


# **Agenda**

- Routing Basics
- Static Routing
- Default Routing
- Dynamic Routing

© 2009, D.I. Manfred Lindner

Routing Overview, v4.5

| ΙP | Routing | 1 |
|----|---------|---|
|----|---------|---|

### routing

- process of choosing a path over which to send IP datagram's
- direct versus indirect delivery
  - depends on destination net-ID
    - net-ID equal to source net-ID -> direct delivery
    - net-ID unequal to source net-ID -> indirect delivery
- IP hosts and routers take part in this process
  - IP hosts responsible for direct delivery of IP datagram's
  - IP hosts responsible for choosing a default router ("default gateway") as next hop in case of indirect delivery of IP datagram's
  - routers responsible for selecting the best path in a meshed network in case of indirect delivery of IP datagram's

**IP Routing** 2

### indirect routing of IP datagram's

- is done by routers based on routing tables
- routing table
  - database of known destinations
- database contains
  - next hop router (and next hop MAC address in case of LAN)
  - outgoing port
  - metric (information how far away is a certain destination network)
  - time reference (information about the age of the table entry)

for every known (or specified) destination network

net-ID / subnet-mask

# IP Routing 3

### routing can be either

- static
  - routing tables are preconfigured by network administrator
  - non-responsive to topology changes
  - can be labor intensive to set up and modify in complex networks
  - no overhead concerning CPU time and traffic

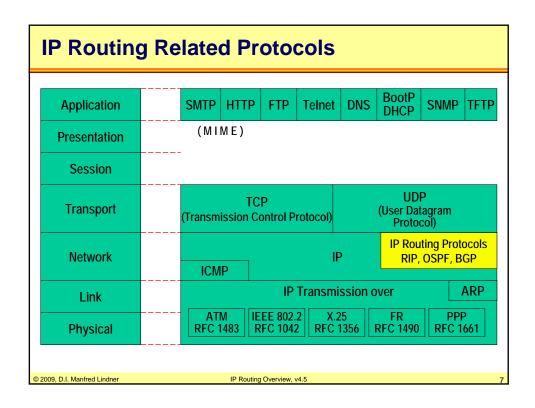
### or dynamic

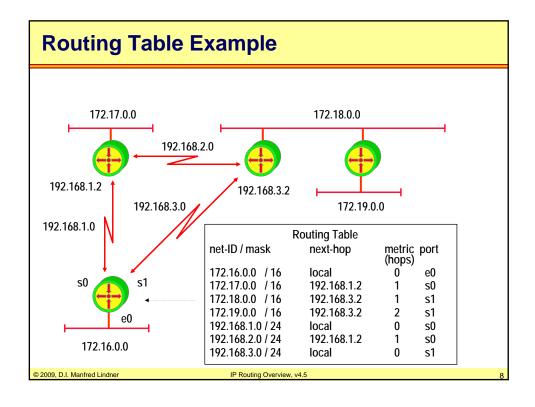
- routing tables are dynamically updated with information received from other routers
- communication between routers is done by routing protocols
- responsive to topology changes
- low maintenance labor cost

© 2009, D.I. Manfred Lindner

P Routing Overview, v4.5

# IP Routing


4


### routing protocol

- discovers current network topology
- determines the best path to every reachable network
  - best path is determined by the help of metric
- stores information about best paths in the routing table
- uses routing messages for communication
- routing messages need a certain percentage of bandwidth
- dynamic routing need a certain percentage of CPU time of the router
- that means overhead

© 2009, D.I. Manfred Lindner

Routing Overview, v4.5





# **IP Routing Paradigm**

### Destination Based Routing

source address is not taken into account for the forward decision

### Hop by Hop Routing

 IP datagram's follow the path, which is pointed by the current state of the routing tables

### Least Cost Routing

- normally only the best path is considered for forwarding of IP datagram's
- alternate paths will not be used in order to reach a given destination
  - note:some methods allow load balancing if paths are equal

© 2009, D.I. Manfred Lindner

P Routing Overview, v4.5

### Router

- Initially Unix workstations with several network interface cards
- Today specialized hardware

# Cisco 3600 Router Serial 0/1 Serial 0/0 Ethernet 1/1 Ethernet 0/1 Ethernet 0/1 Ethernet 0/1

© 2009, D.I. Manfred Lindner

IP Routing Overview, v4.5

# **Agenda**

- Routing Basics
- Static Routing
- Default Routing
- Dynamic Routing

© 2009, D.I. Manfred Lindner

P Routing Overview, v4.5

\_\_\_\_\_

# **Static Routing**

1

- static routing
  - preconfigured static routing tables
  - no overhead traffic
  - often sufficient in case of lack of any network redundancy
    - e.g. reaching stub networks
    - e.g. hub and spoke topology
  - but can be labor intensive to set up and modify in complex networks
    - overhead can be reduced by default route
  - sometimes only or preferred way in certain technologies
    - Dial on Demand Networks (e.g. X.25, ISDN, Frame Relay, ATM)
  - sometimes used for security reasons

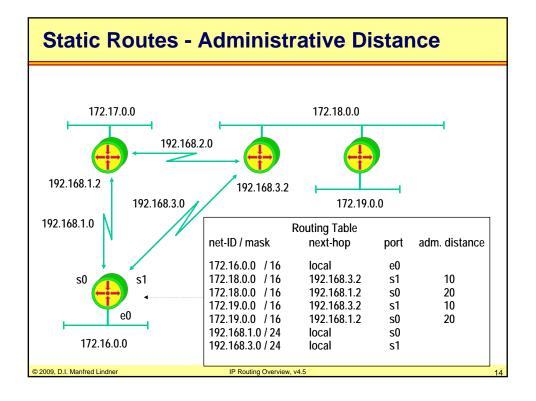
© 2009, D.I. Manfred Lindner

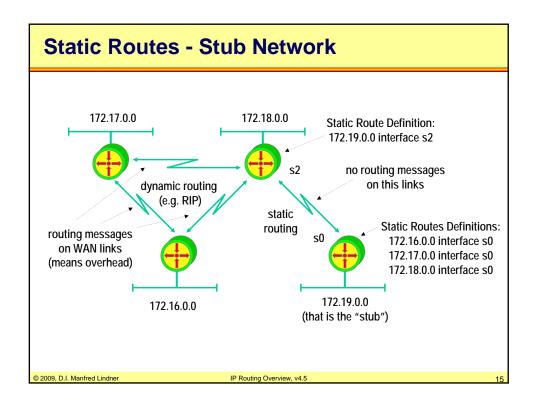
IP Routing Overview, v4.5

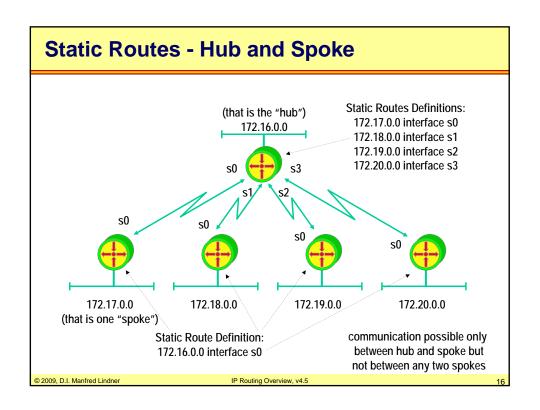
# **Static Routing**

2

### static routing (cont.)


- topology changes can not automatically be handled
- but in certain implementations exceptions are possible


### example for such a behavior


- static routing with the possibility to specify an alternate (secondary) route
- if primary route fails the system automatically switch over to the alternate route
- e.g. Cisco "Administrative Distance" feature
  - allows to give a weight to an static route entry
  - the lower the weight the better

© 2009, D.I. Manfred Lindner

P Routing Overview, v4.5





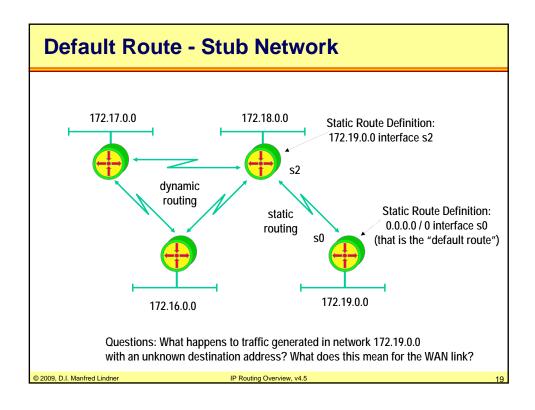


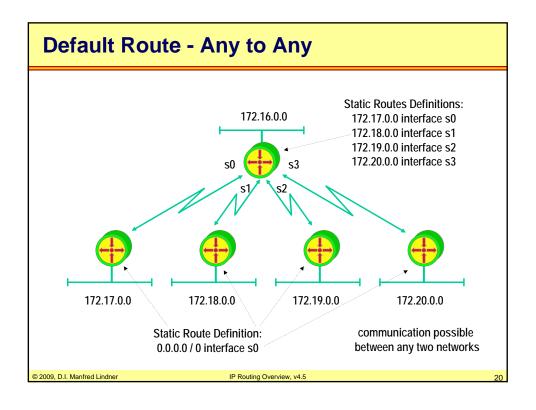
# **Agenda**

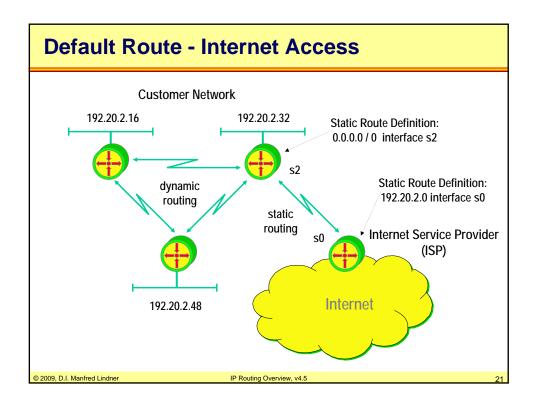
- Routing Basics
- Static Routing
- Default Routing
- Dynamic Routing

© 2009, D.I. Manfred Lindner

P Routing Overview, v4.5


### **Default Route**


- general routing principle
  - traffic to destinations that are unknown to the router will be discarded by the router (ICMP message !!!)
  - behavior can be changed by default route
- default routing principle
  - traffic to destinations that are unknown to the router will be sent to a <u>default route</u> (default network)
  - implies that another router might know more networks
  - permits routers to carry less than full routing tables
  - default network marked with net-ID equal 0.0.0.0
    - in routing tables
    - in routing updates used by dynamic routing


© 2009, D.I. Manfred Lindner

IP Routing Overview, v4.5

1Ω









**Agenda** 

IP Routing Overview, v4.5

## **Dynamic Routing**

### dynamic routing

- routing tables are dynamically updated with information from other routers done by routing protocols
- routing protocol
  - discovers current network topology
  - determines the best path to every reachable network
  - stores information about best paths in the routing table
- metric information is necessary for best path decision
  - in most cases summarization along the a given path of <u>static</u> preconfigured values
    - hops, interface cost, interface bandwidth, interface delay, etc.
- two basic technologies
  - · distance vector, link state

© 2009, D.I. Manfred Lindner

P Routing Overview, v4.5

00

### **Distance Vector Protocols**

1

- routing table is sent periodically to all immediately-neighboring routers (IP limited broadcast)
  - after power-up routing table contains information about local attached networks only
- incoming updates are checked for changes
  - new networks, metric change of already known networks, etc.
- own routing table is adapted accordingly
  - changes announced by next periodic routing update

© 2009, D.I. Manfred Lindner

IP Routing Overview, v4.5

| Distance Vector Protocols                                                              | 2 |
|----------------------------------------------------------------------------------------|---|
| metric information based on hops (distance between hops)      limited view of topology |   |
| limited view of topology                                                               |   |
| <ul> <li>routers view is based on its routing table only</li> </ul>                    |   |
| <ul> <li>exact view how to reach local neighbors</li> </ul>                            |   |
| <ul> <li>but topology behind neighbors is hidden</li> </ul>                            |   |
| <ul> <li>based on signpost principle only</li> </ul>                                   |   |
| <ul><li>several procedures necessary</li></ul>                                         |   |
| <ul> <li>to solve problems caused by limited view</li> </ul>                           |   |
| <ul> <li>e.g. count to infinity, routing loops</li> </ul>                              |   |
| <ul> <li>to reduce convergence time</li> </ul>                                         |   |
| time to reach consistent routing tables after topology change                          |   |

### **Distance Vector Protocols**

3

- some usual procedures to solve inherent problems
  - maximum hop count
  - split horizon, poison reverse
  - triggered update
  - hold down, route poisoning
- distance vector protocols examples
  - RIP, RIPv2 (Routing Information Protocol)
  - IGRP (Cisco, Interior Gateway Routing Protocol)
  - IPX RIP (Novell)
  - AppleTalk RTMP (Routing Table Maintenance Protocol)

© 2009, D.I. Manfred Lindner

IP Routing Overview, v4.5

### **Link State Protocols**

1

### routers have a global view of network topology

- exact knowledge about all routers, links and their costs (metric) of a network stored in topology database ("roadmap")
- roadmap principle

### routing table entries are based

on computation of own router-resident topology database

### SPF computation

- <u>S</u>hortest-<u>P</u>ath-<u>F</u>irst (Dijkstra) algorithm to find lowest cost path to every destination network
- lowest cost path is stored in routing table

© 2009, D.I. Manfred Lindner

IP Routing Overview, v4.5

07

### **Link State Protocols**

2

### topology changes (link up or down, link state)

- are recognized by routers responsible for supervising those links
- are flooded by responsible routers to the whole network
   (<u>L</u>ink <u>S</u>tate <u>A</u>dvertisements, LSAs)

### flooding

- is a controlled multicast procedure to guarantee that every router gets corresponding LSA information as fast as possible
- is used to update network topology database and hence may lead to change of routing table

© 2009, D.I. Manfred Lindner

IP Routing Overview, v4.5

### **Link State Protocols**

3

### with the lack of topology changes

- local hello messages are used to supervise local links (to test reachability of immediate-neighboring routers)
- therefore less routing overhead concerning link bandwidth than periodic updates of distance vector protocols

# but more network load is caused by such a routing protocol

- during connection of former separate parts of the network
- topology database synchronization

© 2009, D.I. Manfred Lindner

P Routing Overview, v4.5

00

### **Link State Protocols**

4

### in large networks

- two level hierarchy is used to decrease
  - CPU time for SPF calculations
  - memory requirement for storing topology database
- one backbone area
- several non-backbone areas
  - non-backbone area can be connected by area border router to backbone area only
- summarization possible at area border routers
  - route aggregation to reduce size of routing tables
  - summarization means that some net-IDs can be summarized in one net-ID only

© 2009, D.I. Manfred Lindner

IP Routing Overview, v4.5

### **Link State Protocols**

5

### • link state protocols examples

- OSPF (Open Shortest Path First)
- Integrated IS-IS (IP world)
  - note: Integrated IS-IS takes another approach to handle large networks (topic outside the scope of this course)
- IS-IS (OSI world)
- PNNI (in the ATM world)
- APPN (IBM world),
- NLSP (Novell world)

© 2009, D.I. Manfred Lindner

P Routing Overview, v4.5

04

# **Routing Protocol Comparison**

| Routing Protocol | Complexity   | Max. Size                     | Convergence<br>Time | Reliability              | Protocol<br>Traffic |
|------------------|--------------|-------------------------------|---------------------|--------------------------|---------------------|
| RIP              | very simple  | 16 Hops                       | High (minutes)      | Not absolutely loop-safe | High                |
| RIPv2            | very simple  | 16 Hops                       | High (minutes)      | Not absolutely loop-safe | High                |
| IGRP             | simple       | x                             | High (minutes)      | Medium                   | High                |
| EIGRP            | complex      | х                             | Fast (seconds)      | High                     | Medium              |
| OSPF             | very complex | Thousands of Routers          | Fast (seconds)      | High                     | Low                 |
| IS-IS            | complex      | Thousands of Routers          | Fast (seconds)      | High                     | Low                 |
| BGP-4            | very complex | more than<br>100,000 networks | Middle              | Very High                | Low                 |

© 2009, D.I. Manfred Lindne

IP Routing Overview, v4.5