4 TOS field

• ECT (Explicit Congestion Notification Transport System)
• CE (Congestion Experienced)

– Additionally ECN requires the two TCP options
• "ECN-Echo" and "Congestion Window Reduced" (CWR)

• Then the sender
– sets the ECT bit in the IP header of all datagram it sends

• When routers experience congestion
– they may mark the IP header of such packets with an

explicit CE bit flag

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 50

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 99

Explicit Congestion Notification (ECN)

• The receiver detects the CE flag
– and sets the TCP ECN-Echo flag in its acknowledgement

segment
• If the sender receives this acknowledgement

segment with the ECN-echo flag set,
– the sender reduces its congestion window (-> congestion

avoidance)
– the sender sets the TCP CWR flag in its next segment in

order to notify the receiver that the sender has reacted
upon the congestion

• Main advantage:
– the sender does not have to wait for three duplicate acks

to detect the congestion

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 100

Explicit Congestion Notification (ECN) 1

Sender Receiver

Congested router
marks outgoing packets

with the CE bitsets ECT flag in
all IP headers

IP Packets
with CE bit set

Acknowledgements
with TCP

ECN- Echo flag

1)

2)
3)

4)

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 51

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 101

Explicit Congestion Notification (ECN) 2

Sender Receiver

sets CWR flag in
all TCP headers

5) recognizes that
the sender

has reduced cwnd

6)

Congested router
marks outgoing packets

with the CE bit

7)

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 102

Explicit Congestion Notification (ECN) 3

Sender Receiver

sets CWR flag in
all TCP headers

8) recognizes that
router is not

congested anymore

10)

non congested router

9)

11)
12)

sees no ECN-echo
anymore

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 52

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 103

Agenda

• TCP Fundamentals
• UDP
• TCP Performance

– Slow Start and Congestion Avoidance
– Fast Retransmit and Fast Recovery
– Delayed Acknowledgements
– The Nagle Algorithm
– TCP Window Scale Option and SACK Options
– Explicit Congestion Notification (ECN)

• RFC Collection

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 104

RFCs

• 0761 - TCP
• 0813 - Window and Acknowledgement Strategy in TCP
• 0879 - The TCP Maximum Segment Size
• 0896 - Congestion Control in TCP/IP Internetworks
• 1072 - TCP Extension for Long-Delay Paths
• 1106 - TCP Big Window and Nak Options
• 1110 - Problems with Big Window
• 1122 - Requirements for Internet Hosts -- Com. Layer
• 1185 - TCP Extension for High-Speed Paths
• 1323 - High Performance Extensions (Window Scale)

Institute of Computer Technology - Vienna University of Technology

L33 - Internet Transport Layer

© 2008, D.I. Manfred Lindner

Page 33 - 53

© 2008, D.I. Manfred Lindner Internet Transport Layer, v4.5 105

RFCs

• 2001 - Slow Start and Congestion Avoidance (Obsolete)
• 2018 - TCP Selective Acknowledgement (SACK)
• 2147 - TCP and UDP over IPv6 Jumbograms
• 2414 - Increasing TCP's Initial Window
• 2581 - TCP Slow Start and Congestion Avoidance

(Current)
• 2873 - TCP Processing of the IPv4 Precedence Field
• 3168 - TCP Explicit Congestion Notification (ECN)

