Appendix 2 - ISDN in Detail

ISDN

Integrated Services Digital Network

Agenda

2007, D.I. Manfred Lindner

- ISDN Introduction
- ISDN Terminology
- ISDN Physical Layer (I.430, BRI)
- ISDN Physical Layer (I.431, PRI)
- ISDN Data Link Layer (Q.921)
- ISDN Network Layer (Q.931)

Appendix 2 - ISDN in Detail

Overview

- Integrated Services Digital Network (ISDN)
- based on digital telephone network
 - all-digital interface at subscriber outlet
 - able to handle data communications directly
- dial-up digital end-to-end connections
- offers transport of voice, video and data
- standardized user-to-network interface
- implementation of a circuit switching network
 - synchronous TDM

© 2007 D I Manfred Lindner

© 2007, D.I. Manfred Lindner

- constant delay and constant capacity

Some ISDN Facts

- First major user-visible upgrade to the worldwide public switched telephone network

 new features seen on the phone
- Technology of the '80s
 - Concept dates back to early '70s
- First real specification in mid '80s
 - Real deployment in the mid '90s
- 64 kbps channel is the fundamental building block
 - to carry digital PCM voice
- Narrowband (N-) ISDN versus Broadband (B)-ISDN (ATM)

© 2007, D.I. Manfred Lindner

Appendix 2 - ISDN in Detail

ISDN Services

• three types defined by ITU-T

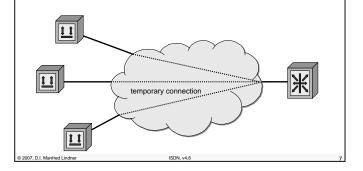
- bearer services
 - · transport of information in real time
 - circuit mode
 - 64 kbps, <u>unrestricted</u>, 8 kHz structured (transparent data)
 » without any alteration of bits and no restriction on the bit pattern
 - 64 kbps, 8 kHz structured, usable for speech information transfer
 » bit integrity not guaranteed, processing techniques to achieve high quality reproduction of transmitted voice signal
 - 64 kbps, 8 kHz structured, usable for 3.1 kHz audio transfer
 - 2 x 64 kbps, unrestricted, 8 kHz structured
 - 384 kbps, unrestricted, 8 kHz structured
 - 1536 kbps, unrestricted, 8 kHz structured
 - 1920 kbps, unrestricted, 8 kHz structured
 - packet mode

2007 D I Manfred Lindner

- virtual call circuit, permanent virtual circuit, user signaling

ISDN Services

• three types defined by ITU-T (cont.)


- teleservices
 - combine transportation function with information-processing function
 - e.g. telephony, teletex, telefax, videotex, telex, teleconference, video telephony

supplementary services

- can be used to enhance bearer- or teleservices
 - reverse charging
 - closed user group (VPN)
 - line hunting
 - call forwarding, threeparty service
 - calling-line-identification
 - multiple subscriber number (MSN)
- subaddressing
- etc.

Dial-up Connection

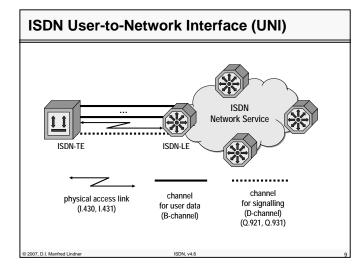
- needs connection establishment
- during connection time, a transparent channel with full nominal bandwidth is available

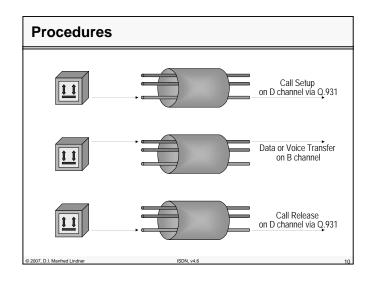
User-to-Network Interface

basic building blocks are

- digital voice channels
 - 64 kbps, derived from PCM voice coding
 - 8000 samples per second, digitized with 8 bits
- B-channel
- signaling channel
 - out-band signaling
 - used to set up a connection
- D-channel

© 2007, D.I. Manfred Lindner

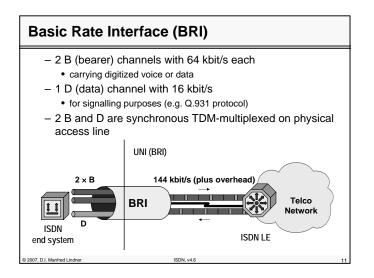

two types interfaces

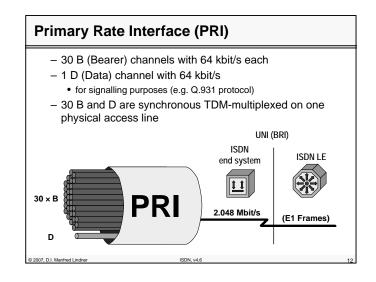

- basic rate interface (BRI)
- primary rate interface (PRI)

© 2007, D.I. Manfred Lindner

ISDN v4 6

Appendix 2 - ISDN in Detail





© 2007, D.I. Manfred Lindner

Datenkommunikation 384.081 - SS 2007

Appendix 2 - ISDN in Detail

© 2007, D.I. Manfred Lindner

Page A2 - 5

Appendix 2 - ISDN in Detail

Agenda

2007 D I Manfred Lindner

- ISDN Introduction
- ISDN Terminology
- ISDN Physical Layer (I.430, BRI)
- ISDN Physical Layer (I.431, PRI)
- ISDN Data Link Layer (Q.921)
- ISDN Network Layer (Q.931)

ISDN Terminology

- ISDN standards define
 - reference configuration to characterize ISDN interfaces

ISDN v4 6

• reference configuration consists of

- functional groupings
 - are a set of capabilities needed in an ISDN user-access interface
 - specific functions may be performed by multiple pieces of hardware or software equipment
 - examples: TE, TA, NT
- reference points
 - divide functional groupings
 - corresponds to a physical interface between pieces of ISDN equipment

ISDN v4

examples: R, S, T, U

2007, D.I. Manfred Lindner

Appendix 2 - ISDN in Detail

Terminal Equipment (TE)

• TE1

- native ISDN terminal
 - connects to ISDN using a 2 pair twisted pair cable
- used time division multiplexing to provide three channels
 - two bearer channels (2B) and one data channel (D)
- B channels can be used independently
- D channel carries control and signaling information

ISDN v41

- supports user data transmission in certain cases
- layer 1 7 protocol handling

• TE2

© 2007 D I Manfred Lindner

- non-native ISDN terminal
- connects to ISDN via a terminal adapter (TA)

Network Termination Equipment (NT)

network termination (NT)

 TA and TE1 devices are connected to either an NT1 or an NT2 device

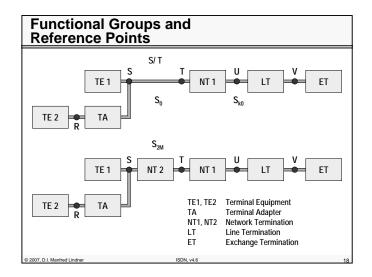
• NT1

© 2007, D.I. Manfred Lindne

- is responsible for physical layer functions such as
 - terminates transmission line from the ISDN local exchange to the customers premises
 - signal conversion (4 wire subscriber interface to the conventional 2 wire local loop) and interface termination
 - transmission signaling and timing (bit-synchronization)
 - possible multiplexing of B and D channels at layer level 1
 - possible provision for power to TE's
 - ISDN "modem"

NT1 (cont.)

- can be used as simple customer premises device


Network Termination Equipment (NT)

- NT2 function is equal null, BRI only
- up to eight TE1 can be connected to NT1 (bus structure)

ISDN v4.6

- combined S/T reference point
- NT2
 - performs concentration services
 - multiplexing, switching of several TE's onto one ISDN network access line (e.g. PBX with PRI)
 - protocol handling for layer 2 and 3
 - termination of layer 1 functions
 - end-user equipment interface
 - advanced customer premises device

2007, D.I. Manfred Lindner

Appendix 2 - ISDN in Detail

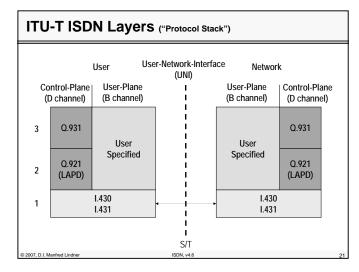
ISDN Channels

- basic channels requested by TE – one or two B channels, 64 or 128 kbps
- special channels for applications requiring higher speed - called H channels

ISDN v4

- only available on primary rate interface
- H0 channel
 - 6 B channels, 384 kbps
- H11 channel
- 24 B channels, 1536 kbps
- H12 channel

© 2007, D.I. Manfred Lindner


– 30 B channels, 1920 kbps

ITU-T ISDN Standards Overview

- I.100 Series
- General Structure
- I.200 Series
 - Service Capabilities
- I.300 Series
 - Overall Network Aspects and Functions
- I.400 Series
 - User-Network Interfaces
- I.500
 - Internetworking Interfaces
- 1.600
- Maintenance Principles

© 2007, D.I. Manfred Lindner

Page A2 - 9

ITU-T ISDN Standards

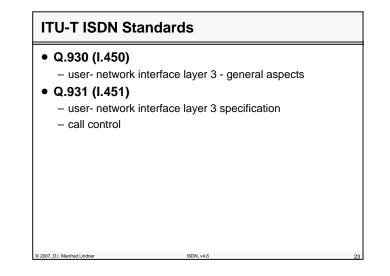
I.430

- basic user-network interface layer 1 specification
 BRI Basic Rate Interface
- BRI Basic Rate Internat

• I.431

primary rate user-network interface layer 1 specification
 Primary Rate Interface

• Q.920 (I.440)


- user-network interface data link layer - general aspects

• Q.921 (I.441)

- user-network interface data link layer specification
- LAPD

© 2007, D.I. Manfred Lindner

Appendix 2 - ISDN in Detail

ISDN Addressing

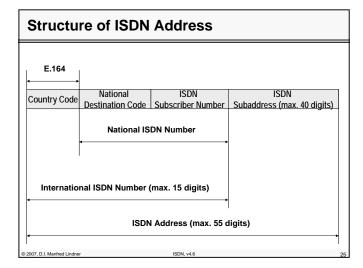
• ISDN Number

- contains sufficient information for the network to route a call
- typically corresponds to the subscriber attachment point (reference point T)
- T can have multiple ISDN numbers

• ISDN Address

© 2007, D.I. Manfred Lindner

- may needed at the subscriber site to distribute a call to the appropriate party
- typically corresponds to an individual terminal TE (reference point S)
- ISDN Subaddress

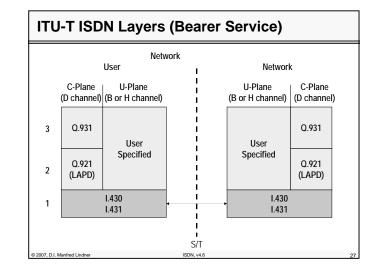

© 2007, D.I. Manfred Lindner

ISDN v4

Page A2 - 11

© 2007, D.I. Manfred Lindner

ISDN v4



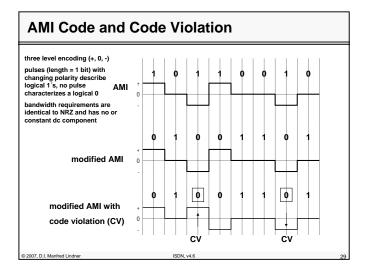
Agenda

© 2007, D.I. Manfred Lindner

- ISDN Introduction
- ISDN Terminology
- ISDN Physical Layer (I.430, BRI)
- ISDN Physical Layer (I.431, PRI)
- ISDN Data Link Layer (Q.921)
- ISDN Network Layer (Q.931)

Appendix 2 - ISDN in Detail

BRI (I.430)	
• basic rate inter	face (S ₀ /T interface)
 four wires with 	terminating resistor (100 ohm)
 RJ11 connector 	with 8 leads
 2 transmit + 2 r 	eceive with power source 1 via phantom circuit
 4 optional power 	er feeds for power source 2 and 3
 modified AMI co 	ode (zero causes alternate pulses)
 positive or negative 	ative pulse of 750mV + -10%
 bitstuffing prevention 	ent long sequences of ones on D-channel
 – frame synchron 	ization based on code violations
 – frame of 48 bit i 	s transmitted in a period of 250 usec
 – 192 kbps total s 	speed
•	t 64 kbps, 1 D channel at 16 kbps
	ming, DC balancing and D-channel mirroring
2007, D.I. Manfred Lindner	ISDN, v4.6


© 2007, D.I. Manfred Lindner

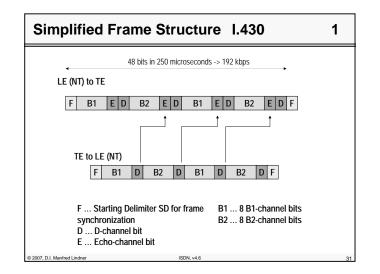
ISDN, v4.6

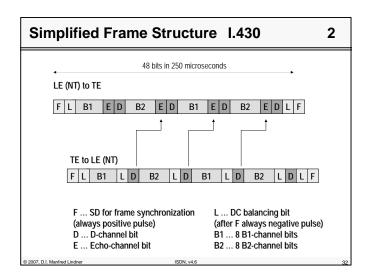
Page A2 - 13

© 2007, D.I. Manfred Lindner

Appendix 2 - ISDN in Detail

BRI (I.430)

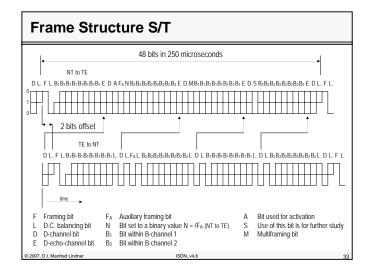

• basic rate interface (cont.)


- allows either a point-to-point or multipoint configuration
- point-to-point
- maximum distance between TE and NT is 1000 meters
- for multipoint, physical connection is a passive bus
 - up to eight TE's can share a bus
 - maximum distance between TE and NT is 200 meters (short bus) or 500 meters (extended bus)
- multipoint operation
 - B channels are dynamically assigned to TE's for exclusive usage only
 - D channel must be shared by all TE's in order to request usage of a B channel
 - · contention mode on D channel

© 2007, D.I. Manfred Lindner

Datenkommunikation 384.081 - SS 2007

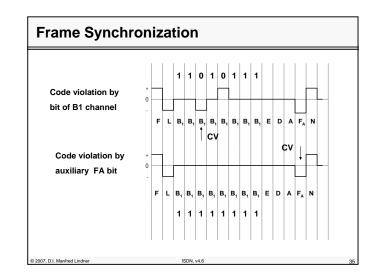
Appendix 2 - ISDN in Detail

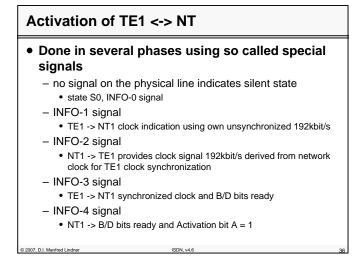


© 2007, D.I. Manfred Lindner

ISDN v4 6

Page A2 - 15

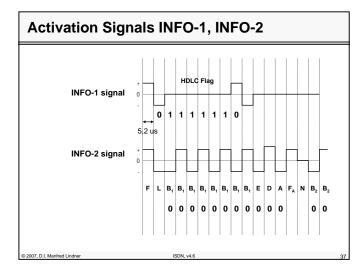

© 2007, D.I. Manfred Lindner



Frame Synchronization, DC Balancing

- F (+) followed by L(-) marks start of frame
- to detect F in the bit stream code violations are used - normally alternate pulses (+, -) used for zeros
- general rule:
 - first zero to be transmitted after F/L violates coding
- in case of all ones in B channels FA performs code violation
 - auxiliary framing bit
 - FA always set to 0; N = inverse FA = 1
- L bits are used to guarantee DC balance
 - from NT to TE only one L bit is necessary
 - from TE to NT every part of the frame (B1, B2 and D) is balanced by individual L bits
- reason: every part of the frame (B1, B2, D) may be sent by a different TE hence every TE must balance its own part

Appendix 2 - ISDN in Detail



© 2007, D.I. Manfred Lindner

Page A2 - 17

Appendix 2 - ISDN in Detail

D - Channel Access Control

• D - channel

- must be shared by different TEs in a multipoint configuration
- control of access to D channel is necessary

• control is done via E - bits

- TEs use D bits for transmission to NT
- E contains echo (sent by NT) of D bit received by NT
- note:

2007. D.I. Manfred Lindne

- encoding gives transmitted zeros higher priority than ones (zeros produce signal changes (pulses) but ones do not)
- if TEs send at the same time on D channel, only TE with the most zeros transmitted will see its message on E again

Datenkommunikation 384.081 - SS 2007

Appendix 2 - ISDN in Detail

D - Channel Access Control

• before TE can use D channel

 – at least eight ones (no signal activity) in sequence must be received (carrier sense, monitor state)

• when TE starts transmitting on D channel

- E bits are used for comparison transmitted information with received information
- if unequal (collision detect) TE will stop transmission (collision resolution) and will listen for next eight ones in sequence

ISDN v4 F

D - Channel Access Control

© 2007 D I Manfred Lindner

© 2007, D.I. Manfred Lindner

once the D channel was successfully occupied

 bitstuffing will prevent sequence of eight ones for the rest of the message and TE can finish its transmission without disturbance

• to give other TEs fair chance to access the D channel

- TE must release D channel after message was sent
- TE waits then for a sequence of nine ones before access is tried again
- this allows other waiting TEs access to the D channel
 - round-robin among all TEs in worst case

© 2007, D.I. Manfred Lindner

Page A2 - 19

© 2007, D.I. Manfred Lindner

Appendix 2 - ISDN in Detail

Bit Stuffing on D-channel					
11111111	Flag as SD	D channel content to be sent	Flag as ED	11111111	
Idle	01111110	LAPD frame	01111110	Idle	
011111	10 1110011	0001111100111110101	0111101 0	1111110	
Flag				Flag	
bit stuffing (zero bit insertion by sender zero bit deletion by receiver)					
© 2007, D.I. Manfred Li	ndner	ISDN, v4.6		4	

Terminal Endpoint Identifier

• D - channel

© 2007, D.I. Manfred Lindner

- will be shared by different TEs in a multipoint configuration
 identification of TEs is necessary
- each terminal equipment TE must have a unique identifier
 - called terminal end point identifier (TEI)
 - on outgoing frames, the TEI identifies the source terminal
 - on incoming frames, network uses the TEI to address the receiving terminal
 - TEI assignment is part of layer 2 procedures

Appendix 2 - ISDN in Detail

ISDN v4

Agenda

- ISDN Introduction
- ISDN Terminology
- ISDN Physical Layer (I.430, BRI)
- ISDN Physical Layer (I.431, PRI)
- ISDN Data Link Layer (Q.921)
- ISDN Network Layer (Q.931)

PRI (I.431)

© 2007, D.I. Manfred Lindner

© 2007, D.I. Manfred Lindner

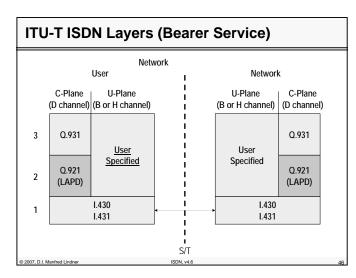
• primary rate interface

- allows point-to-point configuration only
- based on E1 or T1 specifications
- E1 (HDB3 encoding)
- 2.048 Mbps total speed
- timeslot 0 used for synchronization
- timeslot 16 used for D channel information
- timeslots 1-15 and 17-31 for 30 B-channels
- T1 (B8ZS encoding, ESF format)
 - 1.544 Mbps total speed
 - timeslot 24 used for D channel information
 - timeslots 1-23 for 23 B-channels

© 2007, D.I. Manfred Lindner

ISDN v4

Page A2 - 21


© 2007, D.I. Manfred Lindner

Appendix 2 - ISDN in Detail

Agenda

© 2007 D I Manfred Lindner

- ISDN Introduction
- ISDN Terminology
- ISDN Physical Layer (I.430, BRI)
- ISDN Physical Layer (I.431, PRI)
- ISDN Data Link Layer (Q.921)
- ISDN Network Layer (Q.931)

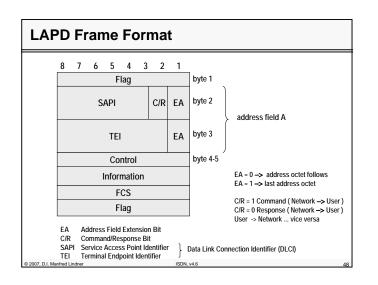
ISDN v4 6

© 2007, D.I. Manfred Lindner

Datenkommunikation 384.081 - SS 2007

Appendix 2 - ISDN in Detail

ISDN Data Link Layer


- only used on the D channel
- uses LAPD

© 2007, D.I. Manfred Lindner

- Link Access Procedure D-Channel
- based on HDLC ABM mode
- 2 byte address field
- may use extended sequence numbering (0-127)
- ISDN level 3 signaling
 - travels in the information field of the LAPD I-frame
- LAPD may also be used to support user traffic
 - D channel is not fully utilized by signaling messages

ISDN v41

- e.g. X.25 over D-channel

© 2007, D.I. Manfred Lindner

Page A2 - 23

Appendix 2 - ISDN in Detail

SAPI and TEI

SAPI - Service Access Point Identifier

 identifies the entity where data link layer services are provided to the layer above

- examples

• 0 signaling information (s-type)

- 16 packet data (p-type)
- 63 management information

• TEI - Terminal Endpoint Identifier

- identifies an endpoint within a service access point

ISDN v4.6

- possible values

• 0 - 127

© 2007, D.I. Manfred Lindner

Frame Types (Control Field)

- information transfer frames (I frames)
- supervisory frames (S frames)
 - RR (Receive Ready)
 - RNR (Receive Not Ready)
 - REJ (Reject)

unnumbered frames (U frames)

- SABME (Set Asynchronous Balanced Mode Extended)
- DM (Disconnected Mode)
- UI (Unnumbered Information)
- DISC (Disconnect)
- UA (Unnumbered Acknowledgment)
- FRMR (Frame Reject)

© 2007, D.I. Manfred Lindner

Appendix 2 - ISDN in Detail

TEI Management

before a LAPD connection can be established

 – either a TEI value is assigned automatically between TE and network

ISDN v4.6

- TEI value range 64-126
- TEI assignment procedure
- or a preconfigured value may be used
- TEI value range 0-63
- TEI verification procedure for checking duplicates

• TEI = 127

- broadcasting, means all
- on PRI

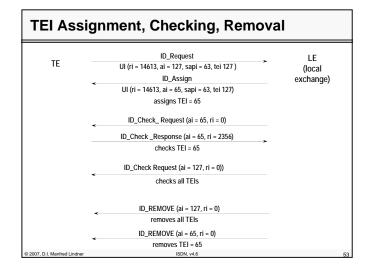
© 2007, D.I. Manfred Lindner

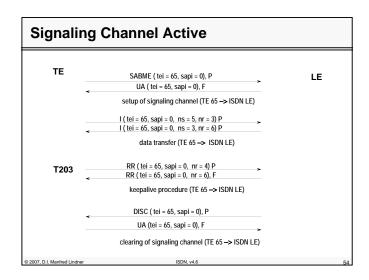
TEI always 0

TEI Management Messages

• always UI frames with SAPI = 63 and TEI 127

- information field of UI contains
 - reference indicator (RI)
 - correlation of request and responses
 - action indicator (AI)
 - contains TEI number to be requested, assigned or checked
 - AI = 127 asks for assignment of any TEI or checks all TEs
 - message type


© 2007, D.I. Manfred Lindner


- user to network (TE to NT)
 - ID_Request, ID_Check Response, ID_Verify
- network to user (NT to TE)
 - ID_Assigned, ID_Denied, ID_Check Request (ri always 0), ID_Remove (ri always 0)

© 2007, D.I. Manfred Lindner

ISDN v4

Appendix 2 - ISDN in Detail

© 2007, D.I. Manfred Lindner

Datenkommunikation 384.081 - SS 2007

Appendix 2 - ISDN in Detail

Agenda

© 2007, D.I. Manfred Lindner

- ISDN Introduction
- ISDN Terminology
- ISDN Physical Layer (I.430, BRI)
- ISDN Physical Layer (I.431, PRI)
- ISDN Data Link Layer (Q.921)
- ISDN Network Layer (Q.931)

ITU-T ISDN Layers (Bearer Service) Network Network User C-Plane C-Plane U-Plane U-Plane (D channel) (B or H channel) (B or H channel) (D channel) Q.931 3 Q.931 User User Specified Specified Q.921 Q.921 2 (LAPD) (LAPD) 1.430 1.430 1 1 I.431 1.431 S/T © 2007, D.I. Manfred Lindne ISDN v4

ISDN v4 F

© 2007, D.I. Manfred Lindner

Page A2 - 27

Appendix 2 - ISDN in Detail

Appendix 2 - ISDN in Detail

ISDN Network Layer

- not used on B channels
- Q.931 is used on D channels for call control
 - used between TE and local ISDN switch
 - not used end-to-end
- Signaling System 7 (SS#7) is used inside the network
- several flavors exist on the market

- be careful to select the correct version of the protocol

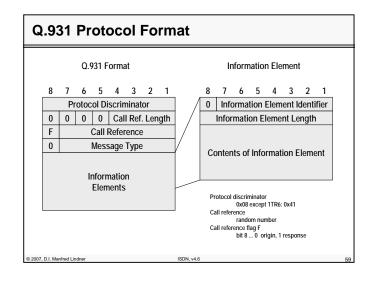
ISDN v4.6

ISDN Switch Types

• PRI

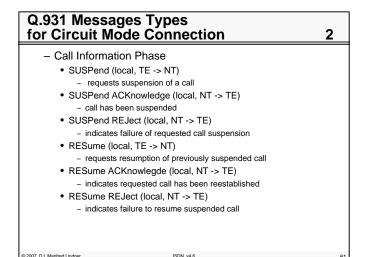
© 2007, D.I. Manfred Lindner

- 4ESS, 5ESS, DMS-100 (USA)
- primary-net5 (Euro ISDN)
- NTT (Japan)
- TS014

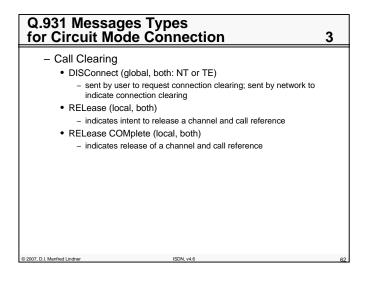

• BRI

© 2007, D.I. Manfred Lindner

- 5ESS, DMS-100, NT1 (USA)
- NTT (Japan)
- basic 1TR6 (Germany)
- VN2, VN3 (France)
- basic-net3 (Euro ISDN)
- TS013 (Australia)


© 2007. D.I. Manfred Lindner

ISDN v4

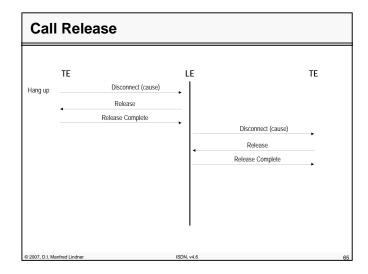


Q.931 Mess for Circuit N				1
 Call Establis 	hment Phas	se		
 SETUP (g 	bal, both: NT	or TE)		
 initiates 	call establishm	ent		
 SETUP AG 	Knowledge (lo	ocal, both)		
	s that call estab ion (e.g. dial nu		been started but rec	uests more
0	(global, both)			
	s that user alert	• •		
 CALL PRO 	Ceeding (loca	l, both)		
 indicate 	s that call estab	lishment has b	been initiated	
 CONNect 	global, both)			
 indicate 	s call acceptand	ce by called TE		
 CONNect 	CKnowledge	(local, both)		
 indicate 	s that user has	been awarded	the call	
 PROGress 	(global, both)			
 reports 	progress of a ca	all		
© 2007, D.I. Manfred Lindner		ISDN, v4.6		6

© 2007, D.I. Manfred Lindner

ISDN v4 6

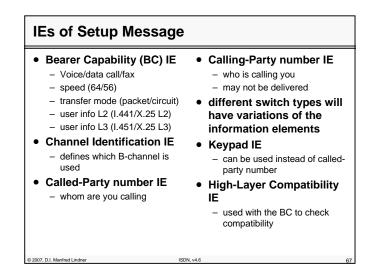
Appendix 2 - ISDN in Detail

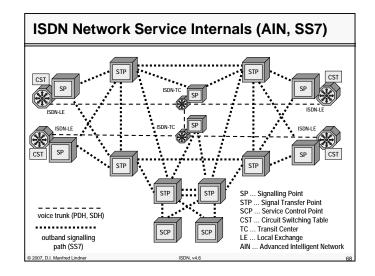

Q.931 Messages Types for Circuit Mode Connection 4 - Miscellaneous • INFOrmation (local, both) - provides additional information NOTIFY (both) - indicates information pertaining a call • STATUS ENQuiry (local, both - solicits a status message STATUS (local, both) - answer to enquiry message or error report at any time © 2007 D I Manfred Lindner ISDN v4 F

Call Establishment				
Local TE Setup	SS Local LE	S7 Remote LE	Remote TE	
Setup ACK Setup ACK Call Proceeding			Setup	
Alerting			Alerting	
 Connect 		·	Connect Connect Ack	
Connect Ack				
© 2007, D.I. Manfred Lindner	ISDN	, v4.6	64	

© 2007. D.I. Manfred Lindner

Page A2 - 31


Appendix 2 - ISDN in Detail



Some Information Elements				
- 0x04	Bearer Capability			
– 0x08	Cause (reason codes for call disconnect)			
– 0x18	Channel Identification			
– 0x1E	Progress Indicator			
– 0x6C	Calling Party Number			
– 0x6D	Calling Party Subaddress			
- 0x70	Called Party Number			
– 0x71	Called Party Subaddress			
– 0x7C	Low-Layer Compatibility			
– 0x7D	High-Layer Compatibility			
© 2007, D.I. Manfred Lindner	ISDN, v4.6	66		

© 2007, D.I. Manfred Lindner

Appendix 2 - ISDN in Detail

© 2007, D.I. Manfred Lindner

Page A2 - 33