
Introduction

- line protocol techniques (data link procedures)
 - were developed for communication between two devices on one physical point-to-point link
 - bandwidth of physical link is used exclusively by the two stations
- in case multiple communication channels are necessary between two locations
 - multiple physical point-to-point are needed
 - expensive solution
- in order to use one physical link for multiple channels
 - multiplexing techniques were developed

© 2009, D.I. Manfred Lindner

DM Techniques, v4.7

Time Division Multiplexing (TDM)

- time division multiplexer
 - allocates each input channel a period of time or timeslot
 - controls bandwidth of trunk line among input channels
- individual time slots
 - are assembled into frames to form a single high-speed digital data stream
- available transmission capacity of the trunk
 - is time shared between various channels
- at the destination demultiplexer reconstructs
 - individual channel data streams

© 2009, D.I. Manfred Lindner

TDM Techniques, v4.7

Types of TDM

- depending on timing behavior two methods
 - synchronous TDM
 - timeslots have constant length (capacity) and can be used in a synchronous, periodical manner
 - asynchronous (statistical) TDM
 - timeslots have variable length and are used on demand (depending on the statistics of channel communication)

© 2009, D.I. Manfred Lindner

TDM Techniques, v4.7

Synchronous TDM Standards

- TDM framing on the trunk line
 - can be vendor dependent
 - proprietary TDM products
 - can be standard based
- two main architectures for standardizing synchronous TDM for trunk lines
 - PDH Plesiochronous Digital Hierarchy
 - e.g. E1 (2Mbit/s), E3 (34Mbit/s), E4, T1 (1,544Mbit/s), T3
 - SDH Synchronous Digital Hierarchy
 - e.g. STM-1 (155Mbit/s), STM-4 (622Mbit/s), STM-16

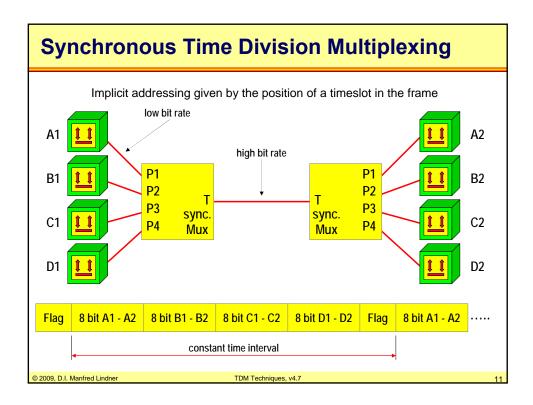
© 2009, D.I. Manfred Lindner

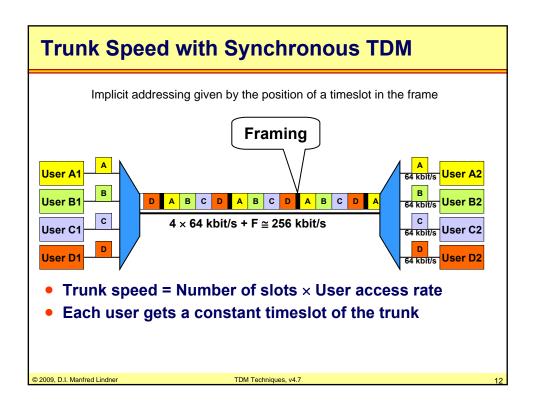
TDM Techniques, v4.7

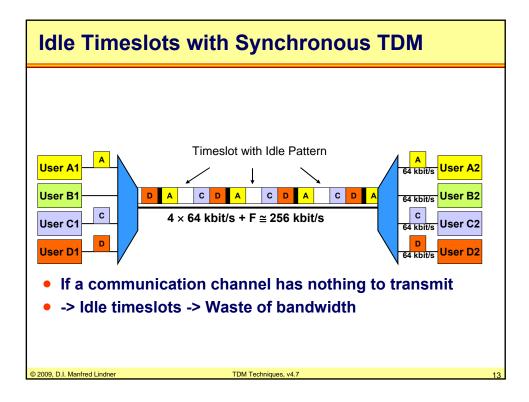
Agenda

- Introduction
- Synchronous (Deterministic) TDM
- Asynchronous (Statistical) TDM
- Voice Transmission
- E1 Framing
- T1 Framing

© 2009, D.I. Manfred Lindner


FDM Techniques, v4.7


Synchronous Time Division Multiplexing


- synchronous TDM
 - periodically generates a frame consisting of a constant number of timeslots each timeslot of constant length
 - timeslots can be identified by position in the frame
 - timeslot 0, timeslot 1,
 - frame synchronization achieved by extra flag field
- every input channel is assigned
 - a reserved timeslot
 - e.g. timeslot numbers refer to port numbers of a multiplexer
 - traffic of port P1 in timeslot 1 for A1- A2 channel
 - traffic of port P2 in timeslot 2 for B1- B2 channel
 - •

© 2009, D.I. Manfred Lindner

TDM Techniques, v4.

Advantages

- compared to pure point-to-point physical links
 - synchronous multiplexing adds only minimal delays
 - time necessary to packetize and depacketize a byte
 - transmission/propagation delay on trunk
- the delay for transporting a byte is constant
- the time between two bytes to be transported is constant
 - hence optimal for synchronous transmission requirements like traditional digital voice
- any line protocol could be used between devices
 - method is <u>protocol-transparent</u>
- to endsystems
 - channel looks like a single physical point-to-point line

© 2009, D.I. Manfred Lindner

TDM Techniques, v4.7

Disadvantages

- bitrate on trunk line T
 - sum of all port bitrates (P1-P4) plus frame synchronization (flag)
 - high bitrate is required
 - hence expensive
- if no data is to be sent on a channel
 - special idle pattern will be inserted by the multiplexer in that particular timeslot
 - waste of bandwidth of trunk line
- asynchronous (statistic) time division multiplex avoids both disadvantages
 - making use of communication statistics between devices

© 2009, D.I. Manfred Lindner

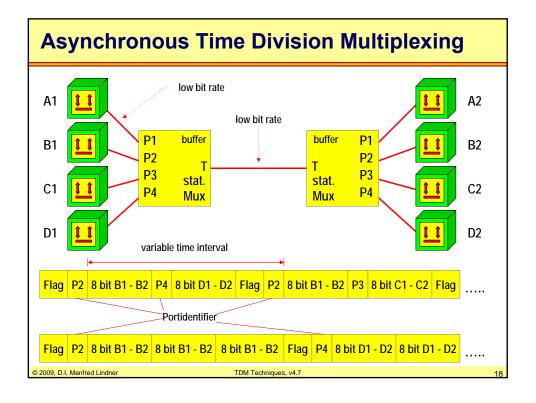
TDM Techniques, v4.7

4-

Agenda

- Introduction
- Synchronous (Deterministic) TDM
- Asynchronous (Statistical) TDM
- Voice Transmission
- E1 Framing
- T1 Framing

© 2009, D.I. Manfred Lindner


TDM Techniques, v4.7

Asynchronous Time Division Multiplexing

- usually devices communicate in a statistical manner
 - not all devices have data to transmit at the same time
- therefore it is sufficient
 - to calculate necessary bitrate of the multiplexer trunk line according to the average bitrates caused by device communication
- if devices transmit simultaneously
 - only one channel can occupy trunk line
 - data must be buffered inside multiplexer until trunk is available again (store and forward principle)
 - statistics must guarantee that trunk will not be monopolized by a single channel

© 2009, D.I. Manfred Lindner

DM Techniques, v4.7

ATDM Operation

multiplexer only generates a transmission frame

- if data octets are present at input ports

source of data

- must be explicitly identified in transmission frames
- addressing

reason for addressing

- there exists no constant relationship between timeslot and portnumber as with synchronous TDM
 - Note: addressing in synchronous TDM is implicit by recognizing the flag of the frame and hence the position of a certain timeslot

port identifier

is used as address of source and sent across the trunk

© 2009, D.I. Manfred Lindner

TDM Techniques, v4.7

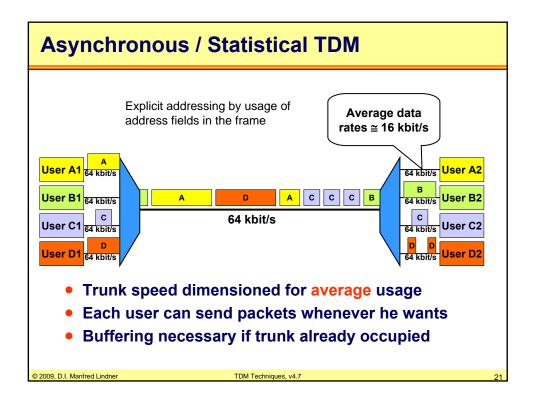
40

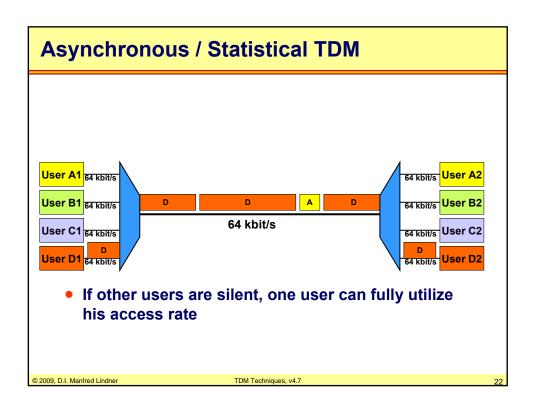
ATDM Operation / Facts

transmission frame can be assembled using

- either a single channel octet by frame
 - suitable for character oriented terminal sessions
- or multiple channel octets per frame
 - suitable for block oriented computer sessions

in case of congestion


 buffering causes additional delays compared to synchronous TDM


delays are variable because of statistical behavior

- hence not optimal for synchronous transmission requirements like traditional digital voice
- sufficient for transmission requirements of bursty data transfers

© 2009, D.I. Manfred Lindner

TDM Techniques, v4.

ATDM Facts

- ATDM can be used protocol transparent
 - however in case of buffer overflow transmission errors will be seen by devices
 - FCS errors
- to avoid FCS errors a kind of <u>flow control between</u> <u>multiplexer and device (end system)</u> should be used
 - which is a new element in data communication methods
 - this is different from flow control between end systems learned so far in module about line protocols
 - examples for flow control
 - HW flow control based on handshake signals (e.g. RTS, CTS)
 - SW flow control (e.g. XON/XOFF)
 - Protocol based flow control such as known in connection oriented line protocols like HDLC (e.g. RR and RNR)
 - end system and ADTM have to speak the same protocol language

© 2009, D.I. Manfred Lindner

TDM Techniques, v4.7

00

Agenda

- Introduction
- Synchronous (Deterministic) TDM
- Asynchronous (Statistical) TDM
- Voice Transmission
- E1 Framing
- T1 Framing

© 2009, D.I. Manfred Lindner

TDM Techniques, v4.7

2/

Voice Transmission

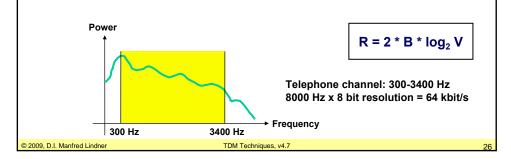
digital voice transmission

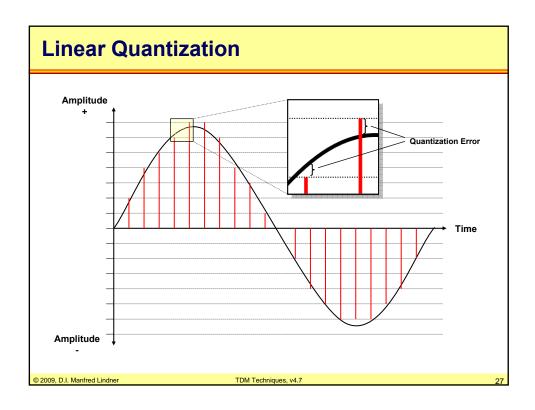
- based on Nyquist's Theorem
- analogous voice can be digitized using pulse-codemodulation (PCM) technique requiring a 64kbit/s digital channel
 - voice is sampled every 125usec (8000 times per second)
 - every sample is encoded in 8 bits
- used nowadays in the backbone of our telephone network
- today analogous transmission only between home and local office -> so called local loop

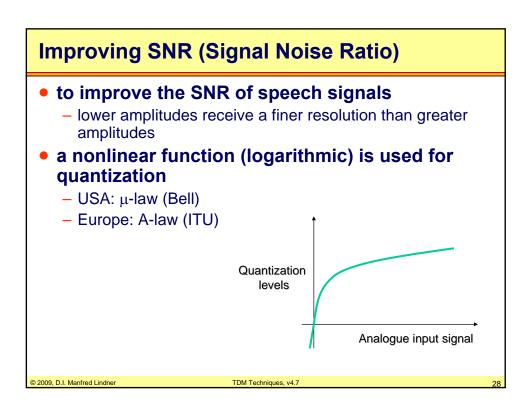
synchronous TDM

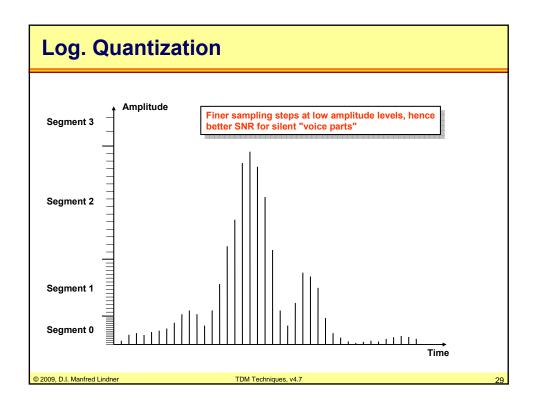
originated from digital voice transmission

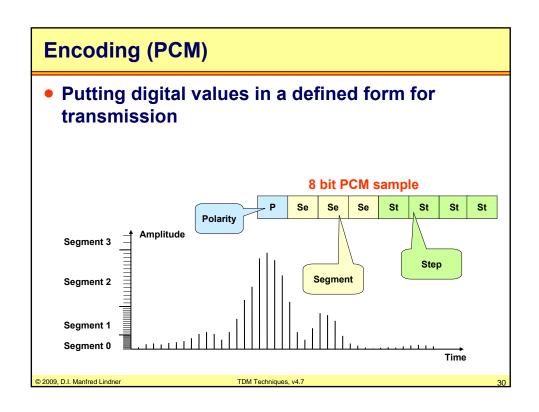
© 2009, D.I. Manfred Lindner


TDM Techniques, v4.7


O.F.


Sampling of Voice


Nyquist's Theorem


- any analogue signal with limited bandwidth f_B can be sampled and reconstructed properly when the sampling frequency is 2·f_B
- transmission of sampling pulses allows reconstruction of original analogous signal
- sampling pulses are quantized resulting in binary code word which is actually transmitted

Voice Compression

Waveform Coders

- Non-linear approximation of analog waveform
- PCM (no compression), ADPCM

Vocoders

- speech is analyzed and compared to a codebook
- only codebook values are transmitted and speed synthesizer at the receiver

Hybrid coders

- Combination of waveform coders and vocoders
- 4.8 kbps to 16 kbps
- Used for mobile phones
- CELP, GSM

© 2009, D.I. Manfred Lindner

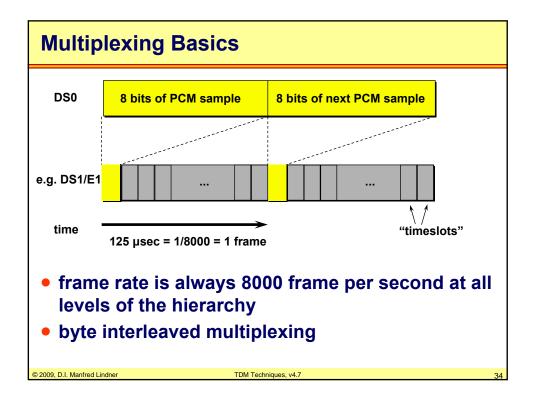
TDM Techniques, v4.7

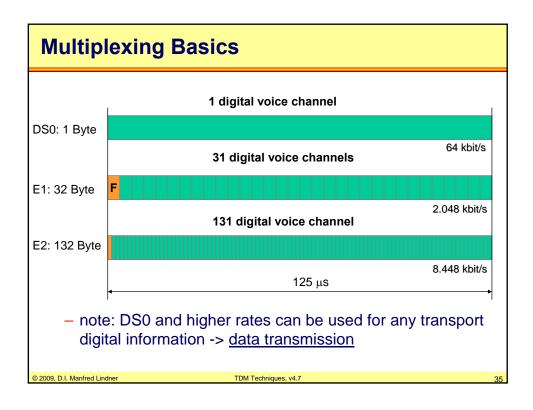
04

Standardized Codec's

- PCM
 - G.711 (64 kbps)
- Adaptive Differential Pulse Code Modulation (ADPCM)
 - only the difference from one sample pulse to the next will be transmitted
 - fewer bits used for encoding the difference value
 - G.726 (16, 24, 32, 40 kbps)
- Low Delay Code Excited Linear Predictor (LD-CELP)
 - G.728 (16 kbps)
- Conjugate Structure Algebraic Code Excited Linear Predictor (CS-ACELP)
 - G.729 (8 kbps)
- Dual Rate Speech Coding Standard G.723
 - is the basic standard for voice transmission in IP networks
 - basis is the CELP-Technique of GSM
 - uses minimal data rate of 5,3K at fair quality or 6,3K with good quality

© 2009, D.I. Manfred Lindner

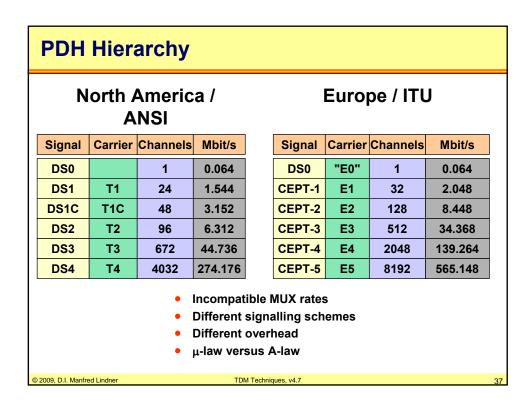

TDM Techniques, v4.7

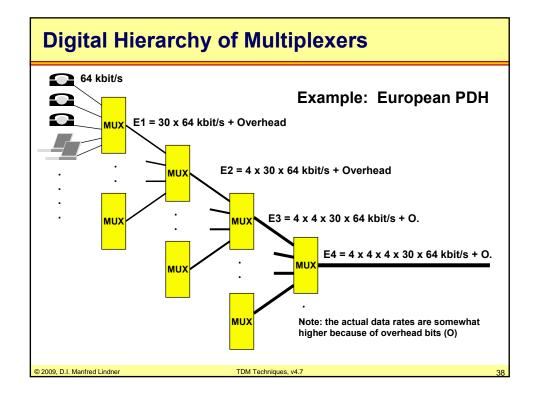

Digital voice channel

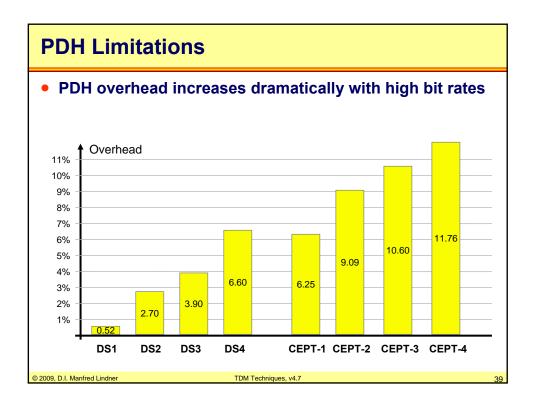
- DS0 = Digital Signal, Level 0
 - 1 timeslot in multiplexing frames
- Base for hierarchical digital communication systems
- Equals one PCM coded voice channel
 - 64 kbit/s
- Each samples (byte) must arrive within 125 μs
 - To receive 8000 samples (bytes) per second
 - Higher order frames must ensure the same byte-rate per user(!)

© 2009, D.I. Manfred Lindner

TDM Techniques, v4.




Multiplexing Hierarchies

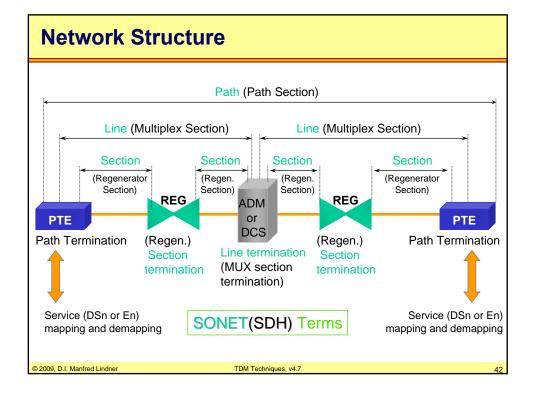

- why hierarchy and standardization?
 - only a hierarchical digital multiplexing infrastructure which is standardized
 - can connect millions of (low speed) customers across the city/country/world
- two main architectures
 - PDH plesiochronous digital hierarchy
 - plesio means nearly synchronous, clock differences are compensated by bit stuffing techniques / overhead bits
 - PDH is still used for low-speed lines
 - SDH synchronous digital hierarchy
 - · overcomes deficits of PDH
 - in North America SONET is used
 - telecommunication backbones move very quickly to SONET/SDH

© 2009, D.I. Manfred Lindner

TDM Techniques, v4.7

Reasons for SONET/SDH Development

- Incompatible PDH standards !!!
- PDH does not scale to very high bit rates
 - Increasing overhead
 - Various multiplexing procedures
 - Switching of channels requires demultiplexing first
- Demand for a true synchronous network
 - No pulse stuffing between higher MUX levels
 - Phase shifts are compensated by floating payload and pointer technique
- Demand for add-drop MUXes and ring topologies


© 2009, D.I. Manfred Lindner

TDM Techniques, v4.7

SDH History

- After divestiture of AT&T
 - Many companies -> many proprietary solutions for PDH successor technology
- In 1984 ECSA (Exchange Carriers Standards Association) started on SONET
 - · Goal: one common standard
 - Tuned to carry US PDH payloads
- In 1986 CCITT became interested in SONET
 - Created SDH as a superset
 - Tuned to carry European PDH payloads including E4 (140 Mbit/s)
- SDH is a world standard
 - SONET is subset of SDH
- Originally designed for fiber optics

2009, D.I. Manfred Lindner TDM Techniques, v4.7

S	SONET/SDH Line Rates								
	SONET Optical Levels	SONET Electrical Level	Line Rates Mbit/s	SDH Levels					
	OC-1	STS-1	51.84	STM-0					
	OC-3	STS-3	155.52	STM-1					
	OC-9	STS-9	466.56	STM-3					
	OC-12	STS-12	622.08	STM-4					
	OC-18	STS-18	933.12	STM-6	Defined but later				
	OC-24	STS-24	1244.16	STM-8	removed, and only the multiples by four				
	OC-36	STS-36	1866.24	STM-12	were left!				
	OC-48	STS-48	2488.32	STM-16					
	OC-96	STS-96	4976.64	STM-32					
	OC-192	STS-192	9953.28	STM-64					
	OC-768	STS-768	39813.12	STM-256	(Coming soon)				

Agenda

- Introduction
- Synchronous (Deterministic) TDM
- Asynchronous (Statistical) TDM
- Voice Transmission
- E1 Framing
- T1 Framing

© 2009, D.I. Manfred Lindner TDM Techniques, v4.7

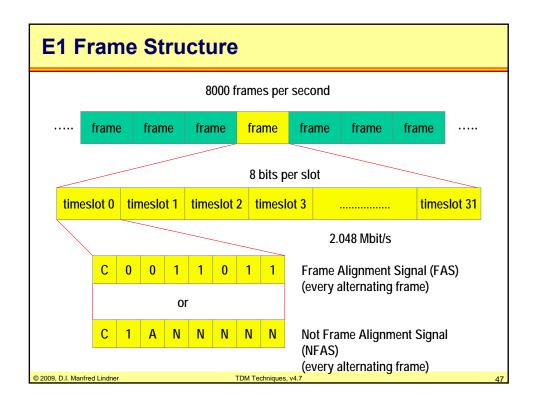
E1 Basics

synchronous TDM

- originated from digital voice transmission
- Nyquist's Theorem
- analogous voice can be digitized using pulse-codemodulation (PCM) technique requiring a 64kbit/s digital channel
 - voice is sampled every 125usec (8000 times per second)
 - every sample is encoded in 8 bits
- CEPT standardizes E1
 - as part of European channelized framing structure for PCM transmission (PDH)
 - E1 (2 Mbit/s), E2 (8 Mbit/s), E3 (34Mbit/s), E4 (139Mbit/s)
 - relevant standards G.703, G.704, G.732

© 2009, D.I. Manfred Lindner

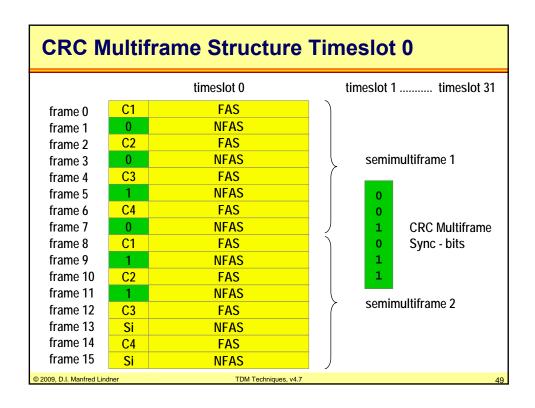
DM Techniques, v4.7


45

E1 Framing

- G.704 specifies framing structures for different interface rates
 - E1 is specified at interface rate of 2.048Mbit/s
 - 32 timeslots per frame numbered 0-31
 - timeslot 0 for frame synchronization
 - allows distinction of frames and timeslots within frames
 - one timeslot can carry 8 bits
 - frame length 256 bits
 - frame repetition rate is 8000 Hz
 - $-32 \times 8 \times 8000 = 2.048 \text{ Mbit/s}$
 - timeslot 16 can be used for signaling

© 2009, D.I. Manfred Lindner


TDM Techniques, v4.7

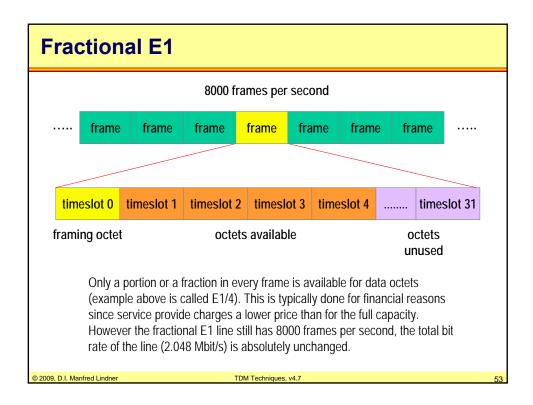
E1 Frame Structure

- every second frame
 - timeslot 0 contains FAS used for frame synchronization
- C (CRC) bit
 - is part of an optional 4-bit CRC sequence
 - provides frame checking and multiframe synchronization
- A (Alarm Indication) bit
 - so called Yellow (remote) alarm
 - used to signal loss of signal (LOS) or out of frame (OOF) condition to the far end
- N (National) bits
 - reserved for future use

2009, D.I. Manfred Lindner TDM Techniques, v4.7 48

CRC Multiframe Structure

- CRC check is optional feature
 - 16 frames are combined to a multiframe
 - start of multiframe can be detected by CRC Multiframe Sync bits
 - semimultiframe 2 contains four CRC bits, which were calculated over semimultiframe 1
 - Si bits
 - · are used to report CRC errors to the far end


9, D.I. Manfred Lindner TDM Techniques, v4.7

E1 Signaling Timeslot 16

- E1 framing is often used to connect PBX (Private Branch Exchanges) via leased line
- timeslot 16 can carry out-band signaling information between PBX's
- two types
 - Common Channel Signaling (CCS)
 - transparent channel (capacity 64kbit/s) for signaling protocols like DPNSS, CorNet, QSIG
 - Channel Associated Signaling (CAS)
 - additional CAS multiframe structure
 - provides 4 bit signaling information per timeslot every 16th frame
 - 30 independent signaling channels (capacity 2kbit/s per channel)

2009, D.I. Manfred Lindner TDM Techniques, v4.7

CAS Multiframe Structure Timeslot 16									
timeslots 0-15	timeslot 16	timeslots17-31							
frame 0	0 0 0 0 X Y 2	<mark>х х </mark>							
frame 1	A B (01) C D A B (17)	C D 0000							
frame 2	A B (02) C D A B (18)	C D CAS Multiframe							
frame 3	A B (03) C D A B (19)	C D Alignment signal							
frame 4	A B (04) C D A B (20)	C D							
frame 5	A B (05) C D A B (21)	A B C D are signaling bits for the timeslot							
frame 6	AB (06) CD AB (22) (indicated in ()							
frame 7	A B (07) C D A B (23)	C D							
frame 8	AB (08) CD AB (24)	С D Y is Multiframe Yellow							
frame 9	AB (09) CD AB (25)	<mark>с D</mark> alarm bit to signal a							
frame 10	AB (10) CD AB (26) (C D Loss of Multiframe							
frame 11	AB (11) CD AB (27)	C D (LOM)							
frame 12	A B (12) C D A B (28) (X bits not used (set to 1)							
frame 13	A B (13) C D A B (29) (C D							
frame 14	A B (14) C D A B (30)	C D							
frame 15	A B (15) C D A B (31)	C D							
© 2009, D.I. Manfred Lindner TDM Techniques, v4.7 52									

E1 Operational and Physical Aspects

G.732 specifies

- characteristics of PCM multiplex equipment operating at 2.048Mbit/s
 - based on frame structure G.704
 - · encoding law when converting analogue to digital to be A-law
 - procedures for loss and recovery of frame alignment, for fault conditions and consequent actions, for acceptable jitter levels

G.703 specifies

- electrical and physical characteristics
 - 75 ohm coax, unbalanced
 - 120 ohm twisted pair, balanced
- encoding
 - HDB3

© 2009, D.I. Manfred Lindner TDM Techniques, v4.7

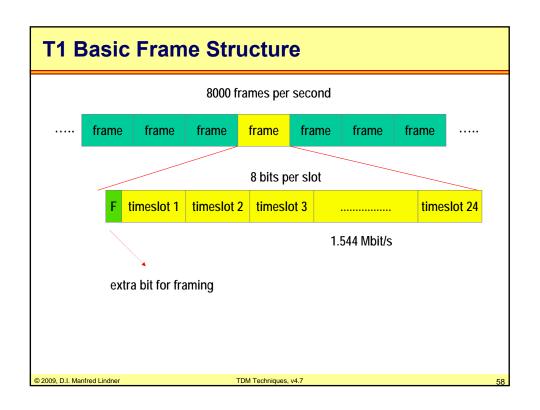
Agenda

- Introduction
- Synchronous (Deterministic) TDM
- Asynchronous (Statistical) TDM
- Voice Transmission
- E1 Framing
- T1 Framing

© 2009, D.I. Manfred Lindner

TDM Techniques, v4.7

--


T1 Basics

- T1 is North American channelized framing structure for PCM transmission
 - synchronous TDM originated from digital voice transmission
 - a 64kbit/s digital channel used for carrying PCM encoded voice is called DS0
 - DS0 is basic element with lowest bitrate of North American PDH (plesiosynchronous digital hierarchy)
 - DS0, DS1 (T1), DS2, DS3 (45MBit/s), DS4 (274Mbit/s)
 - encoding and physics:
 - AMI or B8ZS (Bipolar 8 Zero bit Suppression)
 - 100 ohm, twisted pair

© 2009, D.I. Manfred Lindner

TDM Techniques, v4.

T1 frame 24 timeslots per frame numbered 1-24 one extra bit for framing one timeslot can carry 8 bits frame length 193 bits frame repetition rate is 8000 Hz 24 x 8 x 8000 = 1.544 Mbit/s

Superframe

- one framing bit is not sufficient for frame synchronization
 - framing bits of consecutive frames are combined to form a multiframe synchronization pattern
 - multiframe structure is called superframe
- D4 format
 - 12 frames are combined to one superframe (SF)
 - 12 consecutive framing bits are 100011011100 (1200 bits/s used for synchronization)

© 2009, D.I. Manfred Lindner

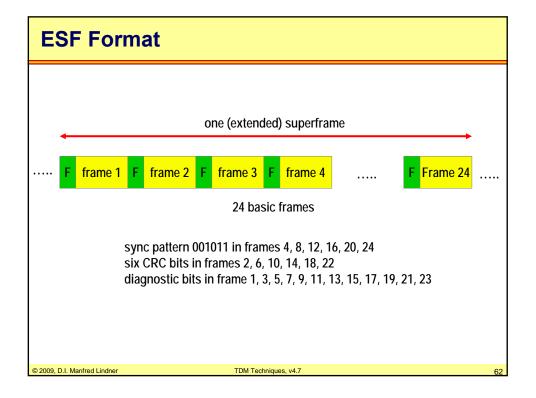
TDM Techniques, v4.7

One superframe

..... F frame 1 F frame 2 F frame 3 F frame 4 F Frame 12

1 0 0 0 1101110 0 sync pattern

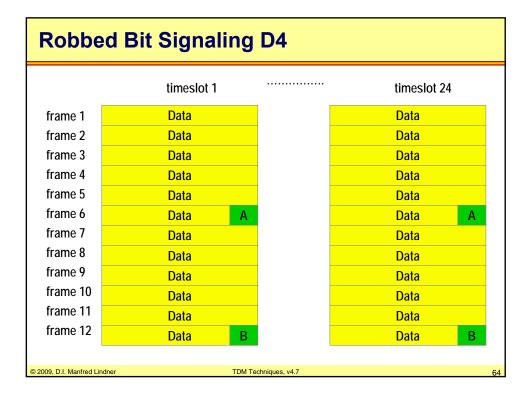
12 basic frames


Extended Superframe

ESF format

- 24 frames are combined to one extended superframe (ESF)
- 6 framing bits (2000bit/s) are used for synchronization in frames 4, 8, 12, 16, 20, 24 (pattern 001011)
- 6 framing bits (2000 bit/s) may be used for CRC error checking in frames 2, 6, 10, 14, 18, 22
- 12 framing bits (4000 bit/s) may be used for a diagnostic channel in all odd numbered frames

© 2009, D.I. Manfred Lindner


FDM Techniques, v4.7

T1 Signaling

- T1 framing is often used to connect PBX (Private Branch Exchanges) via leased line and hence signaling information between PBX's must be exchanged
- T1 defines no reserved timeslot for signaling
- for Channel Associated Signaling (CAS)
 - robbed bit signaling is used
 - signaling information is transmitted by robbing certain bits, which are normally used for data
 - signaling is placed in the LSB of every time slot in the 6th and 12th frame of every D4 superframe (A, B)
 - signaling is placed in the LSB of every time slot in the 6th, 12th 18th and 24th frame of every ESF superframe (A, B, C, D)

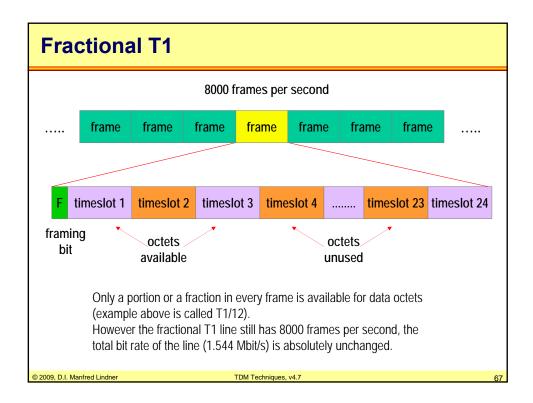
© 2009, D.I. Manfred Lindner TDM Techniques, v4.7

Robbed Bit Signaling ESF										
	timeslot 1		timeslot 24							
frame 1	Data		Data							
frame 2	Data		Data							
frame 6	Data	Α	Data A							
 frame 12 	Data	В	Data B							
frame 18	Data	С	Data C							
	_									
frame 22	Data		Data							
frame 23	Data		Data							
frame 24	Data	D	Data D							
© 2009, D.I. Manfred Lindner		M Techniques, v4.7		65						

Robbed Bit Signaling

Robbed Bit Signaling

 in case of transmitting PCM samples stealing one least significant bit every 6th frame has no severe influence on speech reconstruction


T1 system which uses this technique

- cannot carry 24 transparent data channels of 64kbit/s each
- only n x 56 kbit/s data channels are possible

Common Channel Signaling (CCS)

- can be used in the same way like E1
- e.g. timeslot 24 is used as transparent signaling channel

© 2009 D I Manfred Lindner TDM Techniques v4.7

