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TCP (Transmission Control Protocol)

• TCP is a connection oriented 
– Call setup with "three way handshake"

• Provides a reliable end-to-end transport of data between 
computer processes of different end systems
– Error detection and recovery

– Maintaining the order of the data (sequencing) without duplication or 
loss

– Flow control

• Application's data is regarded as continuous byte stream
– TCP ensures a reliable transmission of segments of this byte stream

– Handover to Layer 7 at so called "Ports"
• OSI-Speak: Service Access Point

• RFC 793

In this Chapter we talk about TCP.  TCP is a connection-oriented layer 4 protocol and only 
works between the hosts.  It synchronizes (connects) the hosts with each other via the “3-Way-
Handshake” before the real transmission begins.  After this a reliable end-to-end transmission is 
established.  TCP was standardized in September 1981 in RFC 793. (Remember: IP was 
standardized in September 1981 too, RFC 791).  TCP is always used with IP and it also 
protects the IP packet as its checksum spans over (almost) the whole IP packet. 

TCP provides error recovery, flow control and sequencing. TCP provides its service to higher 
layer through ports (OSI: Service Access Points). 

One important thing with TCP is the Port-Number, which will be discussed later in this chapter. 
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4 4

Layer 4 Protocol = TCP (Connection-Oriented)

M M

TCP and OSI Transport Layer 4

IP Host A IP Host B

Router 1 Router 2

TCP Connection (Transport-Pipe)

TCP hides the details of the network layer from the higher layers and frees them from the tasks 
of transmitting data through a specific network. End systems see the network communication as 
reliable transport pipe (which could be compared with a virtual circuit already known from the 
network principles chapter) connecting them to each other.
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TCP Protocol Functions

• TCP transmission block
– Called segment transmitted inside IP datagram's payload 

field

• ARQ Continuous Repeat Request 
– With piggy-backed acknowledgments

• Error recovery 
– Positive & multiple acknowledgements using timeouts for 

each segment
• Sequence numbers based on byte position within in the TCP 

stream 

• Flow control
– Sliding window and dynamically adjusted window size

Every IP datagram which is sent along with TCP will be acknowledgment (error recovery). From 
the TCP perspective we call each TCP  block  a segment. 

In general, segments are encapsulated in single IP datagrams.

Maximum segment size depends on max. packet or frame size used by IP next hop link 
(fragmentation is possible)
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TCP Ports

• TCP provides its service to higher layers
– Through ports

• Port numbers identify
– Communicating processes in an IP host

• Using port numbers 
– TCP can multiplex different layer-7 byte streams

• Server processes are identified by
– Well known port numbers : 0..1023

– Controlled by IANA

• Client processes use
– Arbitrary port numbers > 1023

– Better > 8000 because of registered ports

Each communicating computer process is assigned a locally unique port number.  Using port 
numbers TCP can service multiple processes such as a web browser or an E-Mail client 
simultaneously through a single IP address. In summary TCP works like a stream multiplexer 
and demultiplexer.

Well known ports are reserved for common applications and services (like Telnet, WWW, FTP 
etc.) and are in the range from 0 to 1023. They are controlled by IANA (Internet Assigned 
Numbers Authority).

Registered ports start at 1024 (e.g. Lotus Notes, Cisco XOT, Oracle, license managers etc.). 
They are used by proprietary server applications They are not controlled by the IANA but only 
listed -> see RFC1700 for details.

Remember: A TCP connection is always initiated from client to server. 

Server applications listen on their well-known ports for incoming TCP connections. A well-
known port of a server process is used as destination port of an outgoing TCP segment from 
the client.

Client applications chose a free port number (which is not already used by another outgoing 
TCP connection) as the source port of an outgoing TCP segment sent to the server.

Some services like FTP (File Transfer Protocol) or RPC (Remote Procedure Call) use 
dynamically assigned port numbers. Sun RPC (Remote Procedure Call) uses a portmapper
located at port 111. FTP uses the PORT and PASV commands to switch to a non-standard 
port.

Port concept and port numbers also used for UDP.
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Well Known Ports

Some Well Known Ports
7   Echo
20 FTP (Data), File Transfer Protocol
21 FTP (Control)
23 TELNET, Terminal Emulation
25 SMTP, Simple Mail Transfer 

Protocol
53 DNS, Domain Name Server
69 TFTP, Trivial File Transfer 

Protocol
80 HTTP Hypertext Transfer Protocol
111 Sun Remote Procedure Call (RPC)
137     NetBIOS Name Service
138     NetBIOS Datagram Service
139     NetBIOS Session Service
161 SNMP, Simple Network 

Management Protocol
162 SNMPTRAP
322 RTSP (Real Time Streaming 

Protocol) Server

Some Registered Ports

1416 Novell LU6.2

1433 Microsoft-SQL-Server

1439 Eicon X25/SNA 
Gateway

1527 Oracle

1986 Cisco License Manager

1998 Cisco X.25 service 
(XOT)

5060      SIP (VoIP Signaling)

6000 \

..... >  X Window System

6063 /

... etc.

(see RFC1700)
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IP

TCP Ports and TCP Connections

TCP

Server
Process 1

Server
Process 2

IP

TCP

IP

TCP

Client
Process 3 

Client
Process 9

10.0.0.1 10.0.0.2 10.0.0.3

System 
A

System 
B

System 
C

8025 23 3333 1234

Port number
identifies
process

IP address 
identifies IP host

Port

The TCP software functions like a multiplexer and demultiplexer for several TCP connections:

Port 25 on system A: process 1, system A <--------> port 1234, process 9, system C

Port 80 on system A: process 2, system A <--------> port 3333, process 3, system B
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Example 1: TCP Port

IP (10.1.1.9)

TCP (80 / 110)

Server-Proc 1
WWW
Port 80

Server-Proc 2
POP3

Port 110

IP (10.1.1.1)

TCP (4711)

Client-Proc
Port 4711

DA:10.1.1.9
SA:10.1.1.1

DP:80
SP:4711

IP (10.1.1.2)

TCP (7312)

Client-Proc
Port 7312

DA:10.1.1.9
SA:10.1.1.2

DP:110
SP:7312

Server Host A Host B

IP Header TCP Header

The client applications chose a free port number (which is not already used by another 
connection) as the source port.  The destination port is the well-known port of the server 
application. For example: Host B runs a Mail-Program (POP3, well known port 110) and the 
client application uses the source port (SP) 7312.  The TCP segment is send to the server with 
a destination-port (DP) of 110. Now the server knows host B and B makes a mail-check over 
POP3. 
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TCP Sockets and TCP Connection

• Client-server environment
– Server-process has to maintain several TCP connections = TCP 

streams (“flow”) to different targets at the same time

– Hence a single port at the server side has to multiplex several virtual 
connections

• How to distinguish these connections? 
– Usage of so called sockets

• Socket
– Combination IP address and port number 

• Note: similar to the OSI "CEP" Connection Endpoint Identifier

• E.g.: 10.1.1.2:80 [IP-Address : Port-Number]

• Each TCP connection is uniquely identified by
– A pair of sockets

• Source-IP, Source-Port, Destination-IP, Destination-Port

Server process multiplexes incoming streams with same destination port numbers according 
source IP address.

Datenkommunikation 384.081 - SS 2012

L11 - TCP, UDP and NAT (v5.1)

© 2012, D.I. Lindner / D.I. Haas

Page 11 - 12

© 2012, D.I. Lindner / D.I. Haas TCP, UDP, NAT v5.1 12

Example 2: TCP Socket

IP (10.1.1.1)

TCP (4711)

Client-Proc
Port 4711

DA:10.1.1.9
SA:10.1.1.1

DP:80
SP:4711

IP (10.1.1.2)

TCP (7312)

Client-Proc
Port 7312

DA:10.1.1.9
SA:10.1.1.2

DP:80
SP:7312

Host A Host B

IP (10.1.1.9)

TCP (80)

Server-Proc 1
WWW
Port 80

Server
Connection 1:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.1 : 4711

Connection 2:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.2 : 7312
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Example 3: TCP Socket

IP (10.1.1.9)

TCP (80)

Server-Proc 1
WWW
Port 80

Client-Proc 1
Port 4711

DA:10.1.1.9
SA:10.1.1.2

DP:80
SP:4711

IP (10.1.1.2)

TCP (4711 / 7312)

Client-Proc 2
Port 7312

DA:10.1.1.9
SA:10.1.1.2

DP:80
SP:7312

Server
Host

Connection 1:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.2 : 4711

Connection 2:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.2 : 7312

Connection 1:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.2 : 4711

Connection 2:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.2 : 7312

Well-known ports together with the socket concept allow several simultaneous connections 
(even from a single machine) to a specific server application.  Server applications listen on their 
well-known ports for incoming connections.
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TCP Header

Destination Port NumberSource Port Number

Options (variable length) Padding

PAYLOAD

0 4 8 12 16 20 24 28 32

Sequence Number

Acknowledgement Number

Header
Length

P
S
H

R
S
T

S
Y
N

F
I
N

A
C
K

U
R
G

Reserved Window Size

TCP Checksum Urgent Pointer

The picture above shows the 20 byte TCP header plus optional options.  Remember that the IP 
header has also 20 bytes, so the total sum of overhead per TCP/IP packet is 40 bytes.  

It is important to know these header fields, at least the most important parts: 

The Port numbers – most important, to address applications

The Sequence numbers (SQNR and Ack) – used for error recovery

The Window field – used for flow control

The flags SYN, ACK, RST, and FIN – for session control
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TCP Header Entries (1)

• Source and Destination Port
– 16 bit port number for source and destination process

• Header Length
– Indicates the length of the header given as a multiple 4 bytes

– Necessary, because of the variable header length in case of options

• Sequence Number (32 Bit)
– Position number of the first byte of this segment

• In relation to the byte stream flowing through a TCP connection 

– Wraps around to 0 after reaching 232 -1

• Acknowledge Number (32 Bit)
– Number of next byte expected by receiver

– Acknowledges the correct reception of all bytes up to ACK-number 
minus 1

The Source and Destination Port fields are 16 bits and used by the application. 

The Header Length indicates where the data begins. The TCP header (even one including 
options) is an integral number of 32 bits long. 

Sequence Number: 32 bit.  Number of the first byte of this segment. If SYN is present the 
sequence number is the initial sequence number (ISN) and the first data byte is ISN+1.

Acknowledge Number: 32 bit.  If the ACK control bit is set this field contains the value of the 
next sequence number the sender of the segment is expecting to receive. Once a connection is 
established this is always sent.
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TCP Header Entries (2)

• SYN-Flag 
– Indicates a connection request

– Sequence number synchronization

• ACK-Flag
– Acknowledge number is valid

– Always set, except in very first segment

• FIN-Flag
– Indicates that this segment is the last

– Other side must also finish the conversation 

• RST-Flag
– Immediately kill the conversation

– Used to refuse a connection-attempt

SYN-Flag: 1 Bit. Control Bit. 

Used for call setup. If the SYN bit is set to 1, the application knows that a host want to 
established a connection with him.  Also used to synchronization the sequence numbers 
because the sequence number holds the initial value for a new session. Most firewalls discard 
TCP segments with SYN=1 if a host want to established a connection to a server application 
which is not allowed for security reasons.

ACK-Flag: 1 bit. Control Bit. 

Acknowledgment Bit. If set, the acknowledge number is valid and indicates the sequence 
number of the next octet expected by the receiver

FIN-Flag: 1 bit. Control Bit. 

The FIN-Flag is used in the disconnect phase. It indicates that this segment is the last one. If 
set, the Sequence Number holds the number of the last transmitted byte of a session. Using 
this number a process can indicate all data that have been received by him. After the other side 
has also sent a segment with FIN=1, the connection is closed.

RST-Flag: 1 bit. Control Bit.

If set, the session has to be cleared immediately (reset). Can be used to refuse a connection-
attempt or to "kill" a current connection.
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TCP Header Entries (3)

• PSH-Flag
– TCP should push the segment immediately to the 

application without buffering

– To provide low-latency connections

– Often ignored

PSH-Flag: 1 Bit. Control Bit.

A TCP instance can decide on its own, when to send data to the next instance.  One strategy 
could be, to collect data in a buffer and forward the data when the buffer exceeds a certain size.  
To provide a low-latency connection sometimes the PSH Flag is set to 1.  Then TCP should 
push the segment immediately to the application without buffing. But typically the PSH-Flag is 
ignored. 
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TCP Header Entries (4)

• URG-Flag
– Indicates urgent data

– If set, the 16-bit "Urgent Pointer" field is valid 
and points to the last byte of urgent data

– There is no way to indicate the beginning of 
urgent data (!)

– Applications switch into the "urgent mode"

– Used for quasi outband signaling

• Urgent Pointer
– Points to the last octet of urgent data

URG-Flag: 1 Bit. Control Bit. 

Sequence number of last urgent byte = actual segment sequence number + urgent pointer

RFC 793 and several implementations assume the urgent pointer to point to the first byte after
urgent data.  However, the "Host Requirements" RFC 1122 states this as a mistake! When a 
TCP receives a segment with the URG flag set, it notifies the application which switch into the 
"urgent mode" until the last byte of urgent data is received. Examples for usage: Interrupt key in 
Telnet, Rlogin, or FTP.

Urgent Pointer: 16 bits. The urgent pointer points to the sequence number of the byte following 
the urgent data.  This field is only be interpreted in segments with the URG control bit set.
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TCP Header Entries (5)

• Window (16 Bit)
– Adjusts the send-window size of the other side

– Flow control STOP and GO

– Receiver-based flow control

– Used with every segment

– Sequence number of last byte allowed to send = ACK 
number + window value seen in this segment 

Window Size: 16 bit. The number of data bytes beginning with the one indicated in the 
acknowledgment field which the sender of this segment is willing to accept. See windowing / 
flow control slides.

Set by the receiver side of a TCP stream with every transmitted segment to signal the allowed 
current window size to the sender; this "dynamic windowing" enables receiver-based flow 
control. The value defines how many additional bytes will be accepted, starting from the current 
acknowledgment number plus window value seen in this segment.

Remarks: Once a given range for sending data was given by a received window value, it is not 
possible to shrink the window size to such a value which gets in conflict with the already 
granted range. So the window field must be adapted accordingly in order to achieve the flow 
control mechanism STOP.
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TCP Header Entries (6)

• Checksum
– Calculated over TCP header, payload and 12 byte pseudo 

IP header
– Pseudo IP header consists of source and destination IP 

address, IP protocol type, and IP total length
– Complete socket information is protected
– Thus TCP can also detect IP errors

• Options
– Only MSS (Maximum Message Size) is used
– Other options are defined in RFC1146, RFC1323 and 

RFC1693

• Pad
– Ensures 32 bit alignment

TCP Checksum: 16 bit. The checksum includes the TCP header and data area plus a 12 byte 
pseudo IP header (one's complement of the sum of all one's complements of all 16 bit words).  
The pseudo IP header contains the source and destination IP address, the IP protocol type and 
IP segment length (total length).  This guarantees, that not only the port but the complete socket 
is included in the checksum. Including the pseudo IP header in the checksum allows the TCP 
layer to detect errors, which can't be recognized by IP (e.g. IP transmits an error-free TCP 
segment to the wrong IP end system).

Options: Variable length.  Options may occupy space at the end of the TCP header and are a 
multiple of 8 bits in length.  Only the Maximum Message Size (MSS) is used. All options are 
included in the checksum.

Padding: Variable length.  The TCP header padding is used to ensure that the TCP header 
ends and data begins on a 32 bit boundary.  The padding is composed of zeros.
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TCP 3-Way-Handshake

ACK = ?
SEQ = 730 (random)

ACK = 401
SEQ = 731

ACK = 401
SEQ = 731

ACK = 731
SEQ = 400 (random)

ACK = ?
SEQ = ? (idle)

ACK = 731
SEQ = 401 

ACK=?
SEQ=730SYN

ACK=731 SEQ=400

SYN, ACK

ACK=401 SEQ=731ACK

SYNCHRONIZED

Client (Initiator) Server (Listener)

A TCP connection ist established by a 3-way handshake procedure.

The diagram above shows the famous TCP 3-way handshake.  The TCP 3-Way-Handshake is used to 
connect and synchronize two host with each other, that is, after the handshake procedure, both stations 
know the sequence numbers of each other.  
The connection procedure (3-Way-Handshake) works with a simple principle.  The host sends out a 
segment with SYN=1 (remember: if SYN=1 the application knows that the host want to established a 
connection) and the host also choose a random sequence number (SEQ).  After the Server receives the 
segment correct, he acknowledgment (host-SEQ+1), also choose a random SEQ, and send back the 
segment with SYN=1.  Remember the ACK-flag is always set, except in very first segment.  Because the 
server sends back a segment with SYN=1 the host knows the connection is accepted.  After the host 
sends a acknowledgement to the server the connection is established. 
Note that a SYN consumes one sequence number! (After the 3-way handshake, only data bytes consume 
sequence numbers.)

Why do we need such a procedure?

Remember TCP uses the unreliable service of IP, hence TCP segments of old sessions (e.g. 
retransmitted or delayed segments, duplicates) could disturb the establishment of a new TCP connection 
but also the new TCP connection itself. Thus sequence numbers must be unique for different sessions of 
the same socket.

Random starting sequence numbers, an explicit negotiation of starting sequence numbers and a huge 
sequence number range make a TCP connect immune against spurious datagrams. Initial sequence 
number (ISN) must be chosen with a good algorithm.
RFC793 suggests to pick a random number at boot time (e.g. derived from system start up time) and 
increment every 4 µs. Every new connection will increment additionally by 1.

Also disturbing segments (e.g. delayed TCP segments from old sessions) and old "half-open" connections 
are deleted with the RST flag.
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TCP Data Transfer

ACK = 401
SEQ = 731 

ACK = 401
SEQ = 751

ACK = 401
SEQ = 801

ACK = 751
SEQ = 401 

ACK = 731
SEQ = 401

ACK = 801
SEQ = 401 

ACK=401 SEQ=73120 Bytes

ACK=751 SEQ=401

0 Bytes

ACK=401 SEQ=75150 Bytes

ACK=801 SEQ=401

0 Bytes

After the 3-way-handshake is finished the real data transfer is stared.  A 20 Byte segment is 
sending to the server (ACK 401, SEQ 731).  After the server receives the segment, he sets the 
ACK-flag to 751 (SEQ+20 Byte) and the SEQ to 401.  Then he sends the segment back (ACK 
751, SEQ 401) to the host.  After the host receives this segment he know that his 20 byte of 
date delivers correct (because he gets the ACK 751).  The host continuous sending his data to 
the server. 
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TCP Data Transfer

• Acknowledgements are generated for all bytes which arrived in 
sequence without errors
– Positive acknowledgement

• If a segment arrives out of sequence, no acknowledges are sent until 
this "gap" is closed  (old TCP)
– Timeout will initiate a retransmission of unacknowledged data 

• Duplicates are also acknowledged (!)
– Receiver cannot know why duplicate has been sent; maybe because of a lost 

acknowledgement

• The acknowledge number indicates the sequence number of the 
next byte to be received

• Acknowledgements are cumulative
– Ack(N) confirms all bytes with sequence numbers up to N-1 
– Therefore lost acknowledgements are no problem

The acknowledge number is equal to the sequence number of the next octet to be received.
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Cumulative Acknowledgement

Data(13) Seq=10

Data(15) Seq=23

Data(11) Seq=43

Data(9) Seq=54

Data(5) Seq=38

Ack = 23

Ack = 38

Ack = 43

Ack = 54

Ack = 63

Ack is lost

Cumulative Ack

Its not a problem for TCP when a acknowledgment get lost, because TCP acknowledges all in-
sequence received data with every cumulative  acknowledgement. The timers, which are 
started after sending an segment, are immediately stopped by receiving any an ACK.
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TCP Duplicates, Lost Original (old TCP)

Data(13) Seq=10

Data(15) Seq=23

Data(11) Seq=43

Data(5) Seq=38

Data(5) Seq=38

Ack = 23

Ack = 38

Ack = 54

Data is lost -> 
No Ack anymore 
until gap is closedRepair by 

retransmission
after RTO
timeout of 
segment seq# 38 Cumulative Ack

In case of out-of-sequence arrival of segments the receiver stops sending ACKs until the failure 
is repaired. The sender of the lost segment will wait for ACKs and will retransmit the segment 
as duplicate after the timer, which was started after sending the original segment, runs into 
timeout. (RTO). That was the original implementation of TCP (old TCP) -> Positive 
Acknowledgment based on timeouts only for error recovery.

Reasons for appearance of duplicate segments in the network:

1.) Because original segment was lost: No problem in that case for the receiver. The 
retransmitted segment fills the gap and no duplicate segment seen at the receiver.

2.) Because ACK was lost or retransmit timeout expired: No problem again.  The segment is 
recognized by the receiver as duplicate through the sequence number.

3.) Because original segment was delayed and timeout expired: No problem again. The 
segment is recognized by the receiver as duplicate through the sequence number.

The large sequence numbers space of 232 further helps to differentiate segments from old and 
new TCP in case the same sequence numbers happens to be used by the old and new TCP 
session. It will need 9h to send 232 bytes in a sequence with 2 Mbit/s before a wrap around will 
occur. Compare that to usual IP TTL = 128 seconds.
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Duplicate Acknowledgement (new TCP)

Data(13) Seq=10

Data(15) Seq=23

Data(11) Seq=43

Data(5) Seq=38

Data(5) Seq=38

Ack = 23

Ack = 38

Ack = 38

Ack = 54

Data is lost

Duplicate Ack

Cumulative Ack

Repair by 
retransmission
after RTO
timeout of 
segment seq# 38

Instead of suspending ACKs in case of out-of-sequence arrival of segments, the receiver may 
also repeat the last valid Ack = Duplicate Ack in order to notify the sender immediately about a 
missing segment (hereby aiding “slow start and congestion avoidance“ handled later in this 
chapter.
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TCP Duplicates, Lost Acknowledgement

Data(13) Seq=10

Data(15) Seq=23

Data(15) Seq=23

Ack = 23

Ack = 38

Ack = 38

Ack is lost

RTO timeout: retransmission
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TCP Duplicates, Delayed Original

Data(13) Seq=10

Data(15) Seq=23

Data(15) Seq=23

Data(11) Seq=43

Data(5) Seq=38

Ack = 23

Ack = 43

Ack = 54 Cumulative Acks

No Ack anymore 
until gap is closed

Ack = 54

Repair by 
retransmission
after RTO
timeout of 
segment seq# 38
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TCP Retransmission Timeout

• Retransmission timeout (RTO) will initiate a 
retransmission of unacknowledged segments 
– High timeout results in long idle times 

if an error occurs
– Low timeout results in 

unnecessary retransmissions

• Constant timeout will never fit
– Remember: RTT is a statistic value in the packet switching 

world

• Adaptive timeout is necessary
• For TCP's performance a precise estimation of 

the current RTT is crucial
– TCP continuously measures RTT to adapt RTO

Value of retransmission timeout influences performance (timeout should be in relation to round 
trip delay = round-trip-time RTT). If the timeout is much larger than the actual RTT then in case 
an error occurred the sender waits to long in order to heal it by retransmission of the lost 
segment(s). If the timeout is much smaller than the actual RTT then even in the case of no error 
the sender retransmit a segment to early.
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Retransmission Ambiguity Problem

• If a segment has been retransmitted and an ACK 
follows: Does this ACK belong to the 
retransmission or to the original packet?
– Could distort RTT measurement dramatically

• Solution: Phil Karn's algorithm
– Ignore ACKs of a retransmission for the RTT 

measurement
– And use an exponential backoff method

The exponential backoff algorithm means that the retransmission timeout is doubled every time 
the timer expires and the particular data segment was still not acknowledged. However, the 
backoff is truncated usually at 64 seconds.
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RTT Estimation

• Originally a smooth RTT estimator was used (a low pass filter)
– M denotes the observed RTT (which is typically imprecise because there is no 

one-to-one mapping between data and ACKs)
– R = αR+(1 − α)M with smoothing factor α=0.9
– Finally RTO = β ·R with variance factor β=2

• Initial smooth RTT estimator could not keep up with wide 
fluctuations of the RTT
– Led to too many retransmissions

• Jacobson's suggested to take the RTT variance also into account
– Err = M − A

• The deviation from the measured RTT (M) and the RTT estimation (A)

– A = A + g · Err   
• with gain g = 0.125

– D = D + h ( |Err| − D )
• with h = 0.25

– RTO = A + 4D

FYIFYI
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TCP Keepalive Timer

• Note that absolutely no data flows during an idle 
TCP connection!
– Even for hours, days, weeks!

• Usually needed by a server that wants to know 
which clients are still alive
– To close stale TCP sessions

• Many implementations provide an optional TCP 
keepalive mechanism
– Not part of the TCP standard!

– Not recommended by RFC 1122 (TCP/IP hosts 
requirements)

– Minimum interval must be 2 hours

Sessions may remain up even for month without any data being sent. 

The Host Requirements RFC mentions three disadvantages: 1) Keepalives can cause perfectly 
good connections to be dropped during transient failures, 2) they consume unnecessary 
bandwidth, and 3) they cost money when the ISP charge at a per packet base. Furthermore 
many people think that keepalive mechanisms should be implemented at the application layer.
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TCP Disconnect

ACK = 178
SEQ = 732 

ACK = 178
SEQ = 733

ACK = 179
SEQ = 733

ACK = 733
SEQ = 178 

ACK = 732
SEQ = 178

ACK = 733
SEQ = 179 

ACK=732 SEQ=178FIN

ACK=178 SEQ=733

ACK

ACK=733 SEQ=179ACK

ACK=178 SEQ=733

FIN

ACK = 733
SEQ = 178 

Session A->B closed

Session B->A closed

Host A Host B

The “ordered” disconnect process is also a handshake, slightly similar to the 3-Way-
Handshake. The exchange of FIN and ACK flags ensures, that both parties have received all 
octets.

The FIN flag marks the sequence number to be the last one; the other station acknowledges 
and terminates the connection in this direction. The exchange of FIN and ACK flags in such a 
way ensures, that both parties have received all bytes. The RST flag can be used if an error 
occurs during the disconnect phase
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Flow control:  "Sliding Window"

• TCP flow control is done with dynamic 
windowing using the sliding window protocol

• The receiver advertises the current amount of 
octets it is able to receive
– Using the window field of the TCP header 

– Values 0 through 65535

• Sequence number of the last octet a sender may 
send = received ack-number -1 + window size
– The starting size of the window is negotiated during the 

connect phase

– The receiving process can influence the advertised 
window, hereby affecting the TCP performance
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Sliding Window: Initialization

45 46 47 48 49 50 51 ....

[SYN]  S=44  A=?  W=8
[SYN, ACK]  S=72  A=45  W=6

[ACK]  S=45  A=73  W=8

Advertised Window
(by the receiver)

bytes in the send-buffer 
written by the application 

process 

System A System B

first byte that
can be send

last byte that
can be send
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Sliding Window: Principle

45 46 47 48 49 50 51 52 53 54 55 56

Advertised Window
(by the receiver)

bytes to be sent 
by the sender

Sent and already 
acknowledged

Sent but not yet 
acknowledged

Will send as 
soon as possible

can't send until 
window moves

....

Usable window

Sender's (System A) point of view after sender got {ACK=48, WIN=6} 
from the receiver (System B)

During the transmission the sliding window moves from left to right, as the receiver 
acknowledges data.
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Closing the Sliding Window  

45 46 47 48 49 50 51 52 53 54 55 56

Advertised Window

Bytes 48,49,50 
sent but not yet 
acknowledged

....

[ACK]  S=...  A=51 W=3

45 46 47 48 49 50 51 52 53 54 55 56

Advertised 
Window

....

Now the sender may send bytes 51, 52, 53. The receiver didn't open the window (W=3, right 
edge remains constant) because of congestion. However, the remaining three bytes inside the 

window are already granted, so the receiver cannot move the right edge leftwards.  

received from the other side:

The relative motion of the two ends of the window open or closes the window. 

The window closes when data - already sent - is acknowledged (the left edge advances to the 
right).

The window opens when the receiving process on the other end reads data - and hence frees 
up TCP buffer space - and finally acknowledges data with a appropriate window value (the right 
edge moves to the right).
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Flow Control -> STOP, Window Closed  

45 46 47 48 49 50 51 52 53 54 55 56

Advertised 
Window

....

Bytes 51,52,53 
sent but not yet 
acknowledged

45 46 47 48 49 50 51 52 53 54 55 56 ....

received from the other side:

[ACK]  S=...  A=54 W=0

If the left edge reaches the right edge, the sender stops transmitting data - zero usable window
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Opening the Window ->  Flow Control GO  

[ACK]  S=...  A=54 W=4

48 49 50 51 52 53 54 55 56 57 58 59

Advertised Window

....

received from the other side:

48 49 50 51 52 53 54 55 56 ....57 58
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Increasing the Sliding Window

51 52 53 54 55 56 57 58 59 60 61 62

Advertised Window

Bytes 54,55,56 
sent but not yet 
acknowledged

....

[ACK]  S=...  A=56 W=5

51 52 53 54 55 56 57 58 59 60 61 62

Advertised Window

....

received from the other side:

Some rules for handling sliding window in TCP:

The right edge of the window must not move leftward! Would be called shrinking window. 
However, TCP must be able to cope with a peer doing that by e.g. resetting the TCP connection 
with RST flag.

The left edge of the window cannot move leftward because it is determined by the 
acknowledgement number of the receiver. Only a duplicate ACK would imply to move the left 
edge leftwards, but duplicate ACKs are silently discarded.
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TCP Persist Timer (1/2)

• Deadlock possible: 
Window is zero and 
window-opening 
ACK is lost!
– ACKs are sent 

unreliable!
– Now both sides wait for 

each other!

S=3120, payload: 1000 bytes

ACK, A=4120, W=0 

ACK, A=4120, W=20000 

Waiting until
window is being 

opened

Waiting until
data is sent

Only if the ACK also contains data then the peer would retransmit it after timer expiration. 

Window probes may be used to query receiver if window has been opened already.
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TCP Persist Timer (2/2)

• Solution: Sender may send 
window probes:

– Send one data byte beyond
window

– If window remains closed then 
this byte is not acknowledged—
so this byte keeps being 
retransmitted

• TCP sender remains in persist 
state and continues 
retransmission forever (until 
window size opens)

– Probe intervals are increased 
exponentially between 5 and 60 
seconds

– Max interval is 60 seconds 
(forever)

S=4121, payload: 1 byte

ACK, A=4122, W=20000 

S=3120, payload: 1000 bytes

ACK, A=4120, W=0 

S=4121, payload: 1 byte

ACK, A=4120, W=0 

probe

probe

S=4121, payload: 1 byte
probe

ACK, A=4122, W=20000 

Since sender really has data to send the sender can use single bytes of the bytestream to be 
send for ACK probes.  The window probing interval is increased similar as the normal 
retransmission interval following a truncated exponential backoff, but is always bounded 
between 5 and 60 seconds. If the peer does not open the window again the sender will transmit 
a window probe every 60 seconds.
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TCP Enhancements

• So far, only the very basic TCP procedures have been 
mentioned

• But TCP has much more magic built-in algorithms which 
are essential for operation in today's IP networks:
– "Slow Start" and “Congestion Avoidance”

– "Fast Retransmit" and "Fast Recovery"

– "Delayed Acknowledgements"

– "The Nagle Algorithm“

– Selective ACK (SACK), Window Scaling

– Silly windowing avoidance

– ....

• Additionally, there are different implementations (Reno, 
Vegas, …)
– …

“Slow Start” and “Congestion avoidance” are mechanisms that control the segment rate (per 
RTT). It allows a sender-controlled flow control as add on to the receiver-controlled flow control 
based on the window field.

“Fast Retransmit” and “Fast Recovery” are mechanisms to avoid waiting for the timeout in case 
of retransmission and to avoid slow start after a fast retransmission.

Selective Acks enhance the traditional positive-ack-mechanism and allows to selectively 
acknowledge some correctly received segments within a larger corrupted block.

Window Scaling deals with the problem of a jumping window in case the RTT-BW-product is 
greater than 65535 (the classical max window size). This TCP option allows to left-shift the 
window value (each bit-shift is like multiply by two).

These topics are covered in the TCP performance chapter.

Delayed ACKs and Nagle algorithm is shown on the next slides.
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Interactive Traffic

Client Server

data byte

Ack

echo of data byte

Ack

Key pressed TCP received data, 
acknowledges it, and 
forwards the data  to 
the server application

Client application 
shows data on the 

display

Echo from server 
application

Immediate acknowledgements may cause an unnecessary amount of data transmissions. 

Normally, an acknowledgement would be send immediately after the receiving of data.

But in interactive applications, the send-buffer at the receiver side gets filled by the application 
soon after an acknowledgement has been sent (e.g. Telnet echoes).
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Interactive Traffic with Delayed ACK

Client Server

data byte

echo of data byte 
+ Ack

Ack

Key pressed TCP received data, 
delayed 
acknowledgement, and 
forwards the data  to the 
server application

Client application 
shows data on the 

display

Echo plus Ack from 
server application

In order to support piggy-backed acknowledgements (i.e. Acks combined with user data), the 
TCP stack waits 200 ms before sending the delayed acknowledgement. During this time, the 
receiving application might also have data to send.

That is: 50% less (interactive!) traffic using delayed acknowledgements .

.

Datenkommunikation 384.081 - SS 2012

L11 - TCP, UDP and NAT (v5.1)

© 2012, D.I. Lindner / D.I. Haas

Page 11 - 50

© 2012, D.I. Lindner / D.I. Haas TCP, UDP, NAT v5.1 50

Delayed ACKs

• Goal: Reduce traffic, support 
piggy-backed ACKs

• Normally TCP, after receiving 
data, does not immediately 
send an ACK

• Typically TCP waits 
(typically) 200 ms and hopes 
that layer-7 provides data 
that can be sent along with 
the ACK

Example: 
Telnet and no Delayed ACK

Key press "A"

ACK

Echo "A"

Example: 
Telnet with Delayed ACK

Key press "A"

ACK + Echo "A"
Wait 100 ms 
on average 

Delayed Acknowledgements is typically used with applications like Telnet: Here each client-
keystroke triggers a single packet with one byte payload and the server must response with 
both an echo plus a TCP acknowledgement. Note that also this server-echo must be 
acknowledged by the client. Therefore, layer-4 delays the acknowledgements because perhaps 
layer-7 might want to send some bytes also.

Actually the kernel maintains a 200 msec timer and every TCP session waits until this central 
timer expires before sending an ACK. If we are lucky the application has given us also some 
data to send, otherwise the ACK is sent without any payload. This is the reason, why we usually 
do not observe exact 200 msec delay between reception of a TCP packet and transmission of 
an ACK, rather the delay is something between 1 and 200 msec.

The Hosts Requirement RFC (1122) states that TCP should be implemented with Delayed ACK 
and that the delay must be less than 500 ms.
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Nagle Algorithm

• Goal: Avoid tinygrams on expensive (and usually slow) 
WAN links

• In RFC 896 John Nagle introduced an efficient algorithm 
to improve TCP

• Idea: In case of outstanding (=unacknowledged) data, 
small segments should not be sent until the outstanding 
data is acknowledged

• In the meanwhile small amount of data (arriving from 
Layer 7) is collected and sent as a single segment when 
the acknowledgement arrives

• This simple algorithm is self-clocking
– The faster the ACKs come back, the faster data is sent

• Note: The Nagle algorithm can be disabled!
– Important for real-time services 

The Nagle algorithm tries to make WAN connections more efficient. We simply delay the 
segment transmission in order to collect more bytes from layer 7.

A tinygram is a very small packet, for example with a single byte payload. The total packet size 
would be 20 bytes IP, 20 bytes TCP plus 1 byte data (plus 18 bytes Ethernet). No problem on a 
LAN but lots of tinygrams may congest the (typically much) slower WAN links.

In this context, "small" means less than the segment size.

Note that the Nagle Algorithm can be disabled, which is important for certain real-time services. 
For example the X Window protocol disables the Nagle Algorithm so that e. g. real-time 
feedback of mouse movements can be communicated without delay.

The socket API provides the symbol TCP_NODELAY.
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Once again: The Window Size

• The windows size (announced by the peer) indicates how 
many bytes I may send at once 
– Without having to wait for acknowledgements

• Before 1988, TCP peers tend to exploit the whole window 
size at once after startup
– Sending several segments in a sequence 

– Usually no problem for hosts 

– But led to frequent network congestions

• Another problem:
– In case of segment loss sender can use the window given by the 

receiver but when window becomes closed the sender must wait until 
retransmission timer times out

– That means during that time sender may not fully use the offered
bandwidth of the network even if its available

• TCP performance degradation

Note that hosts only need to deal with a single or a few TCP connections while network nodes 
such as routers and switches must transfer thousands, sometimes even millions of connections. 
Those nodes must queue datagrams and schedule them on outgoing interfaces (which might be 
slower than the inbound rates). If all TCP senders transmit at "maximum speed" – i. e. what is 
announced by the window – then network nodes may experience buffer overflows.
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Congestion 

• Problem (buffer overflows) appears at bottleneck 
links
– Some intermediate router must queue packets

– Queue overflow -> retransmission -> even more overflow!

– Can't be solved by traditional receiver-imposed flow 
control (using the window field)

Pipe model of a network path: Big fat pipes (high data rates) outside, a 
bottleneck link in the middle. The green packets are sent at the maximum 

achievable rate so that the interpacket delay is almost zero at the bottleneck 
link; however there is a significant interpacket gap in the fat pipes.  
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How to Improve TCP Performance?

• TCP should be "ACK-clocking"
– New packets should be injected at the rate at which ACKs are 

received
– Duplicate ACKs are necessary to feel the ACK clocking in case of 

some segments get lost.

• Ideal case: 
– Rate at which new segments are injected into the network = 

acknowledgment-rate of the other end
– Requires a sensitive algorithm to catch the equilibrium point between 

high data throughput and packet dropping due to queue overflow:
Van Jacobson’s Slow Start and Congestion Avoidance
(sender-imposed flow control)

• Assumption:
– Packet loss in today's networks are mainly caused by congestion but 

not by bit errors on physical lines (optical, digital transmission)
• Note: but not valid for WLAN

Using TCP the depths of the queues at network bottlenecks are controlled by the ACK 
frequency, therefore TCP is called to be ACK-clocked.  Only when an ACK is received the next 
segment is sent.  Therefore TCP is self-regulating and the queue-depth is determined by the 
bottleneck: Every node runs exactly at the bottleneck link rate. If a higher rate would be used, 
then ACKs stay out and TCP would throttle its sending rate.
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Once again: Duplicate ACKs

• TCP receivers send duplicate 
ACKs if segments are 
missing
– ACKs are cumulative (each ACK 

acknowledges all data until 
specified ACK-number)

– Duplicate ACKs should not be 
delayed

• ACK=300 means: "I am still
waiting for packet with 
SQNR=300"

SQNR=100

SQNR=200

SQNR=300

SQNR=400

ACK=200

ACK=300

ACK=300

SQNR=300

SQNR=500

ACK=300

…

Duplicate Ack

Duplicate Ack

Duplicate ACKs should be sent immediately that is it should not be delayed.
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Slow Start Parameters

• Two important parameters are communicated 
during the TCP three-way handshake
– The maximum segment size (MSS) 

– The advertized window size W 

• Now Slow Start introduces the congestion 
window (cwnd)
– Only locally valid and locally maintained

– Like window field stores a byte count

• Rule:
– The sender may transmit up to the minimum of the 

congestion window and the advertised window

The MSS is typically around 1024 bytes or more but does NOT count the TCP/IP header 
overhead, so the true packet is 20+20 bytes larger. The MSS is not negotiated, rather each 
peer can announce its acceptable MSS size and the other peer must obey. If no MSS option is 
communicated then the default of 536 bytes (i. e. 576 in total with IP and TCP header) is 
assumed.

Note: The MSS is only communicated in SYN-packets.
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Idea of Slow Start

• Upon new session, cwnd is 
initialized with MSS (= 1 segment)

• Allowed bytes to be sent: 
– Current window size = Minimum (W, 

cwnd)

• Each time an ACK is received, 
cwnd is incremented by 1 segment
– That is, cwnd doubles every RTT (!)
– Exponential increase!

cwnd=1 MSS Data

Ack

cwnd=2 MSS

cwnd=4 MSS

cwnd=4 MSS

…

Note that the sender may transmit up to the minimum of the congestion window (cwnd) and the 
advertized window (W). 

The cwnd implements sender-imposed flow control, the advertized window allows for receiver-
imposed flow control. But how does this mechanism deal with network congestion? Continue 
reading!
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Graphical Illustration (1/4)
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The picture shows the two unidirectional channels between sender and receiver as pipe 
representation. 

Observe how the cwnd is increased upon reception of ACKs.
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Graphical Illustration (2/4)
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Observe the exponential growth of the data rate.
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Graphical Illustration (3/4)
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We are approaching the limit soon…
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Graphical Illustration (4/4)

• TCP is "self-clocking"
– The spacing between the ACKs is the same as between the data segments
– The number of ACKs is the same as the number of data segments

• In our example, cwnd=8 is the optimum
– This is the bandwidth-delay product ( 8 = RTT x BW)
– In other words: the pipe can accept 8 segments per round-trip-time
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cwnd=8 => Pipe is full (ideal situation) –
cwnd should not be increased anymore!

cwnd=8

cwnd=8

At t=31, the pipe is ideally filled with packets; each time an ACK is received, another data 
packet is injected for transmission. 

In our example cwnd=8 is the optimum, corresponding to 8 packets that can be sent before 
waiting for an acknowledgement. This optimum is expressed via the famous bandwidth-delay 
product, i. e. 

pipe capacity = BW x RTT  ,

where the capacity is measured in bits, RTT in seconds, and the BW in bits/sec.

Our problem now is how to stop TCP from further increasing the cwnd… (continue reading).

(BTW: Of course this illustration is not completely realistic because the spacing between the 
packets is distorted by many packet buffers along the path.)
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Performance Limitation of all ARQ Protocols

• By “Bandwidth-Delay Product” = “Channel Volume”

• Continuous RQ with sliding window 
– The sender's window must be large enough to avoid stopping of sending

• Channel volume maybe increased
– By delays caused by buffers

– Limited signal speed

– Bandwidth

1

1) Doubled bandwidth:

2 3 4 5 6 7 8

4321 8765

2) Doubled RTT:
Additional capacity

Large enough means a value which covers the sum of serialization-, switching- and 
propagation-delays.

Note: window size maybe also be limited because of memory constraints (buffer) at the sender 
or receiver side

Datenkommunikation 384.081 - SS 2012

L11 - TCP, UDP and NAT (v5.1)

© 2012, D.I. Lindner / D.I. Haas

Page 11 - 64

© 2012, D.I. Lindner / D.I. Haas TCP, UDP, NAT v5.1 64

End of Slow Start -> Congestion

• Slow start leads to an exponential increase of 
the data rate until some network bottleneck is 
congested and some segments get dropped!

• Congestion can be detected by the sender 
through timeouts or duplicate 
acknowledgements

• Slow start reduces its sending rate with the help 
of a companion algorithm, called ”Congestion 
Avoidance"

Timeout means heavy or high congestion -> all segments in a row were dropped in a tail-drop 
queue.

Duplicate ACK means, that still something is reaching the destination -> small or low congestion 
which causes maybe a single segment loss only. 

Note this central TCP assumption: Segments are dropped because of buffer overflows and 
NOT because of bit errors! Therefore segment loss indicates congestion somewhere in the 
network.
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Congestion Avoidance (1)

• Upon congestion (=duplicate ACKs) 
– Reduce the sending rate by half and now increase the rate 

linearly until duplicate ACKs are seen again (and repeat 
this continuously)

• Congestion Avoidance requires TCP to maintain 
another variable 
– Slow Start Threshold" (ssthresh)

– ssthresh is set to half the current window size in case a 
duplicate ACK is received

• Initially, ssthresh is set to TCP’s maximum possible MSS (i.e. 
65,535 bytes)

• Note: ssthresh marks a safe window size because congestion 
occurred at a window size of 2 x ssthresh

Note: ssthresh marks a safe window size because congestion occurred at a window size of 2 x 
ssthresh.
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Congestion Avoidance (2)

• If the congestion is indicated by 
– A timeout: 

• cwnd is set to 1 -> forcing slow start again

– A duplicate ACK: 
• cwnd is set to ssthresh (= 1/2 current window size)

• cwnd ≤ ssthresh: 
– Slow start, doubling cwnd every round-trip time

– Exponential growth of cwnd

• cwnd > ssthresh: 
– Congestion avoidance, cwnd is incremented 

by MSS × MSS / cwnd every  time an ACK is received

– linear growth of cwnd
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Slow Start and Congestion Avoidance

2

4
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20

cwnd

round-trip times

ACK missing
Timeout

Timeout

ssthresh = 8

Duplicate ACK

ssthresh = 6

cwnd=16

cwnd=12

High Congestion: Every segment 
gets lost from a certain time on

Low Congestion: Only single 
segment gets lost
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Slow Start and Congestion Avoidance

cwnd / MSS

t / RTT1 2 3 4 5 6 7 8 9
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Duplicate ACK received
at cwnd = 32

Duplicate ACK received
at cwnd = 20

Congestion Avoidance

Congestion Avoidance
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Duplicate ACK

Duplicate ACK

Low Congestion: Only some 
segments get lost
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The Combined Algorithm

New Session: initialize cwnd = 1 MSS, ssthresh = 65535

Determine actual window size "AWS" = Min (W, cwnd)
** send AWS bytes **

Retransmission
timeout expired

Duplicate ACKs
received

Data
acknowledged

Increment cwnd
by 1/cwnd for 

each ACK received

cwnd = 1
ssthresh = AWS/2

ssthresh = AWS/2
(but at least 2 MSS)

(cwnd > ssthresh) ?

yes no

Increment cwnd 
by one for each 
ACK received. 

FYIFYI

Note that when slow start's exponential increase is only performed as long as cwnd is less or 
equal ssthresh. In this range, cwnd is increased by one with every received ACK. But if cwnd is 
greater than ssthresh, then cwnd is increased by 1/cwnd every received ACK. This means, 
cwnd is effectively increased by one every RTT.

Note that is not the complete algorithm. We must additionally discuss Fast Retransmit and Fast 
Recovery—see next slides.
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Long Term View of TCP Throughput

Time

Relative 
Throughput

Rate

ssthresh

Duplicate Ack Duplicate Ack Duplicate Ack Duplicate Ack

slow start congestion 
avoidance

congestion 
avoidance

congestion 
avoidance

max. 
achievable
throughput

"Wave Effect"

The diagram above shows the typical TCP behavior of one flow.  There are two important 
algorithms involved with TCP congestion control: "Slow Start" increases the sending rate 
exponentially beginning with a very low sending rate (typically 1-2 segments per RTT).  When 
the limit of the network is reached, that is, when duplicate acknowledgement occur, then 
"Congestion Avoidance" reduces the sending rate by 50 percent and then it is increased only 
linearly. 

The rule is: On receiving a duplicate ACK, congestion avoidance is performed.  On receiving no 
ACK at all, slow start is performed again, beginning at zero sending rate.

Note that this is only a quick and rough explanation of the two algorithms—the details are a bit 
more complicated.  Furthermore, different TCP implementations utilize these algorithm 
differently.
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Real TCP Performance

• TCP always tries to minimize the data delivery 
time

• Good and proven self-regulating mechanism to 
avoid congestion

• TCP is "hungry but fair"
– Essentially fair to other TCP applications 

– Unreliable traffic (e. g. UDP) is not fair to TCP…

TCP has been designed for data traffic only.  Error recovery does not make sense for voice and 
video streams.  TCP checks the current maximum bandwidth and tries to utilize all of it.  In case 
of congestion situations TCP will reduce the sending rate dramatically and explores again the 
network's capabilities.  Because of this behavior TCP is called "hungry but fair".

The problem with this behavior is the consequence for all other types of traffic:  TCP might 
grasp all it can get and nothing is left for the rest.

Datenkommunikation 384.081 - SS 2012

L11 - TCP, UDP and NAT (v5.1)

© 2012, D.I. Lindner / D.I. Haas

Page 11 - 72

© 2012, D.I. Lindner / D.I. Haas TCP, UDP, NAT v5.1 72

Agenda

• TCP Fundamentals
– Principles, Port and Sockets

– Header Fields

– Three Way Handshake

– Windowing

– Enhancements

• TCP Performance
– Slow Start and Congestion Avoidance

– Fast Retransmit and Fast Recovery

– TCP Window Scale Option and SACK Options

– Explicit Congestion Notification (ECN)

• UDP

• RFC Collection

• NAT
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"Fast Retransmit"

• Note that duplicate ACKs are also sent upon 
packet reordering

• Therefore TCP waits for 3 duplicate ACKs before 
it really assumes congestion
– Immediate retransmission (don't wait for timer expiration)

• This is called the Fast Retransmit algorithm

Fast Retransmit requires a receiver to send an immediate duplicate acknowledgement in order 
to notify the sender which segments are (still) expected by the receiver.

But when should retransmission occur? The receiver will also send duplicate 
acknowledgements when segments are arriving in the wrong order typically caused by a 
rerouting event in the network. Observations have shown that reordering in such a case causes 
one or two duplicate Acks on the average and only if three or more duplicate acks are seen 
then this is a strong indication for a lost segment. In such a case Fast Retransmission is done, i. 
e. TCP does not wait until segment’s retransmission timer expires.
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"Fast Recovery"

• After Fast Retransmit TCP continues with Congestion 
Avoidance
– ssthresh is set to half the current window size
– cwnd is set to ssthresh plus 3 times the maximum segment size.
– Does NOT fall back to Slow Start

• Every another duplicate ACK tells us that a "good" 
segment has been received by the peer
– cwnd = cwnd + MSS
– => Send one additional segment

• As soon a normal ACK is received
– cwnd = ssthresh = Minimum (W, cwnd)/2

• This is called Fast Recovery 

Why cwnd= ssthresh/s + 3 x MSS?

Remember: Fast Retransmit waits for 3 duplicate ACKs; from this can be concluded that the 
receiver must have received 3 segments already.

Hence Congestion avoidance, but not slow start should be performed. The receiver could only 
generate a duplicate ACK when another segment is received. That is there are still segments 
flowing through the network! Slow start would reduce this flow abruptly!

After that for each additional duplicate ACK  the sender increases cwnd by 1 segment size. 
Upon receiving a normal ACK cwnd is set to ssthresh and sender resumes normal congestion 
avoidance mode.

Fast Recovery allows the sender to maintain the ack-clocked data rate for new data while the 
single segment loss repair is being undertaken. Note: if send window would be closed more 
abruptly the synchronization via duplicate ACKs would be lost. Still the single segment loss 
indicates congestion and back off to normal congestion avoidance mode must be done after 
that repair.
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Fast Retransmit and Fast Recovery
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3rd duplicate Ack:
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further duplicate Acks
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All Together!

New Session: initialize cwnd = 1 MSS, ssthresh = 65535

Determine actual window size "AWS" = Min (W, cwnd)
** send AWS bytes **

Retransmission
timeout expired

3 duplicate ACKs
received

Data
acknowledged

Increment cwnd
by 1/cwnd for 

each ACK received

cwnd = 1
ssthresh = AWS/2

ssthresh = AWS/2
(but at least 2 MSS),

retransmit the segment,
cwnd = ssthresh+3 MSS,

for each 3+nth duplicate ACK 
increase cwnd by 1 MSS; 

then set cwnd=ssthresh upon 
first "normal" ACK

(cwnd > ssthresh) ?

yes no

Increment cwnd 
by one for each 
ACK received. 

Slow Start, Congestion Avoidance, 
Fast Retransmit, and Fast Recovery

FYIFYI

When one or two duplicate ACKs are received, TCP does not react because packet reorder is 
probable. Upon the third duplicate ACK TCP assumes that the segment (for which the duplicate 
ACK is meant) is really lost. TCP now immediately retransmit the packet (i. e. it does not wait 
for any timer expiration), sets ssthresh to min{W, cwnd}/2 and then cwnd three segment sizes 
greater than this ssthresh value. If TCP still receives duplicate ACKs then obviously good 
packets still arrive at the peer; and therefore TCP continuous sending new segments—hereby 
incrementing cwnd by one segment size for every another duplicate ACK (this actually allows 
the transmission of another new segment). As soon as a normal (=not duplicate) ACK is 
received (=it acknowledges the retransmitted segment) cwnd is set to ssthresh (=continue with 
normal congestion avoidance).
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Agenda

• TCP Fundamentals
– Principles, Port and Sockets

– Header Fields

– Three Way Handshake

– Windowing

– Enhancements

• TCP Performance
– Slow Start and Congestion Avoidance

– Fast Retransmit and Fast Recovery

– TCP Window Scale Option and SACK Options
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TCP Header Window Field

Source Port Number Destination Port Number

0 15 16 31

Sequence Number

Acknowledgement Number

Header
Length

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window Size

TCP Checksum Urgent Pointer

20 
bytes

TCP Options (if any)
........... (PAD)

Data (if any)
...........
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TCP Options

• Window-scale option
– a maximum segment size of 65,535 octets is inefficient for 

high delay-bandwidth paths

– the window-scale option allows the advertised window 
size to be left-shifted (i.e. multiplication by 2)

– enables a maximum window size of 2^30 octets !

– negotiated during connection establishment

• SACK (Selective Acknowledgement)
– if the SACK-permitted option is set during connection 

establishment, the receiver may selectively acknowledge 
already received data even if there is a gap in the TCP 
stream (Ack-based synchronization maintained)
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What's Happening in the Network? 

• Tail-drop queuing is the standard dropping 
behavior in FIFO queues 
– If queue is full all subsequent packets are dropped

New arriving packets are dropped
("Tail drop")

Full queue
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Tail-drop Queuing (cont.)

• Another representation: 
Drop probability versus queue depth

100%

0%
Queue Depth

D
ro

p
 P

ro
b

ab
ili

ty

The "queue depth" denotes the amount of packets waiting in the queue for being forwarded. (It 
is NOT the size of the whole queue.)
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Tail-drop Problems

• No flow differentiation

• TCP starvation upon multiple packet drop 
• TCP receivers may keep quiet (not even send duplicate ACKs) 

and sender falls back to slow start 
– worst case!

• TCP fast retransmit and/or selective acknowledgement may help

• TCP synchronization
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TCP Synchronization

• Tail-drop drops many segments of different sessions at the same 
time

• All these sessions experience duplicate ACKs and perform 
synchronized congestion avoidance

RTT 

Relative 
Throughput

Rate

(Window size)
Duplicate Ack Duplicate AckDuplicate Ack Duplicate Ack

slow start congestion 
avoidance

congestion 
avoidance

congestion 
avoidance

max. achievable throughput

Average link
utilization

Many TCP streams in a network tend to synchronize each other in terms of intensity.  That is, 
all TCP users recognize congestion simultaneously and would restart the slow-start process 
(sending at a very low rate).  At this moment the network is not utilized.  After a short time, all 
users would reach the maximum sending rate and network congestion occurs.  At this time all 
buffers are full.  Again all TCP users will stop and nearly stop sending again.  This cycle 
continues infinitely and is called the TCP wave effect.  The main disadvantage is the relatively 
low utilization of the network.
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Random Early Detection (RED)

• Utilizes TCP specific behavior
– TCP dynamically adjusts traffic throughput by reducing 

window size
• in order to accommodate to the minimal available bandwidth 

(bottleneck) 

• "Missing" (dropped) TCP segments cause 
window size reduction!
– Idea: Start dropping TCP segments before queuing "tail-

drops" occur
– Make sure that "important" traffic is not dropped

• RED randomly drops segments before queue is 
full
– Drop probability increases linearly with queue depth

Random Early Discard (RED) is a method to de-synchronize the TCP streams by simply drop 
packets of a queue randomly.  

RED starts when a given queue depth is reached and is applied more aggressively when the 
queue depth increases.

RED causes the TCP receivers to send duplicate ACKs which in turn causes the TCP senders 
to perform congestion avoidance.

The trick is that this happens randomly, so not all TCP applications are affected equally at the 
same time.  
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RED

• Important RED parameters
– Minimum threshold

– Maximum threshold

– Average queue size (running average)

• RED works in three different modes
– No drop

• If average queue size is between 0 and minimum threshold

– Random drop
• If average queue size is between minimum and maximum 

threshold

– Full drop
• If average queue size is equal or above maximum threshold = "tail-

drop"

FYIFYI
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RED Parameters

Drop probability

Mark probability

100%

10%

min-thresh max-thresh

Average
queue size

(e.g. 20) (e.g. 40)

Tail-drop (full drop)

RED

(packets)

Datenkommunikation 384.081 - SS 2012

L11 - TCP, UDP and NAT (v5.1)

© 2012, D.I. Lindner / D.I. Haas

Page 11 - 88

© 2012, D.I. Lindner / D.I. Haas TCP, UDP, NAT v5.1 88

Weighted RED (WRED)

• Drops less important packets more aggressively 
than more important packets

• Importance based on:
– IP precedence 0-7 (ToS byte)

– DSCP value 0-63 (ToS byte)

• Classified traffic can be dropped based on the 
following parameters
– Minimum threshold

– Maximum threshold

– Mark probability denominator 
(Drop probability at maximum threshold)
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WRED Parameters

Drop probability

100%

10%

min-thresh
Prec 4

max-thresh

Average
queue size

Tail-drop (full drop)

WRED (P
rec 4)

(packets)
min-thresh

Prec 3

WRED (P
rec 3)

min-thresh
Prec 0

WRED (P
rec 0)
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RED Problems

• RED performs "Active Queue Management" 
(AQM) and drops packets before congestion 
occurs
– But an uncertainty remains whether congestion will occur 

at all

• RED is known as "difficult to tune"
– Goal: Self-tuning RED

– Running estimate weighted moving average (EWMA) of 
the average queue size

FYIFYI

Although the principle of RED is fairly simply it is known to be difficult to tune.  A lot of research 
has been done to find out optimal rules for RED tuning.
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Explicit Congestion Notification (ECN)

• Traditional TCP stacks only use segment loss as indicator to reduce 
window size

– But some applications are sensitive to packet loss and delays 
• Routers with ECN enabled mark packets when the average queue depth 

exceeds a threshold
– Instead of randomly dropping them
– Hosts may reduce window size upon receiving ECN-marked packets

• Least significant two bits of IP TOS used for ECN

ECT CE
IP TOS Field

DSCP ECN

Obsolete (but widely used) RFC 2481
notation of these two bits:

ECT ECN-Capable Transport
CE Congestion Experienced

The limits of interpreting symptoms only:

Slow start and congestion avoidance try to maximize the traffic throughput without inclusion of 
network information. It is a host-based congestion control. Original IP idea: "Keep the network 
simple !“ Slow start and congestion avoidance suspects congestion only by observing 
symptoms of the network. 

Further improvements require an active inclusion of the intermediate network. This led to the 
introduction of an Explicit Congestion Notification mechanism which requires the help from 
routers that are expecting congestion (similar to the FECN seen in Frame Relay and EFCI in 
ATM)

The RFC 2481 originally identified the two bits: The ECN-Capable Transport (ECT) bit would be 
set by the data sender to indicate that the end-points of the transport protocol are ECN-capable. 
The CE bit would be set by the router to indicate congestion to the end nodes. Routers that 
have a packet arriving at a full queue would drop the packet, just as they do it now.
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Usage of CE and ECT 

• RFC 3168 redefines the use of the two bits: ECN-supporting  hosts should 
set one of the two ECT code points

– ECT(0) or ECT(1)
– ECT(0) SHOULD be preferred

• Routers that experience congestion set the CE code point in packets with 
ECT code point set (otherwise: RED)

• If average queue depth is exceeding max-threshold: Tail-drop
• If CE already set: forward packet normally (abuse!)

0 0

0 1

1 0

1 1

Non ECN-capable transport

ECT(1)

ECT(0)
Codepoints for ECN-capable transport

CE codepoint

ECN Field

FYIFYI

RFC 3168 - The Addition of Explicit Congestion Notification (ECN) to IP

Why are two ECT codepoints used? As short answer: This has several reasons and supports 
multiple implementations, e. g. to differentiate between different sets of hosts etc. 

But the most important reason is to provide a mechanism so that a host (or a router) can check 
whether the network (or the host, respectively) indeed supports ECN. ECN has been introduced 
in the mid-1990s and the inventors wanted to increase the pressure for hosts and routers to 
migrate. On the other hand non-ECN hosts could simply set the ECT-bit (see previous slide) 
and claimed to support ECN: Upon congestion the router would not drop the packet but only 
mark it. While ECN-capable host would reduce their TCP window, ECN-faking hosts would still 
remain at their transmission rate. Now the two ECT codepoints could be used as Cookie which 
allows a host to detect whether a router erases the ECT or ECN bit. Also it can be tested 
whether the other side uses ECN. 

If you do not fully understand this please read the RFCs and search in the WWW – there a lots 
of debates about that.

By the way: The  bit combination 01 indeed stands for ECT(1) and not ECN(0). This is no typo.
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CWR and ECE

• RFC 3168 also introduced two new TCP flags
– ECN Echo (ECE)
– Congestion Window Reduced (CWR)

• Purpose:
– ECE used by data receiver to inform the data sender when a CE packet has been 

received
– CWR flag used by data sender to inform the data receiver that the congestion window 

has been reduced

IP TOS: ECT IP TOS: CE 

TCP: ECETCP: ECE

Congestion

IP TOS: ECT 

TCP: ECE

TCP: CWR TCP: CWRTCP: CWR

Header
Length

P
S
H

R
S
T

S
Y
N

F
I
N

A
C
K

U
R
G

Reserved Window Size
E
C
E

C
W
R

Part of TCP header:

During TCP connection establishment, the ECN capability is negotiated. Additionally ECN 
requires the two TCP options "ECN-Echo" flag and "Congestion Window Reduced" (CWR) flag.

Then the sender sets the ECT bit in the IP header of all datagram it sends. When routers 
experience congestion they may mark the IP header of such packets with an explicit CE bit flag.

The receiver detects the CE flag and sets the TCP ECN-Echo flag in its acknowledgement 
segment. If the sender receives this acknowledgement segment  with the ECN-echo flag set, 
the sender reduces its congestion window (-> congestion avoidance) and the sender sets the 
TCP CWR flag in its next segment in order to notify the receiver that the sender has reacted 
upon the congestion.

Main advantage: The sender does not have to wait for three duplicate ACKs to detect the 
congestion. He can react before dropping of segments will occur in the network by routers.
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Note

• CE is only set when average queue depth 
exceeds a threshold
– End-host would react immediately

– Therefore ECN is not appropriate for short term bursts 
(similar as RED)

• Therefore ECN is different as the related features 
in Frame Relay or ATM which acts also on short 
term (transient) congestion

FYIFYI
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IP transmission over

ATM
RFC 1483

IEEE 802.2
RFC 1042

X.25
RFC 1356

FR
RFC 1490

PPP
RFC 1661

TCP/IP Protocol Suite

Physical

Link

Network

Transport

Session

Presentation

Application SMTP
HTTP

HTTPS
FTP

Telnet
SSH

DNS 
DHCP

(BootP)
TFTP etc.

TCP
(Transmission Control Protocol)

UDP
(User Datagram

Protocol)

IP (Internet Protocol)
ICMP

ARP RARP

Routing Protocols

RIP OSPF
BGP

( US-ASCII and MIME )

( RPC )
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UDP (User Datagram Protocol, RFC 768)

• UDP is a connectionless layer 4 service 
(datagram service)

• Layer 3 Functions are extended by port 
addressing and a checksum to ensure integrity 

• UDP uses the same port numbers as TCP (if 
applicable)

• Less complex than TCP, easier to implement

UDP is connectionless and supports no error recovery or flow control. Therefore an UDP-stack 
is extremely lightweight compared to TCP.

Typically applications that do not require error recovery but rely on speed use UDP, such as 
multimedia protocols.
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4 4

Layer 4 Protocol = UDP (Connectionless)

M M

UDP and OSI Transport Layer 4

IP Host A IP Host B

Router 1 Router 2

UDP Connection (Transport-Pipe)

Recognizes that even the IP hosts see a transport pipe, this pipe is unreliable. 
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UDP Usage

• UDP is used
– When the overhead of a connection oriented service is 

undesirable
• E.g. for short DNS request/reply

– When the implementation has to be small
• e.g. BootP, TFTP, DHCP, SNMP

– Where retransmission of lost segments makes no sense
• Voice over IP

• Multimedia streams

Nowadays typically applications that do not require error recovery but rely on speed use UDP, 
such as multimedia protocols.

Note: Digitized voice is critical concerning delay but not against loss.

Voice is encapsulated in RTP (Real-time Transport Protocol) and RTP is encapsulated in UDP.

RTCP (RTP Control Protocol) propagates control information in the opposite direction. RTCP 
again is encapsulated in UDP.
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UDP Header

Destination Port NumberSource Port Number

PAYLOAD

0 4 8 12 16 20 24 28 32

UDP Length UDP Checksum

Compared to the TCP Header, the UDP is very small (8 byte to 20 byte) because UDP makes 
no error recovery or flow control. 

Basically UDP adds just process addressing capabilities by usage of port numbers to best-effort 
service offered by IP.

Source and Destination Port:

Port number for addressing the process (application). Well known port numbers defined in 
RFC1700

UDP Length:

Length of the UDP datagram (Header plus Data).

I personally think that the length field is just for fun (or to align with 4 octets). The IP header 
already contains the total packet length.

UDP Checksum:

Checksum includes pseudo IP header (IP src/dst addr., protocol field), UDP header and user 
data. One´s complement of the sum of all one´s complements.

Note that the checksum is often not calculated, 
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Important UDP Port Numbers

– 7   Echo
– 53 DOMAIN, Domain Name Server
– 67 BOOTPS, Bootstrap Protocol Server
– 68 BOOTPC, Bootstrap Protocol Client
– 69 TFTP, Trivial File Transfer Protocol
– 79 Finger
– 111 SUN RPC, Sun Remote Procedure Call
– 137 NetBIOS Name Service
– 138 NetBIOS Datagram Service
– 161 SNMP, Simple Network Management Protocol
– 162 SNMP Trap
– 322 RTSP (Real Time Streaming Protocol) Server
– 520    RIP
– 5060 SIP (VoIP Signaling)
– xxxx RTP (Real-time Transport Protocol)
– xxxx+1 RTCP (RTP Control Protocol)
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RFCs

• 0761 - TCP

• 0813 - Window and Acknowledgement Strategy in TCP

• 0879 - The TCP Maximum Segment Size 

• 0896 - Congestion Control in TCP/IP Internetworks

• 1072 - TCP Extension for Long-Delay Paths

• 1106 - TCP Big Window and Nak Options

• 1110 - Problems with Big Window

• 1122 - Requirements for Internet Hosts -- Com. Layer 

• 1185 - TCP Extension for High-Speed Paths

• 1323 - High Performance Extensions (Window Scale)

Datenkommunikation 384.081 - SS 2012

L11 - TCP, UDP and NAT (v5.1)

© 2012, D.I. Lindner / D.I. Haas

Page 11 - 104

© 2012, D.I. Lindner / D.I. Haas TCP, UDP, NAT v5.1 104

RFCs

• 2001 - Slow Start and Congestion Avoidance (Obsolete)

• 2018 - TCP Selective Acknowledgement (SACK)

• 2147 - TCP and UDP over IPv6 Jumbograms

• 2414 - Increasing TCP's Initial Window

• 2581 - TCP Slow Start and Congestion Avoidance 
(Current)

• 2873 - TCP Processing of the IPv4 Precedence Field

• 3168 - TCP Explicit Congestion Notification (ECN)
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Private Address Range - RFC 1918

• Three blocks of address ranges are reserved for 
addressing of private networks
– 10.0.0.0  - 10.255.255.255  (10/8 prefix)

– 172.16.0.0  - 172.31.255.255  (172.16/12 prefix)

– 192.168.0.0   - 192.168.255.255 (192.168/16 prefix)

• NAT (Network Address Translation)
– Performs translation between private addresses and 

globally unique addresses 

– Was originally developed as an interim solution to combat 
IPv4 address depletion by allowing IP  addresses to be 
reused by several hosts

In this chapter we discuss the idea of Network Address Translation and special issues 
associated to it.  Invented in 1994, NAT became a quite popular technique to save official 
network addresses and to hide the own network topology from the Internet
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Network Address Translation (NAT)

• NAT 
– First explained in RFC 1631

• The address reuse solution is to place Network Address 
Translators (NAT) at the borders of stub domains

• Each NAT box has a table consisting of pairs of local IP addresses 
and globally unique addresses performing address translation 
when passing IP Datagram's between a stub domain and the 
Internet and vice versa

• The IP addresses inside the stub domain are not globally unique,
they are reused in other domains, thus solving the address 
depletion problem

• In most cases private addresses (RFC 1918) are used inside the 
stub domain (10.0.0.0/8, 172.16.0.0/16, 192.168.0.0/16)
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Reasons for NAT

• Mitigate Internet address depletion
– As temporary solution before IPv6 is there 

• Save global addresses (and money)
– NAT is most often to map the nonroutable private address 

spaces defined by RFC 1918 to an official address
• 10.0.0.0/8, 172.16.0.0/16, 192.168.0.0/16

• Conserve internal address plan

• TCP load sharing
– Several physical servers are hided behind one IP address 

and traffic to them is balanced 

• Hide internal topology
– Security aspect

NAT allows a router to swap packet addresses.  The initial idea was to mitigate IP address 
depletion by masquerading internal IP addresses with (perhaps a smaller number of) official 
addresses. We will discuss this later on.  

The first and the second point reflect the same thing, but the first statement comes from the ISP 
while the second point is an argument for the customer.

The third point means that the customer does not need to change her address plan when she 
switches to another ISP.

As stated in the fourth point, NAT additionally allows for TCP load sharing.  Assume a bunch of 
servers represented by a single IP address to the outside.

Finally, NAT improves network security by hiding the actual host addresses.  Frequently NAT 
boxes are combined with proxy and firewalling functions.  
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Terms (1)

193. 99.99.1

193.99.99.4

Global addresses

193. 99.99.2

193. 99.99.3

(NAT not necessary in this case)

Inside
(Stub Domain)

Outside
(e.g. Internet)

To understand standard documents such as RFCs or vendor documents such as Cisco white 
papers or similar, it is very important to understand four terms.

Firstly we have to distinguish the inside from the outside world.  Inside is our own network 
(which we want to hide using a NAT-enabled router later on).  Outside is the rest of the world, 
especially the Internet.  

Secondly, suppose we do not use NAT. Therefore we use global addresses everywhere. That 
is, we use addresses that are registered by the NIC and can be seen from outside.
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Terms (2)

10.1.1.1

10.1.1.2

10.1.1.3
10.1.1.4

Local addresses

NAT

10.1.1.1

10.1.1.2

10.1.1.3

10.1.1.4

193.99.99.1

193.99.99.4

193.99.99.2

193.99.99.3

Local 
IP address

Global 
IP address

Static one-to-one mapping 
(NAT-Binding) is 
maintained by router-
internal  static NAT–Table 

Inside
(Stub Domain)

Outside
(e.g. Internet)

Globally unique
addresses

Using a NAT enabled router we can use inside local addresses which are not unique in the 
world.  This addresses are not registered and must be translated to outside global addresses. 
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Basic Principle (1)

10.1.1.1 193.9.9.1

10.1.1.2 193.9.9.2

.... ....

Local IP Global IP

10.1.1.1

198.5.5.55DA

SA 193.9.9.1

198.5.5.55DA

SA

10.1.1.1

NAT

198.5.5.55
193.9.9.99

10.1.1.2

NAT

Simple Static 
NAT Table

Binding is maintained by static NAT–Table

1) Suppose the user at host 10.1.1.1 opens a connection to host 198.5.5.55.

2) The first packet that the router receives from host 10.1.1.1 causes the router to check its 
NAT table.

3) The router replaces the source address with the global address found in the NAT table. 
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Basic Principle (2)

10.1.1.1 193.9.9.1

10.1.1.2 193.9.9.2

.... ....

Local IP Global IP

10.1.1.1

198.5.5.55

DA

SA

193.9.9.1

198.5.5.55

DA

SA

10.1.1.1

NAT

198.5.5.55
193.9.9.99

10.1.1.2

NAT

Simple Static 
NAT Table

Binding is maintained by static NAT–Table

Host 198.5.5.55 responds to host 10.1.1.1 by using the global address 193.9.9.1 as destination 
address.

When the router receives a packet with the inside global address 193.9.9.1 it performs a NAT 
table lookup to determine the associated inside local address. 

The router translate 193.9.9.1 to 10.1.1.1 and forwards the packet to host 10.1.1.1.

FYI:

Inside-to-outside translation occurs after routing

Outside-to-inside translation occurs before routing
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NAT Tasks and Behaviour

– Modify IP addresses according to NAT table

– But also must modify the IP checksum and the TCP checksum

– Must also look out for ICMP and modify the places where the  IP 
address appears 

– There may be other places, where modifications must be done 
• E.g. FTP, NetBIOS over TCP/IP, SNMP, DNS, Kerberos, X-Windows, 

SIP, H.323, IPsec, IKE…

– The sender and receiver (should) remain unaware that NAT is taking 
place

Note: TCP's checksum also covers a pseudo IP header which contains the source and 
destination IP addresses.

NAT devices were intended to be unmanaged devices that are transparent to end-to-end 
protocol interaction. Hence no specific interaction is required between the end systems and the 
NAT device.
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NAT Binding Possibilities

• Static (“Fixed Binding”)
– In case of one-to-one mapping of local to global addresses

• Dynamic (“Binding on the fly”)
– In case of sharing a pool of global addresses

– Connections initiated by private hosts are assigned a global address 
from the pool

– As long as the private host has an outgoing connection, it can be 
reached by incoming packets sent to this global address

– After the connection is terminated (or a timeout is reached), the 
binding expires, and the address is returned to the pool for reuse

– Is more complex because state must be maintained, and connections 
must be rejected when the pool is exhausted

– Unlike static binding, dynamic binding enables address reuse, 
reducing the demand for globally unique addresses.
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Scenario Dynamic Binding

10.1.1.1

10.1.1.2

10.1.1.3
10.1.1.4

NAT

10.1.1.1

10.1.1.2

10.1.1.3

10.1.1.4

193.99.99.1

193.99.99.2

Local addresses

Inside Outside

Binding is maintained by 
dynamic NAT–Table 

Note: a connection state or timer 
must be maintained per mapping

Globally unique
addresses

Local 
IP address

Global 
IP address

Currently not possible

Currently not possible

If no translation entry exists, the router determines that the source address must be translated 
dynamically and selects a legal global address from the predefined dynamic address pool and 
creates a translation entry.
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Overloading (NAPT)

• Common problem: 
– Many hosts inside initiating connections to the 

outside world
– But only one or a few inside-global addresses 

available

• Solution:
– Many-to-one Translation  with NAPT (Network 

Address Port Translation)
– Usable in context of TCP and UDP sessions
– Aka "Overloading Global Addresses"
– Aka "PAT„ (Port Address Translation)

Many-to-one translation is accomplished by identifying each traffic according to the source port 
numbers. This method is commonly known as Port Address Translation (PAT). In the IETF 
documents you will also see the abbreviation NAPT.  In the Linux world it is known as 
masquerading.

When N inside hosts use the same source port numbers, the PAT-routers will increase N-1 of 
these identical source port numbers to the next free values.
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NAPT Example (1)

10.1.1.1:1034

65.38.12.9:80DA

SA10.1.1.1

10.1.1.2
10.1.1.2:1034

65.38.12.9:80DA

SA

173.3.8.1:2137

65.38.12.9:80DA

SA

173.3.8.1:2138

65.38.12.9:80DA

SA

65.38.12.9

10.1.1.1:1034

10.1.1.2:1034

173.3.8.1:2137

173.3.8.1:2138

Extended Translation Table

GlobalLocal

TCP

TCP

Prot.

NAPT

The port number is the differentiator. Note that the TCP and UDP port number range allows up 
to 65,536 number per IP address. This number is the upper limit for simultaneous transmissions 
per inside-global IP address. 

If the port numbers run out, PAT will move to the next IP address and try to allocate the original 
source port again. This continues until all available ports and IP addresses are utilized.  If a 
PAT router run out of addresses, it drops the packet and sends an ICMP Host Unreachable 
message.

Generally, NAT/PAT is only practical when relatively few hosts in a stub domain communicate 
outside of the domain at the same time.  In this case, only a small subset of the IP addresses in 
the own domain must be translated into globally unique IP addresses.
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10.1.1.1:1034

65.38.12.9:80

DA

SA10.1.1.1

10.1.1.2

10.1.1.2:1034

65.38.12.9:80

DA

SA

173.3.8.1:2137

65.38.12.9:80

DA

SA

173.3.8.1:2138

65.38.12.9:80

DA

SA

65.38.12.9

NAPT Example (2)

Extended Translation Table

10.1.1.1:1034

10.1.1.2:1034

173.3.8.1:2137

173.3.8.1:2138

GlobalLocal

TCP

TCP

Prot.

NAPT

In this example both inside hosts (10.1.1.1 and 10.1.1.2) connect to the same outside 
webserver.  The outside global addresses are identical. The destination port number is used to 
translate to the corresponding inside host.
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Virtual Server Table

• Problem: 
– How to reach an inside server from the outside

– NAPT/NAT let IP datagram's (with UDP or TCP 
segments as payload) from to outside only in if a 
binding is found

– But server waits for connections from the outside 
hence cannot install binding in the NAPT/NAT device

• Solution:
– Virtual Server Table

– Creating manually a static binding in the NAPT/NAT 
device to forward IP datagram's to the real inside 
server

Datenkommunikation 384.081 - SS 2012

L11 - TCP, UDP and NAT (v5.1)

© 2012, D.I. Lindner / D.I. Haas

Page 11 - 122

© 2012, D.I. Lindner / D.I. Haas TCP, UDP, NAT v5.1 122

10.1.1.1:25

65.38.12.9:1039

DA

SA10.1.1.1

10.1.1.2

10.1.1.2:80

65.38.12.9:1040

DA

SA

173.3.8.1:25

65.38.12.9:1039

DA

SA

173.3.8.1:80

65.38.12.9:1040

DA

SA

65.38.12.9

Virtual Server Table Example

Extended Translation Table

10.1.1.1:25

10.1.1.2:80

173.3.8.1:25

173.3.8.1:80

GlobalLocal

TCP

TCP

Prot.

NAPT
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Terms Used in complex NAT Devices 

– Local versus global address

• Reflects area of usage (inside or outside)

– Inside versus outside world

• Reflects the origin

Inside Network Outside Network

NAT
Inside Local

Outside LocalDA

SA Inside Global

Outside GlobalDA

SA

Outside Global

Inside GlobalDA

SAOutside Local

Inside LocalDA

SA

FYIFYI

This slide summarizes all terms by showing packets flowing from inside to outside and from 
outside to inside.  Local is what we can use inside our network. Inside local source addresses 
are always private addresses otherwise we won't use NAT.  

Outside local addresses can be either private or registered.  Mostly they are registered, but in 
certain cases we might want to present official registered addresses in incoming packets as 
being private addresses.  See the slide "Outside Address Translation" for this special case.  
Typically the outside local address is mostly identical with the outside global address.

The inside global address is the official address of our hosts as seen in the Internet.  What 
people mostly expect from NAT is to translate an inside local address to an inside global 
address.  Both addresses belong to a host inside our network.  

The outside global address is the official registered IP address of an Internet host.  Mostly it is 
identical with our outside local address we use as destination address for outgoing packets.  
See the slide "Outside Address Translation" for exceptions.
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Static NAT Example with New Terms

10.1.1.1

10.1.1.2

10.1.1.3
10.1.1.4

Local addresses

NAT

Inside
(Stub Domain)

Outside
(e.g. Internet)

Inside Local
IP address

Inside Global 
IP address

Binding is maintained by 
static NAT–Table 

Globally unique
addresses

10.1.1.1

10.1.1.2

10.1.1.3

10.1.1.4

193.99.99.1

193.99.99.4

193.99.99.2

193.99.99.3
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Basic Principle (1a) with New Terms
Inside Address Translation

10.1.1.1 193.9.9.1

10.1.1.2 193.9.9.2

.... ....

Inside Local IP Inside Global IP

10.1.1.1

198.5.5.55DA

SA 193.9.9.1

198.5.5.55DA

SA

10.1.1.1

NAT

198.5.5.55
193.9.9.99

10.1.1.2

NAT

Simple NAT Table
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Basic Principle (1b) with New Terms
Inside Address Translation

10.1.1.1 193.9.9.1

10.1.1.2 193.9.9.2

.... ....

Inside Local IP Inside Global IP

Simple NAT Table

10.1.1.1

198.5.5.55

DA

SA

193.9.9.1

198.5.5.55

DA

SA

10.1.1.1

NAT

198.5.5.55
193.9.9.99

10.1.1.2

NAT
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Overlapping Networks

= Same addresses are used

locally  and globally

What can 
happen?

Overlapping networks occur if we use non-legal (not officially assigned) IP addresses that 
officially belong to another network.  We can do that if we use NAT to translate our internal 
addresses into global ones.  However, if we want to communicate with the other network (that 
use our inside-local addresses as global ones) we must consider some special issues...
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Outside Address Translation

9.3.1.2

193.9.9.2

x.x.x.xDA

SA

Hidden 9.0.0.0 
network

9.3.1.8

193.9.9.2DA

SA

Packet came from 
"true" 9.0.0.0 

network

10.0.0.8

9.3.1.2DA

SA

9.3.1.8

9.3.1.2 193.9.9.2 10.0.0.8 9.3.1.8

Outside LocalInside GlobalInside Local Outside Global

First we examine the simple case.  Suppose we used a class A network 9.0.0.0 for several 
years and now we want to give it back to the world (thereby earning a lot of money from our 
ISP).  

Now we will present our network through NAT to the outside world. Obviously the class A range 
we had given away will be used by other customers, so incoming packets might have the same 
source addresses as we still use for our devices.  Clearly we should renumber our hosts with 
RFC1918 private addresses. 

But if we had a big number of hosts we might not want to renumber all devices, instead we will 
translate the source addresses of incoming packets if they come from the true class-A network 
9.0.0.0.  By changing to an outside-local address, these packets can be routed outside.
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DNS Problem (1)

9.3.1.2

"Jahoo"
9.3.1.8

DNS server
195.44.33.11

DNS request for host "Jahoo"
SA=9.3.1.2 / DA=195.44.33.11

Hidden 9.3.1.0/24 
network Legal 9.3.1.0/24 

network

This is a more tricky issue.  Usually we do not know IP addresses of outside hosts, rather we 
ask a DNS server for name resolution.
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DNS Problem (2)

DNS server
195.44.33.11

DNS request for host "Jahoo"
SA=178.12.99.3 / DA=195.44.33.11

9.3.1.2

"Jahoo"
9.3.1.8
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DNS Problem (3)

DNS server
195.44.33.11

DNS reply: host "Jahoo" is 9.3.1.8
SA=195.44.33.11 / DA= 178.12.99.3

!OVERLAPPING ALERT! 
We cannot tell our hosts 

that "Jahoo" has IP address 9.3.1.8...
They would think that Jahoo is inside

and would try a direct delivery...!!!

9.3.1.2

"Jahoo"
9.3.1.8

But what, if the DNS server replies an IP address which is supposed to be inside our own 
network? In this case the NAT router must manipulate the layer-7 DNS information and 
translate the global-outside addresses.
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DNS Problem (4)

DNS server
195.44.33.11

DNS reply: host "Jahoo" is 7.7.7.7
SA= 195.44.33.11 / DA=9.3.1.2

Now my hosts forward 
traffic to me as Default 
Gateway to the Internet

9.3.1.2

"Jahoo"
9.3.1.8

The router examines every DNS reply, ensuring that the resolved address is not used inside.  In 
such overlapping situations the router will translate the address.

Note: 

Cisco NAT is able to inspect and perform address translation on A (Address) and PTR (Pointer) 
DNS Resource Records.
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DNS Problem (5)

DNS server
195.44.33.11

Message for host "Jahoo"
SA=9.3.1.2 / DA=7.7.7.7

DA=7.7.7.7...?
Must be translated

9.3.1.2

"Jahoo"
9.3.1.8

Of course if the destination address of outgoing packets match a previously introduced outside-
local address, it must be translated into a outside-global address.

The same performance is done in a converse situation where the DNS server is inside and a 
DNS request is sent by an outside host.  If the name resolution result in an inside local address 
the NAT router has to translate this address.

NOTE: Cisco IOS does not translate addresses inside DNS zone transfers.
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DNS Problem (6)

DNS server
195.44.33.11

Message for host "Jahoo"
SA=178.12.99.3 / DA=9.3.1.8

9.3.1.2 178.12.99.3 9.3.1.8 7.7.7.7

Inside Local Inside Global Outside Global Outside LocalNAT
Table

9.3.1.2

"Jahoo"
9.3.1.8
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TCP Load Sharing (1)

• Multiple servers represented by a single inside-
global IP address
– Virtual host address

• New TCP session requests to the Virtual Host 
are forwarded to one of a group of real hosts
– Rotary group

TCP load sharing is an enhanced NAT feature and is used inside the Intranet because this has 
nothing to do with private address translation.  If we want to offer a highly loaded specific 
service to users, we can employ a NAT router to map a single inside-global address (the virtual 
host address which is known to the users) to multiple inside-local addresses, each assigned to 
a real host.  Everytime a user connects to the virtual host and wants to establish a session, this 
session is mapped to one of the real hosts in a round-robin manner. That is why the group of 
real hosts is called "rotary group". 

Note that the NAT router has no idea of the load distribution. Neither the service availability is 
known to the router!  
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TCP Load Sharing (2)

5.5.5.5

1.0.0.1

1.0.0.2

1.0.0.3

1.0.0.240

TCP Connection Request
DA= 1.0.0.240 : 23
SA= 4.4.4.4 : 3931 

4.4.4.4

6.6.6.6
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TCP Load Sharing (3)

5.5.5.5

1.0.0.1

1.0.0.2

1.0.0.3

1.0.0.240

TCP Connection Request
DA= 1.0.0.1 : 23
SA= 4.4.4.4 : 3931 

4.4.4.4

6.6.6.6
1.0.0.1:23 1.0.0.240:23 4.4.4.4:3931TCP

Inside Local Inside Global Outside GlobalProt.
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TCP Load Sharing (4)

5.5.5.5

1.0.0.1

1.0.0.2

1.0.0.3

1.0.0.240

TCP Flow
DA= 4.4.4.4 : 3931 
SA= 1.0.0.1 : 23

4.4.4.4

6.6.6.6
1.0.0.1:23 1.0.0.240:23 4.4.4.4:3931TCP

Inside Local Inside Global Outside GlobalProt.
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TCP Load Sharing (5)

5.5.5.5

1.0.0.1

1.0.0.2

1.0.0.3

1.0.0.240

TCP Flow
DA= 4.4.4.4 : 3931 
SA= 1.0.0.240:23

4.4.4.4

6.6.6.6
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TCP Load Sharing (6)

5.5.5.5

1.0.0.1

1.0.0.2

1.0.0.3

1.0.0.240

TCP Connection Request
DA= 1.0.0.240 : 23
SA= 5.5.5.5 : 1297 

4.4.4.4

6.6.6.6

TCP Connection Request
DA= 1.0.0.240 : 23
SA= 6.6.6.6 : 8748
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TCP Load Sharing (7)

5.5.5.5

1.0.0.1

1.0.0.2

1.0.0.3

1.0.0.240

TCP Connection Request
DA= 1.0.0.2 : 23
SA= 5.5.5.5 : 1297

4.4.4.4

6.6.6.6
1.0.0.1:23 1.0.0.240:23 4.4.4.4:3931TCP

Inside Local Inside Global Outside GlobalProt.

TCP Connection Request
DA= 1.0.0.3 : 23
SA= 6.6.6.6 : 8748

1.0.0.2:23 1.0.0.240:23 5.5.5.5:1297TCP

1.0.0.3:23 1.0.0.240:23 6.6.6.6:8748TCP
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Agenda

• TCP Fundamentals

• TCP Performance

• UDP

• RFC Collection

• NAT
– NAT Basics

– NAPT

– Virtual Server

– Complex NAT

– DNS Aspects

– Load Balancing

– RFCs
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Further Information

• RFC 1631 - NAT

• RFC 2391 - Load Sharing Using IP Network 
Address Translation (LSNAT)

• RFC 2666 - IP Network Address Translator (NAT) 
Terminology and Considerations

• RFC 2694 - DNS ALG

• RFC 2776 - Network Address Translation 
Protocol Translation (NAT-PT)

• RFC 2993 - Architectural Implications of NAT

• RFC 3022 - Traditional IP Network Address 
Translator (Traditional NAT)
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Further Information

• RFC 3027 - Protocol Complications with the IP 
Network Address Translator,

• RFC 3235 - Network Address Translator (NAT)-
Friendly Application Design Guidelines

• RFC3303 - Middlebox Communication 
Architecture and Framework

• RFC 3424 - IAB Considerations for Unilateral Self 
Address Fixing (UNSAF) Across Network 
Address Translation
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Further Information

• RFC 3489 - STUN—Simple Traversal of User 
Datagram Protocol (UDP) Through Network 
Address Translators (NATs)

• RFC 3715 - IPsec—Network Address Translation 
(NAT) Compatibility Requirements

• Internet Protocol Journal
– www.cisco.com/ipj

• Issue Volume 3, Number 4 (December 2000)

• „The Trouble with NAT“

• Issue Volume 7, Number 3 (September 2004)

• „Anatomy (of  NAT)“


