Appendix 3 - X.25 in Detail

X.25

CCITT's Packet Switching Technology

Agenda

- Overview, Principles and Standards
- X.25 Data Link Layer
- X.25 Network Layer
 - Services and Packet Types
 - Call Setup and Release
 - Data Transfer and Flow Control
 - Reset and Restart
- X.25 Packet Format
- X.25 PAD

© 2007, D.I. Manfred Lindner

© 2007, D.I. Manfred Lindner

Appendix 3 - X.25 in Detail

What is X.25?

© 2007, D.I. Manfred Lindner

- packet switching technology
 - based on store-and-forward of packets
 - connection oriented
- interface definition between user and network equipment
 - X.25 DTE (e.g. router) <-> X.25 DCE (packet switch)
- wide area network service
 - based on virtual circuit technique
- operation within X.25 network cloud
 - switch to switch communication not standardized

X 25 v4

- vendor specific implementation

© 2007, D.I. Manfred Lindner

Page A3 - 1

Appendix 3 - X.25 in Detail

Appendix 3 - X.25 in Detail

• virtual circuit technique

- for statistically multiplexing many logical data conversations over a single physical transmission link
- end systems (X.25-DTE) use virtual circuits for delivering data to the X.25 network and vice versa
- virtual circuits appear to end systems as transparent transport pipes (logical point-to-point connections)
- virtual circuits (VCs) are identified using LCN numbers

X 25 v4 3

- logical channel number (LCN)

2007, D.I. Manfred Lindner

- LCN are of local significance only

X.25 Virtual Circuits

© 2007, D.I. Manfred Lindner

Page A3 - 3

Types of Virtual Circuits

two kinds of virtual circuits

© 2007, D.I. Manfred Lindne

- permanent virtual circuits (PVC) established in advance by service provider
- switched virtual circuits (SVC) established on demand by user through signaling procedure

© 2007, D.I. Manfred Lindner

- dynamic connection setup and tear down between two end devices
- similar to dial up circuits in that they provide bandwidth on demand

2007, D.I. Manfred Lindner

Datenkommunikation 384.081 - SS 2007

Appendix 3 - X.25 in Detail

Roots of X.25

• originally defined by CCITT

- as an interface between user equipment and public switched data network
- three layers covered
 - X.21 (physical layer)
 - LAPB (data link layer)
 - X.25 (network layer)
- different versions:
 - four years cycle

© 2007, D.I. Manfred Lindner

- 1980 (yellow books), 1984 (red books), 1988 (blue book), ...
- X.25 definitions were expanded by ISO
 - for provisioning the Connection Mode Network Service (layer 3) in OSI based networks

X 25 y4 3

© 2007, D.I. Manfred Lindner

© 2007, D.I. Manfred Lindner

Page A3 - 5

X.25 and related Standards

• X.25 specifies layer 1-3 protocol stack between

- X.25-DTE and X.25-DCE
- interface specification
- only a point-to-point protocol
- no end-to-end protocol (DTE to DTE)
- physical layer (1) standards
 - CCITT X.21, X.21bis (based on V.24)

data link layer (2) standards

- ISO 7776 LAPB

2007, D.I. Manfred Lindner

- ISO 8802-2 Logical Link Control (LANs)
- ITU-T Q.921 LAPD (X.25 over ISDN-D Channel)

Datenkommunikation 384.081 - SS 2007

Appendix 3 - X.25 in Detail

X.25 and related Standards enetwork layer (3) standards

- CCITT X.25 L3 (ISO 8208 Packet Level Protocol PLP)
- CCITT X.121 X.25 Addressing
- ISO 8348 Network Service Definition
 - Connection Mode Network Service OSI use of X.25, Quality of Service QoS
- Addendum1: NSAP-address
- Addendum2: Connectionless Mode Network Service
 (-> ISO 8473 CLNP Connectionless Network Layer Protocol)
- ISO 8880-2 Provisioning and Support of the Connection Mode Network Service

X 25 y4 3

- ISO 8881 X.25 PLP over LANs
- ISO 9574 X.25 PLP over ISDN

X.25 Facts

© 2007 D L Manfred Lindner

• remember:

© 2007, D.I. Manfred Lindner

- X.25 standards defines communication between DTE and DCE only
- operation (e.g. routing) within network not defined
- only sequencing must be guaranteed
- X.25 uses statistical multiplexing
- X.25 technology was developed for low quality, low speed lines
 - use error recovery and flow control on layer 2 to control transmission of frames over physical line
 - use flow control and optionally error recovery on layer 3 to control transmission of packets over a virtual circuit

© 2007, D.I. Manfred Lindner

Page A3 - 7

© 2007, D.I. Manfred Lindner

Appendix 3 - X.25 in Detail

Why X.25?

• it is a widely used interface standard

- off-the-shelf hardware and software readily available
- mature technology (long experience)
- X.25 network services worldwide available

• because of error recovery

- X.25 can be used on low quality lines
- X.25 provides a reliable transport pipe
- because of flow control
 - X.25 network can control and even stop traffic from the user (DTE) in order to prevent congestion in the network

X 25 v4 3

· provides high support of accountability

Agenda

2007, D.I. Manfred Lindner

- Overview, Principles and Standards
- X.25 Data Link Layer
- X.25 Network Layer
 - Services and Packet Types
 - Call Setup and Release
 - Data Transfer and Flow Control
 - Reset and Restart
- X.25 Packet Format
- X.25 PAD

© 2007, D.I. Manfred Lindner

© 2007, D.I. Manfred Lindner

Page A3 - 9

Datenkommunikation 384.081 - SS 2007

Appendix 3 - X.25 in Detail

X.25 Data Link Layer

• Link Access Procedure Balanced (LAPB)

subset of HDLC

© 2007, D.I. Manfred Lindner

- connection oriented service
- ABM plus functional extensions (BA 2,8 or 2,8,10)
- both stations are combined stations
 - can transmit commands and responses at any time
 - commands and responses can be distinguished using address field
- specific addresses used
 - subscriber DTE must be binary 00000011
 - network node DCE must be binary 00000001
- X.25 packets are carried within information field of LAPB Iframe

X 25 y4 3

• LAPB and X.25 use independent sequencing

© 2007, D.I. Manfred Lindner

Appendix 3 - X.25 in Detail

LAPB a	nd	th	e Co	ont	rol	Fie	əld			
Format			Er	ncodii	ng				Command	Response
	1	2	3	4	5	6	7	8		
Information	0	-	N(S)	-		-	N(R)	-		- 1
Supervisory	-1-	0	0	0	*		N(R)	-	RR	RR
	1	0	0	1	*	-	N(R)	-	REJ	REJ
	1	0	1	0	*	-	N(R)	-	RNR	RNR
Unnumbered	1	1	0	0	Р	0	-1-	0	DISC	
	1	1	0	0	F	1	1	0		UA
	1	1	1	0	F	0	0	1		FRMR
	1	1	1	1	F	0	0	0		DM
	1	1	1	1	Ρ	1	0	0	SABM	
link establishr	nent	- <u>-</u>	GABM UA	•		link	disconr	nect	DISC UA	•
© 2007, D.I. Manfred Lindne	ər				X.25	i, v4.3				

© 2007, D.I. Manfred Lindner

Page A3 - 11

Appendix 3 - X.25 in Detail

Usage of the P/F bit	
 specific procedures with station receiving SABM/SAE set must set F in the next re P = 1 is used to request a state 	LAPB BME, DISC, Supervisory or I frame with P sponse tatus response only
 conventions 	
command sent with P bit set:	response required with F bit set:
SABM/SABME, DISC I (information transfer) I (disconnect mode) supervisory (RR, RNR, REJ)	UA, DM RR, REJ, RNR, FRMR DM RR, REJ, RNR, FRMR
© 2007, D.I. Manfred Lindner	X.25, v4.3 23

normal data transfer note: all I (address A A, I, N(S)=0, N(R)=0, P=0 A, I, N(S)=1, N(R)=1, P=0 A, I, N(S)=2, N(R)=1, P=0	framas ara commanda
A, I, N(S)=1, N(R)=1, P=0 A, I, N(S)=2, N(R)=1, P=0 B sends I frame sequence 1, N B sends I frame sequence 2, N	cknowledgement N(R)=1
B, I, N(S)=1, N(R)=3, P=0 B, RR, N(R)=2, F=0 B, I, N(S)=2, N(R)=3, P=0 A, IN(S)=3, N(R)=3, P=0 A, RR, N(R)=4, F=0 A sends I frame sequence 1 + a B has nothing to send, only ack A sends I frame sequence 2, N B sends I frame sequence 3 + a A has nothing to send, only ack	R) still 1 R) still 1 cknowledgement N(R)=3 nowledges N(R)=2 R) still 3 cknowledgement N(R)=3 nowledges N(R)=4

© 2007, D.I. Manfred Lindner

LAPB Example

 error recovery with 	reject	
A	В	
B, I, N(S)=0, N(R)=0, P=0	 A sends I frame sequence 0 	
A, I, N(S)=0, N(R)=1, P=0	B sends I frame sequence 0 + acknowledgement N(R)=1	I
A, I, N(S)=1, N(R)=1, P=0	B sends I frame sequence 1, N(R) still 1	
▲ A, I, N(S)=2, N(R)=1, P=0	B sends I frame sequence 2, N(R) still 1	
B, REJ, N(R)=1, P=1	A sends reject with N(R)=1 and P set - negative ack.	
B, RR, N(R)=1, F=1	B has to clear the error condition sending RR and F set	
A, I, N(S)=1, N(R)=1, P=0	B retransmits sequence 1	
B, I, N(S)=1, N(R)=2, P=0	A sends I frame 1 + acknowledgement N(R)=2	
A, I, N(S)=2, N(R)=2, P=0	B retransmits sequence 2	
A, N(R)=3, F=0, RR	A has nothing to send, acknowledges with N(R)=3	
© 2007 D L Manfred Lindner	X 25 v4.3	25

Agenda

- Overview, Principles and Standards
- X.25 Data Link Layer
- X.25 Network Layer
 - Services and Packet Types
 - Call Setup and Release
 - Data Transfer and Flow Control
 - Reset and Restart
- X.25 Packet Format
- X.25 PAD

© 2007, D.I. Manfred Lindner

© 2007, D.I. Manfred Lindner

Datenkommunikation 384.081 - SS 2007

Appendix 3 - X.25 in Detail

X.25 Network Layer

- X.25 offers virtual circuit services
- virtual circuits are identified by logical channel numbers (LCN)
 - LCN value range: 0 4095 (0 reserved for diagnostics)
 - distinguish virtual circuits on one physical link
 - local between DTE and DCE
- one physical link may contain up to 4095 logical channels

X 25 y4 3

- permanent virtual circuit PVC
 - predefined channel
- switched virtual circuit
 - established using call setup procedures

© 2007, D.I. Manfred Lindner

X.25 Network

• virtual circuit services are responsible for

- establishing and clearing of virtual circuits
 - call setup and release
 - necessary for SVC only
- transfer of data packets
- transfer of precedence data packets
 interrupt data
- flow control

© 2007, D.I. Manfred Lindner

- reset of virtual circuit(s)
- necessary protocol procedures are implemented using different types of X.25 packets

2007, D.I. Marinea Elliane

Page A3 - 13

© 2007, D.I. Manfred Lindner

X.25 Packet Types							
Pacl	ket Type	Se	rvice				
From DCE to DTE	From DTE to DCE	SVC	PVC				
Call Setup	and Clearing						
Incoming Call	Call Request	Х					
Call Connected	Call Accepted	Х					
Clear Indication	Clear Request	Х					
DCE Clear Confirmation	DTE Clear Confirmation	Х					
Data ar	nd Interrupt						
DCE Data	DTE Data	х	Х				
DCE Interrupt	DTE Interrupt	х	Х				
DCE Interrupt Confirmatio	nDTE Interrupt Confirmation	Х	Х				
Flow	/ Control						
DCE RR	DTE RR	х	Х				
DCE RNR	DTE RNR	х	Х				
	DTE REJ	Х	Х				
© 2007, D.I. Manfred Lindner	X.25, v4.3						

29

X.25 Packet Types (continued)							
Pack	et Type	Se	rvice				
From DCE to DTE	From DTE to DCE	SVC	PVC				
	eset						
Reset Indication	Reset Request	Х	Х				
DCE Reset ConfirmationD	TE Reset Confirmation	Х	х				
R	estart						
Restart Indication	Restart Request	х	Х				
DCE Restart Confirmation	DTE Restart Confirmation	Х	Х				
Dia	gnostic						
Diagnostic	-	Х	х				
Reg	stration						
Registration Confirmation	Registration Request	Х	х				
© 2007, D.I. Manfred Lindner	X.25, v4.3			3			

Datenkommunikation 384.081 - SS 2007

Appendix 3 - X.25 in Detail

Agenda

- Overview, Principles and Standards
- X.25 Data Link Layer
- X.25 Network Layer
 - Services and Packet Types
 - Call Setup and Release
 - Data Transfer and Flow Control
 - Reset and Restart
- X.25 Packet Format

• X.25 PAD

© 2007, D.I. Manfred Lindner

X 25 y4 3

© 2007, D.I. Manfred Lindner

Page A3 - 16

Call Setup, LCN handling 1

• local X.25-DTE

- selects a LCN number from the pool of free LCN numbers to identify both the call request and the virtual circuit
- sends Call Request packet to the local switch

• Call Request contains

- selected LCN number
- address of calling/called station (remote X.25-DTE)
 usually X.121 addresses are used

X 25 v4 3

- facilities for negotiation of network parameters
- between user and network or user and remote user

2007, D.I. Manfred Lindner

X.25 Facilities

- some facilities must be provided by all X.25 networks
 - essential facilities
- essential facilities are
 - maximum packet size
 - window size
 - modulo 8/128
 - throughput class
 - 75, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 48000 bit/s
 - transit delay

2007, D.I. Manfred Lindner

· essential facilities have default values

Appendix 3 - X.25 in Detail

X.25 Facilities

- other facilities may or may not be provided by a X.25 service
- optional facilities
- all facilities, if provided, have default values but can either

X 25 y4 3

- be negotiated between user and service provider in advance or by on-line registration
- or during call setup for individual switched circuits

X.25 Facilities

© 2007, D.I. Manfred Lindner

• optional facilities

- incoming/outgoing calls barred
 - prevents incoming calls to be presented to DTE
 - prevents outgoing calls to be accepted by DCE
- closed user groups
 - allows privacy in a public network service
- reverse charging, reverse charging acceptance
- hunt groups

© 2007, D.I. Manfred Lindner

- distributes incoming calls across a designated group of DTE/DCE interfaces
- call redirection, call redirect notification

© 2007, D.I. Manfred Lindner

Page A3 - 17

© 2007, D.I. Manfred Lindner

X.25 Facilities

• optional facilities (cont.)

- fast select, fast select acceptance
 - Call Request/ Incoming Call packet carries user data (up to 128 octets) to remote DTE
 - Call Accepted/Call Connected packet carries user data from remote DTE to local DTE
 - immediate clear option
 - used for short transactions
- transit delay selection and indication
- online facility registration
 - status of supported facilities can be checked and changed by DTE using Registration Request/Confirmation packets

X 25 v4 3

- packet retransmission
 - · REJ packet support

2007 D L Manfred Lindner

Call Setup, LCN handling 2

- Call Request packet is delivered by network to remote switch
 - using vendor proprietary transport method
- remote switch
 - again selects a LCN number from the pool of free LCN numbers to identify a call request
 - normally LCN number will be different
 - sends Incoming Call packet to remote X.25-DTE

remote X.25-DTE

2007, D.I. Manfred Lindner

- accepts incoming call
- sends Call Accepted packet to switch

Call Setup, LCN handling 3

• Call Accepted packet is delivered by network to local switch

Datenkommunikation 384.081 - SS 2007

Appendix 3 - X.25 in Detail

local switch

© 2007 D I Manfred Lindner

- sends Call Connected packet with local LCN to local X.25-DTE
- now local and remote X.25-DTE
- are ready to use virtual circuit for data transfer
- local LCN numbers on both sides are used for data packets

X 25 v4 :

- mapping is done by X.25 network

LCN Handling local user local switch remote switch remote user (X.25-DTE) (X.25-DCE) (X.25-DCE) (X.25-DTE) Call Request LCN = 27 Incoming Call LCN = 738 Call • OK Setup Call Connected LCN = 27 Call Accepted LCN = 738 DTE Data Data LCN = 27 Transfer DCE Data DCE Data LCN = 738 LCN = 27 © 2007, D.I. Manfred Lindne

© 2007, D.I. Manfred Lindner

Page A3 - 19

© 2007, D.I. Manfred Lindner

Appendix 3 - X.25 in Detail

© 2007. D.I. Manfred Lindner

Call Timeout local user local switch remote switch remote user Call Request Incoming Call Call Timeout Clear Indicate Clear Indicate Clear Confirm Clear Confirm © 2007 D L Manfred Lindne

X 25 v4:

- Call Request packet contains
 - LCN number selected by originating X.25-DTE
- Incoming Call packet contains
 - LCN number selected by destination X.25-DCE
- if call setup is interleaved with incoming call
 - collision of LCN numbers is possible
- collision solved

© 2007, D.I. Manfred Lindner

- call of originating X.25-DTE will be continued
- incoming call will be refused by Clear Indication on the other side

© 2007. D.I. Manfred Lindner

Page A3 - 21

Appendix 3 - X.25 in Detail

LCN Ranges to avoid Call Collision

• in order to minimize collision

- incoming calls use low LCN number
- outgoing calls use high LCN Number
- LCN values can be divided into four ranges
 - PVCs
 - one way incoming (LIC HOC)
 - one way outgoing (LOC HOC)
 - two way (LTC HTC)
- LCN = 0 reserved
 - diagnostics
 - restart

2007, D.I. Manfred Lindne

- -

Datenkommunikation 384.081 - SS 2007

Appendix 3 - X.25 in Detail

Agenda

- Overview, Principles and Standards
- X.25 Data Link Layer
- X.25 Network Layer
 - Services and Packet Types
 - Call Setup and Release
 - Data Transfer and Flow Control
 - Reset and Restart
- X.25 Packet Format
- X.25 PAD

© 2007, D.I. Manfred Lindner

© 2007, D.I. Manfred Lindner

Page A3 - 23

© 2007, D.I. Manfred Lindner

Data Transfer

• Data Packets

- ContinousRQ method with sequencing and piggyback acknowledgement
- very similar to HDLC
 P(S) and P(R) instead of N(S) and N(R)
- range of sequence numbers
- 0-7 or 0-127 (extended)
- sequence numbers and windowing are used mainly for flow control reasons and not for error recovery
- remember:
 - X.25 packets are transmitted in LAPB I-frames
 - a loss of an I-frame and hence loss of X.25 packet will be already covered by error recovery method of LAPB

X 25 y4 3

© 2007, D.I. Manfred Lindner

Flow Control

• X.25 flow control

- is based on windowing and RR, RNR
 - delay of of acknowledgement (piggybacked or with RR) is used to close the send window at the transmitter side
 - RNR is used to stop the transmitter when send window is open
 - RR, RNR do not cause retransmission of packets
- is done for individual virtual circuits
 note: LAPB can handle flow control on physical link only

optional error recovery

- optional GoBackN with DTE REJ Control Packet
- usage of REJ can be negotiated during facility exchange
- makes sense in case end-to-end acknowledgement is used (D-bit = 1; will be covered later)

2007, D.I. Manfred Lindner

Appendix 3 - X.25 in Detail

Window Size

- window size defines maximum number of unacknowledged packets
- window sizes and maximum packet sizes
 - either are agreed in advance between user and network provider or could be negotiated during call setup for individual SVCs
 - maximum window size depends on modulo used for sequencing

X 25 y4 3

- modulo 8 3 bit sequence number
- maximum send window size = 7
- modulo 128 7 bit sequence number
- maximum send window size = 127
- standard window size of 2

Data Transfer with D (Delivery) - Bit

Data packet without D-bit indicator

- D = 0

© 2007 D I Manfred Lindner

- acknowledgement number P(R) has only local meaning
- handling of acknowledgement by switch
- vendor specific
- flow control and acknowledgement between switches
 vendor specific
- Data packet with D-bit indicator
- D = 1

© 2007, D.I. Manfred Lindner

- can force acknowledgement number P(R) to be end-toend
- must be negotiated during call setup

© 2007, D.I. Manfred Lindner

© 2007, D.I. Manfred Lindner

Appendix 3 - X.25 in Detail

© 2007, D.I. Manfred Lindner

Datenkommunikation 384.081 - SS 2007

Appendix 3 - X.25 in Detail

© 2007, D.I. Manfred Lindner

Page A3 - 27

Appendix 3 - X.25 in Detail

Data Transfer with Q (Qualifier) - Bit

- for example
 - Q = 0 ... user data
 - Q = 1 ... control data
- usage not defined in X.25
- some Q bit usage examples
 - X.29 control information
 for PAD equipment
 - QLLC header indication
 - for SNA over X.25

Data Transfer with M (More) - Bit

• default maximum data field size in X.25

– 128 byte

2007, D.I. Manfred Lindner

2007, D.I. Manfred Lindner

other sizes could be negotiated (64, 256, 512, 1024, 2048, 4096)

X 25 v4 3

- sizes could be different on local and remote side
- if remote DTE requests smaller packets then local DTE
 - remote or local switch can segment packets using M-bit
 M = 1 first or middle packet (packet completely filled with data)
 - M = 0 single or last packet
- if remote DTE allows larger packets then local DTE

X 25 v4 3

- remote or local switch can combine packets

Appendix 3 - X.25 in Detail

Categories of Data Packets

• combined use of M and D bit allows to define two categories of packets (A and B)

- A packets are packets within a sequence of packets
 - M bit is set to 1
- D bit is set to 0
- B packets are standalone packets or packets at the end of a sequence
 - M bit is set to 0

© 2007, D.I. Manfred Lindner

© 2007, D.I. Manfred Lindner

- can have D=1 to request end-to-end acknowledgement
- a complete packet sequence consists of zero or more A packets followed by an B packet

X 25 y4 3

Combining and Segmenting

- the network may combine a sequence of one or more A packets followed by a B packet to make one or more larger packets
 - complete packet sequence information still remains at the receiver side
- the network may also segment (fragment) a B packet into a sequence of smaller A and B packets
 - receiver side is informed about fragmentation by recognizing a complete packet sequence

© 2007, D.I. Manfred Lindner

Page A3 - 29

© 2007, D.I. Manfred Lindner

Datenkommunikation 384.081 - SS 2007

Appendix 3 - X.25 in Detail

Precedence Data Transfer							
local us (X.25-D	ser TE)	local switch (X.25-DCE)	remote sw (X.25-DC	vitch ren CE) (X.	note user .25-DTE)		
	Interrupt Re LCN = 2 Interrupt Co LCN = 2	quest 7 vnfirm 27		Interrupt Indicatio LCN = 738 Interrupt Confirr LCN = 738	n		
© 2007, D.I. Manfred Lindner		X.25, v	4.3		64		

© 2007, D.I. Manfred Lindner

Appendix 3 - X.25 in Detail

Agenda

- Overview, Principles and Standards
- X.25 Data Link Layer
- X.25 Network Layer
 - Services and Packet Types
 - Call Setup and Release
 - Data Transfer and Flow Control
 - Reset and Restart
- X.25 Packet Format

• X.25 PAD

© 2007, D.I. Manfred Lindner

Reset / Restart

 main error recovery mechanisms associated with packet layer

X 25 y4 3

- reset procedure reinitializes a virtual circuit in case of protocol errors
 - done by DTE (Reset Request) or DCE (Reset Indication)
 - data packets already transmitted are discarded
 - sequence number registers are set to zero
 - but virtual circuit is still available
- restart procedure clears all virtual circuits
 - done by DTE (Restart Request) or DCE (Restart Indication)
 - virtual circuits are not available any longer

© 2007, D.I. Manfred Lindner

Appendix 3 - X.25 in Detail

© 2007, D.I. Manfred Lindner

Page A3 - 33

© 2007, D.I. Manfred Lindner

Restart	by D	CE					
local ı (X.25-I	user DTE)	local s (X.25-	witch DCE)	remote (X.25-	switch DCE)	remote (X.25-	user DTE)
	Clear I effecte Clear (LC	E Data hdication kd LCN# Confirm N #	4	timeout T10	DCE Restart I LCN Restart C LCN :	Data ndication l = 0 confirm = 0	
© 2007, D.I. Manfred Lindner			X.25	, v4.3			69

DTE Timeouts

© 2007, D.I. Manfred Lindner

Appendix 3 - X.25 in Detail

Agenda

- Overview, Principles and Standards
- X.25 Data Link Layer
- X.25 Network Layer
 - Services and Packet Types
 - Call Setup and Release
 - Data Transfer and Flow Control
 - Reset and Restart
- X.25 Packet Format
- X.25 PAD

© 2007, D.I. Manfred Lindner

© 2007, D.I. Manfred Lindner

Page A3 - 35

Packet Format Call Setup					
 Call Request and Incoming Call packet type (byte 3) = 0x 0B SS = 01 (mod 8) SS = 10 (mod 128) 	A D S S Logical Cha	Logical Channel Group Number nnel Number	byte 1 byte 2		
 - D = 1 D-bit mechanism supported - D = 0 D-bit mechanism not supported - A = 1 escape from 	Calling DTE Address Length Called ar DTE A	Called DTE Address Length nd Calling ddress	byte 3 byte 4		
conventional X.25 addresses (1988)	Facility Facilities (ma Call User Data	E Length ax 110 octets) (max 16 octets)			
© 2007, D.I. Manfred Lindner X.2	25, v4.3		74		

Datenkommunikation 384.081 - SS 2007

Appendix 3 - X.25 in Detail

Call Setup

• additional fields

- DTE address and address length
- for call establishment packets, usually X.121 addresses are used
- facilities and facilities length
- used to negotiate or declare several optional functions of X.25
- call user data may contain data associated with facility

X 25 y4 3

some examples

© 2007, D.I. Manfred Lindner

- flow control parameter negotiation
- closed user group
- reverse charging, reverse charging acceptance
- network user identification
- call redirection

Packet Format Call Setup • Call Accepted and Logical Channel **Call Connected** A D S S byte 1 Group Number packet type (byte 3) = 0x 0F Logical Channel Number byte 2 - SS = 01 (mod 8) - SS = 10 (mod 128) 0 0 0 0 1 1 1 1 byte 3 Calling DTE Called DTE byte 4 Address Length Address Length Called and Calling DTE Address Facility Length Facilities (max 110 octets) Called User Data (max 16 octets) © 2007, D.I. Manfred Lindne

© 2007, D.I. Manfred Lindner

Page A3 - 38

Clearing	Clearing Cause (Call Release)					
• 0x00	normal disconnect request from DTE					
• 0x01	remote DTE busy					
• 0x09	remote DTE failure					
• 0x11	remote DTE protocol failure					
• 0x19	no reverse charging accepted					
• 0x29	no fast select accepted					
• 0x03	invalid facility request					
• 0x0B	access denied					
• 0x13	local failure					
• 0x05	network congested					
• 0x0D	destination unreachable					
• 0x15	network failure					
© 2007 D I Manfred Lindner	¥ 25 val 3					

Datenkommunikation 384.081 - SS 2007

Appendix 3 - X.25 in Detail

© 2007, D.I. Manfred Lindner

Page A3 - 39

© 2007, D.I. Manfred Lindner

Appendix 3 - X.25 in Detail

Packet Format RR	
 modulo 8 packet type = XXX 00001 (X don't care) 	0 0 0 1 Logical Channel Group Number byte 1
	Logical Channel Number byte 2
	P (R) 0 0 0 1 byte 3
• modulo 128	0 0 1 0 Logical Channel Group Number
- packet type = 0x 01	Logical Channel Number byte 2
	0 0 0 0 0 0 0 1 byte 3
	P (R) 0 byte 4

© 2007, D.I. Manfred Lindner

Page A3 - 41

Appendix 3 - X.25 in Detail

© 2007, D.I. Manfred Lindner

Packet Format Reset		
Reset Request and Reset Indication - packet type = 0x 1B - SS = 01 (mod 8)	0 0 S S Logical Channel Group Number	byte 1
	Logical Channel Number	byte 2
- SS = 10 (mod 128)	0 0 0 1 1 0 1 1	byte 3
	Resetting Cause	byte 4
	Diagnostic Code	byte 5
 Reset Confirmation packet type = 0x 1F SS = 01 (mod 8) 	0 0 S S Logical Channel Group Number	byte 1
	Logical Channel Number	byte 2
– SS = 10 (mod 128)	0 0 0 1 1 1 1 1	byte 3
© 2007, D.I. Manfred Lindner	K.25, v4.3	86

© 2007, D.I. Manfred Lindner

Datenkommunikation 384.081 - SS 2007

Appendix 3 - X.25 in Detail

• 0x00	reset request from DTE	
• 0x01	remote DTE failure (PVC only)	
• 0x03	remote DTE protocol failure	
• 0x05	local failure	
• 0x07	network congested	
• 0x09	remote DTE available (PVC only)	
• 0x0F	network available (PVC only)	
• 0x11	remote DTE incompatible	

© 2007, D.I. Manfred Lindner

Page A3 - 43

Appendix 3 - X.25 in Detail

Clearing Cause (Restart)

- 0x00 restart request from DTE
- 0x01 local failure
- 0x03 network congested
- 0x05 network available

7 D I Manfred Lindner	V 2E ud 2

Packet Format Diagnostics				
Diagnostics - packet type = 0x F - SS = 01 (mod 8) - SS = 10 (mod 128)	0 0 S S 0 0 0 0 byte 1 0 0 0 0 0 0 0 byte 2 1 1 1 0 0 0 1 Diagnostic Code Jagnostic Explanation byte 3 byte 4			

© 2007, D.I. Manfred Lindner

Appendix 3 - X.25 in Detail

Agenda

- Overview, Principles and Standards
- X.25 Data Link Layer
- X.25 Network Layer
 - Services and Packet Types
 - Call Setup and Release
 - Data Transfer and Flow Control
 - Reset and Restart
- X.25 Packet Format

• <u>X.25 PAD</u>

© 2007, D.I. Manfred Lindner

X.25 PAD

© 2007, D.I. Manfred Lindner

 provides protocol conversion and packet assembly/disassembly functionality for dumb asynchronous terminals

X 25 y4 3

• defined by companion standards X.3, X.28, X.29

© 2007, D.I. Manfred Lindner

Page A3 - 45

Appendix 3 - X.25 in Detail

X.25 PAD

- specifies functionality of PAD
- provides parameters to service different terminal types
 - escape from data transfer
 - data forwarding signal
 - terminal speed, flow control, linefeed handling, echo
 - forward only full packets
 - forward a packet upon carriage return
 - send service signals to user
 - send interrupt packet upon receipt of a BREAK
 - etc.
- determines how the PAD communicates with the user DTE

© 2007, D.I. Manfred Lindner

Datenkommunikation 384.081 - SS 2007

Appendix 3 - X.25 in Detail

X.25 PAD

• X.28

- defines the procedures to control the data flow between non-packet DTEs and the PAD
- non-packet DTE user sends X.28 command to the PAD

X 25 y4 3

- PAD returns a response value
- examples
- setup a call
- initialize a service
- exchange data
- exchange control information
- configuring PAD parameter
- read PAD parameter

X.25 PAD

© 2007, D.I. Manfred Lindner

• X.29

© 2007, D.I. Manfred Lindner

- defines how a PAD and a remote packet station may exchange control information
- remote station can be a PAD or a remote DTE
- uses packet header Q bit
 - Q=1, packet contains PAD control information
- allows for example to change the configuration of a remote PAD

© 2007, D.I. Manfred Lindner

Page A3 - 47

© 2007, D.I. Manfred Lindner

Appendix 3 - X.25 in Detail

Summary

• connection oriented network, using virtual circuits

- three layers defined
 - physical layer
 - data link layer
 - network layer
- uses HDLC subset at data link layer (LAPB)
- supports PVCs and SVCs
 - call setup sequence required for SVCs
- supports windowing and flow control
- supports several options called facilities
- PAD functions for non-packet DTEs defined

© 2007, D.I. Manfred Lindner