OSPF Advanced Topics

Areas, ABR, Backbone, Summary-LSA, ASBR, Stub Area, Route Summarization, Virtual Links, Header Details

Agenda

- OSPF Advanced Topics
 - Area Principles
 - Summary LSA Operation Example 1
 - Summary LSA Operation Example 2
 - Computation Example
 - Stub Areas
 - Route Summarization
 - Virtual Link
- OSPF Header Details
 - Message Formats
 - LSA Formats

© 2007, D.I. Manfred Lindner

OSPF Domain / OSPF Area

OSPF domain can be divided in multiple OSPF areas

- to improve performance
- to decouple network parts from each other

performance improvement

- by restricting Router-LSA and Network-LSA to the originating area
 - note: receiving a Router-LSA will cause the SPF algorithm to be performed

decoupling is actually done

 by route summarization enabled through the usage of classless routing and careful IP address plan

© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4

3

OSPF Domain / OSPF Area

- every area got its own topology database
 - which is unknown to other areas
 - area specific routing information stays inside this area

on topology changes

- routing traffic causing Dikstra algorithm to be performed stays inside the area where the change appears
- route summarization reduces routing traffic drastically

OSPF areas are labelled with area-IDs

- unique within the OSPF domain
- written in IP address like format or just as number

an OSPF domain contains

at least one single area or several areas

© 2007, D.I. Manfred Lindner

OSPF Area Border Router

- OSPF areas are connected by special routers
 - Area Border Router (ABR)
- ABR
 - maintains a topology database for each area he is connected to
- all OSPF areas <u>must</u> be connected over a special area
 - Backbone Area
 - area-ID = 0.0.0.0
 - or area-ID = 0
 - if there is only one area in the OSPF domain this OSPF area will be the backbone area

© 2007, D.I. Manfred Lindne

OSPF Advanced, v4.4

OSPF Backbone Area

- non-backbone areas <u>must not</u> be connected directly
 - connection allowed only via Backbone Area
- this OSPF rule forces
 - a star-like topology of areas with the backbone area in the centre
- ABRs
 - are connected to the backbone area by direct physical links in normal cases
 - exception with virtual link technique if direct physical link can not be provided
 - a virtual link can be used to "tunnel" the <u>routing</u> traffic between an isolated area and the backbone area through another area

© 2007, D.I. Manfred Lindner

OSPF Routing Types

1

- OSPF provides three types of routing:
 - intra-area routing:
 - inside of an area (using Level 1 Router; Internal Router IR)
 - Router Link LSA (LSA type1)
 - Network Link LSA (LSA type2)
 - note: Backbone Router is a Backbone Area Internal Router
 - inter-area routing:
 - between areas over a Backbone Area (using Area Border)
 - Summary Link LSA (LSA type3 and type4)
 - · type 3 to announce networks
 - type 4 to announce IP address of ASBRs

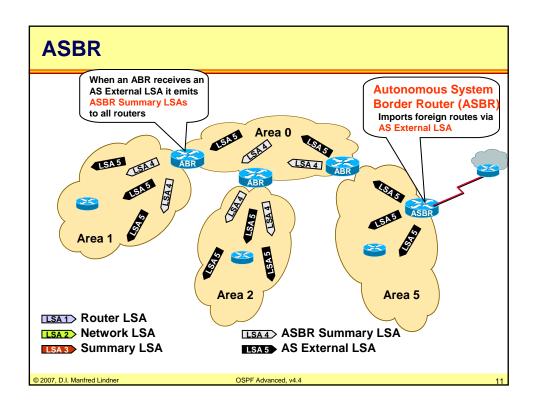
© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4

OSPF Routing Types

2

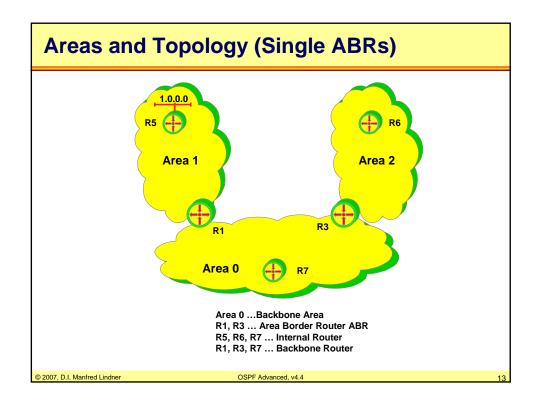
- OSPF provides three types of routing (cont.):
 - exterior routing:
 - paths to external destinations (other AS) are configured statically or imported with EGP or BGP using <u>Autonomous Systems</u> <u>Boundary Routers (ASBRs)</u>
 - AS External Summary LSA (LSA type5) to announce external networks

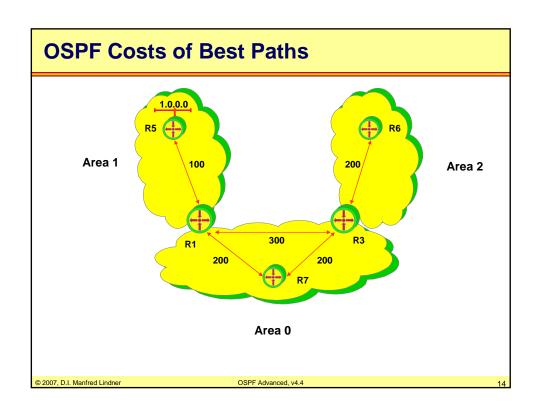

© 2007, D.I. Manfred Lindner

Area Border Router

- Area Border Router maintains two topology maps
 - one for its area
 - one for the Backbone Area
- Area Border Router exports the routes of its area to the Backbone Area
 - collects all topology information of its area and sends
 <u>Summary LSAs</u> to the Backbone Area
- Area Border Router imports all routes of other areas in its own area
 - this is done again using Summary LSAs

007, D.I. Manfred Lindner OSPF A

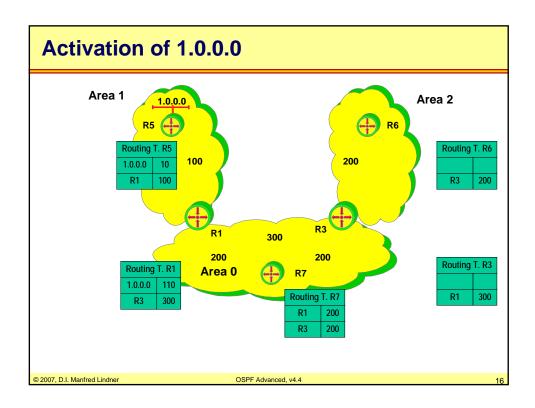

ABR Area Border Router (ABR): Note: **Terminates Router LSAs** Summary LSAs behaves and Network LSAs like Distance Vector Forwards Summary LSAs Area 0 updates !!! Area 1 Area 5 **LSA 1** Router LSA LSA 2 Network LSA Summary LSA 2007, D.I. Manfred Lindner OSPF Advanced, v4.4

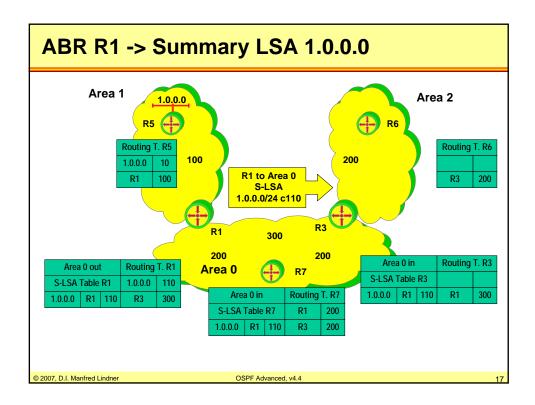


Agenda

- OSPF Advanced Topics
 - Area Principles
 - Summary LSA Operation Example 1
 - Summary LSA Operation Example 2
 - Computation Example
 - Stub Areas
 - Route Summarization
 - Virtual Link
- OSPF Header Details
 - Message Formats
 - LSA Formats

© 2007, D.I. Manfred Lindner

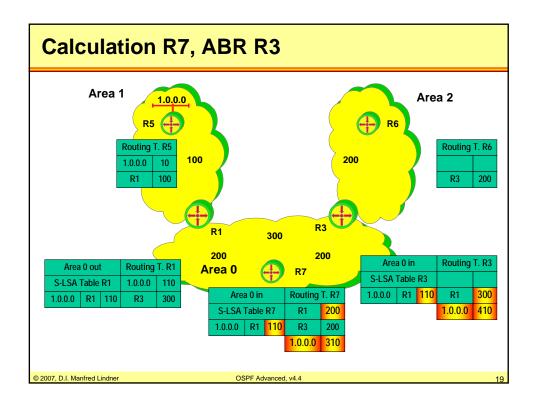


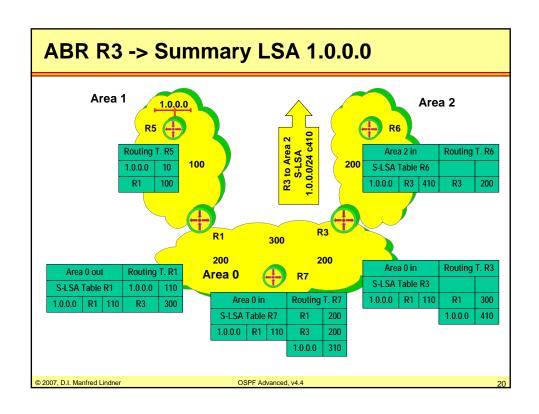

Topology Information Maintained

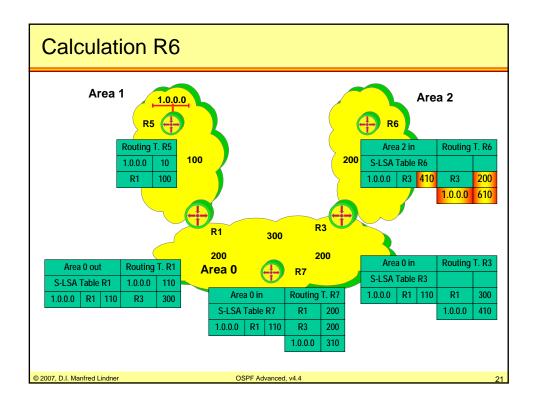
every router knows about

- exact topology of its own area and hence best paths to all networks of its own network
 - · best paths stored in routing table
 - e.g. for R5 -> 1.0.0.0 reachable with cost 10
 - e.g. for R1 -> 1.0.0.0 reachable with cost 110
- ABR of its own area and costs to reach ABRs
 - · ABRs stored in separate list
 - e.g. for R5 -> ABR R1 reachable with cost 100
 - e.g. for R1 -> ABR R3 reachable with cost 300
- on activation of a network
 - a corresponding Summary LSA is sent out by the ABR
 - with actual cost in order to reach the network from the given ABR

© 2007, D.I. Manfred Lindner OSPF Advanced, v4.4



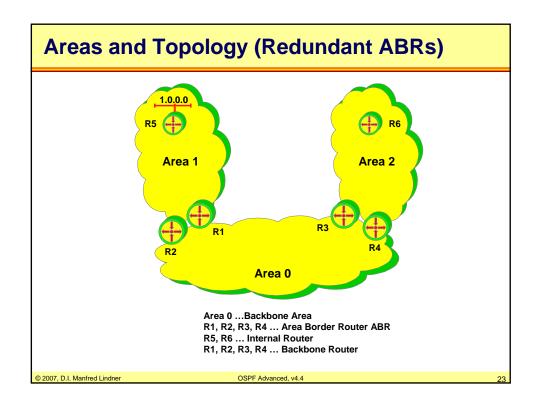

Topology Information Actualized

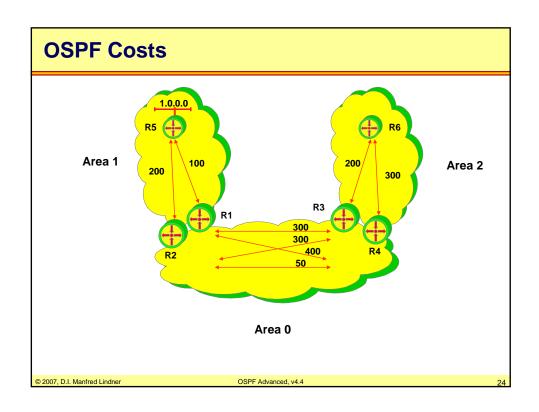

- If a router receives a Summary LSA
 - the costs announced in this Summary LSA are added to the costs in order to reach the announcing ABR
 - result is stored in routing table
- If an ABR router receives a Summary LSA from the Backbone
 - the costs announced in this Summary LSA are added to the costs in order to reach the announcing ABR
 - result is stored in routing table
 - a Summary LSA is send out in the other Area with the culminated costs and ABR-ID set to the actual value

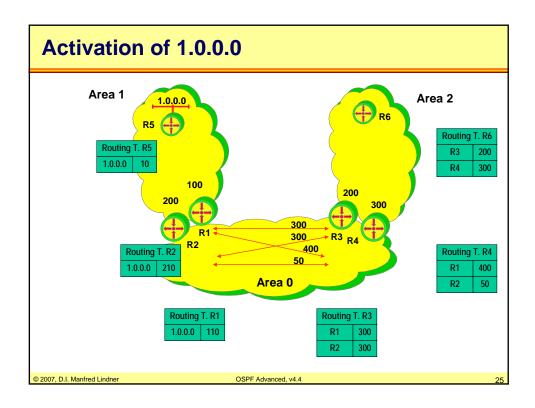
© 2007, D.I. Manfred Lindner

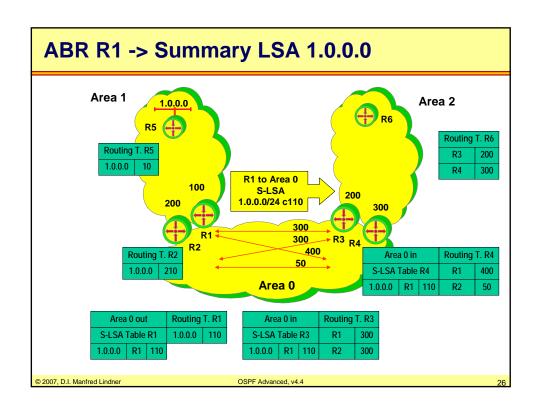
OSPF Advanced, v4.4

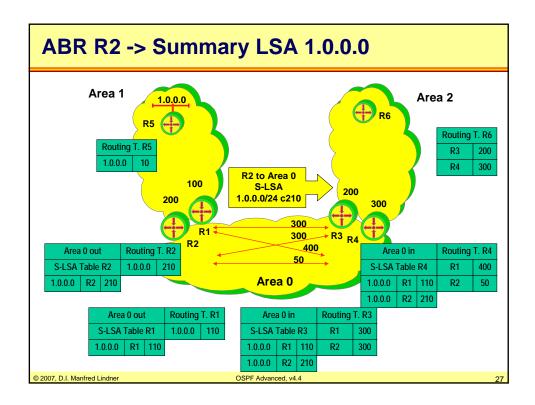
Agenda

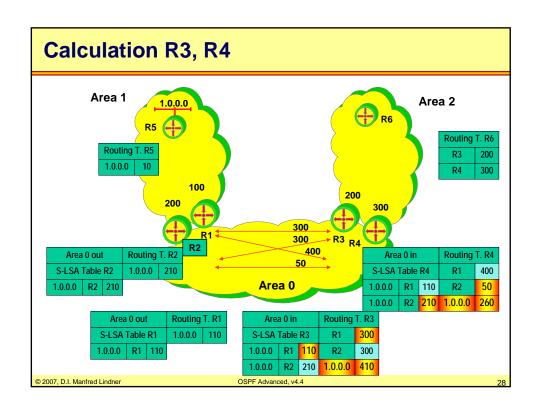

OSPF Advanced Topics

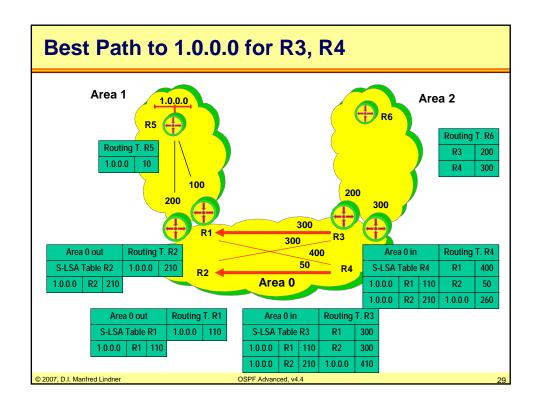

- Area Principles
- Summary LSA Operation Example 1
- Summary LSA Operation Example 2
- Computation Example
- Stub Areas
- Route Summarization
- Virtual Link

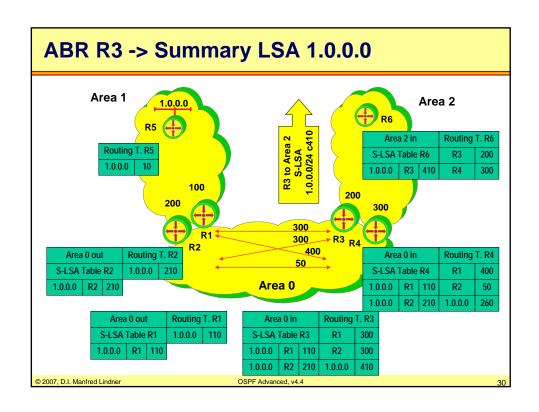

OSPF Header Details

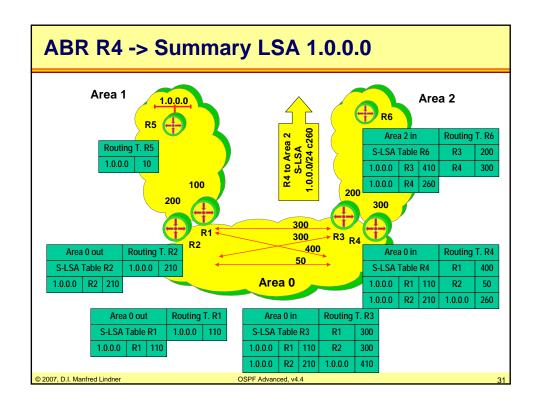

- Message Formats
- LSA Formats

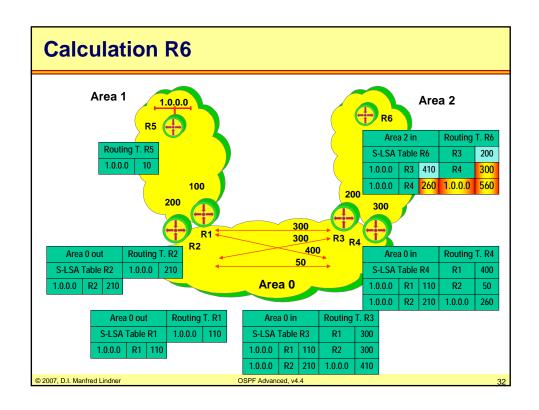

2007, D.I. Manfred Lindner

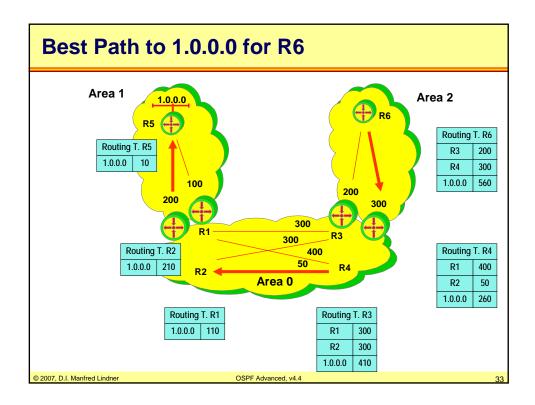




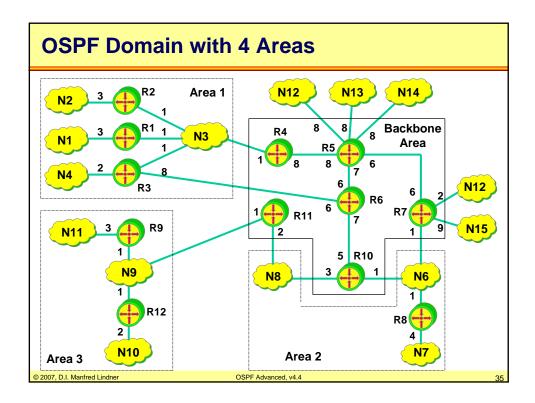








Agenda

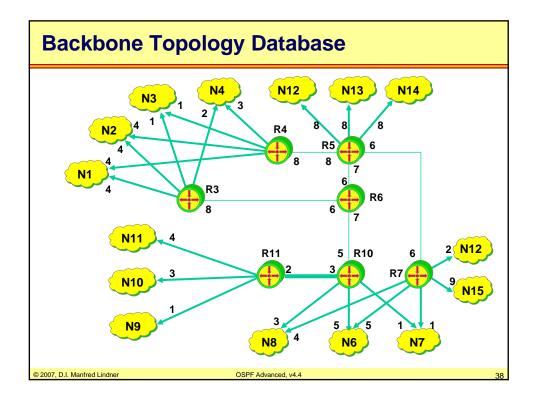

OSPF Advanced Topics

- Area Principles
- Summary LSA Operation Example 1
- Summary LSA Operation Example 2
- Computation Example
- Stub Areas
- Route Summarization
- Virtual Link

OSPF Header Details

- Message Formats
- LSA Formats

© 2007, D.I. Manfred Lindner


OSPF Domain with 4 Areas

- internal routers: 1, 2, 5, 6, 8, 9, 12
 - router 1,2 area 1
 - router 8 area 2
 - router 9, 12 ... area 3
 - router 5,6 backbone
- Area Border Routers: 3, 4, 7, 10, 11
 - router 3, 4 topology of area 1 and backbone
 - router 7, 10 topology of area 2 and backbone
 - router 11 topology of area 3 and backbone
- Backbone Routers: 4, 5, 6, 7, 10, 11
 - router 11 is connected to the backbone (router 10) over a virtual link

© 2007, D.I. Manfred Lindner

OSPF Domain with 4 Areas

- Autonomous Systems Boundary Routers: 5, 7
 - additionally, router 5 and 7 provide connections to external Autonomous Systems

Router 3/4 Summary LSAs -> Backbone

- router 3 and 4 have topology map of area 1
- Area Border Router 3 and 4 forward network information (costs for reaching internal destinations) as <u>Summary LSAs</u> to the Backbone Area

network	costs, notified by router 3	costs, notified by router 4
N1	4	4
N2	4	4
N3	1	1
N4	2	3

2007, D.I. Manfred Lindner OSPF Advanced, v4.4 39

Router 7 Summary LSAs -> Backbone

- router 7 has topology map of area 2
- Area Border Router 7 forwards network information of area 2 as Summary LSA to the Backbone Area
- thus, notifying also R3 and R4

network	costs, notified by router 7	
N6 N7 N8	1 5 4	

© 2007, D.I. Manfred Lindner OSPF Advanced, v4.4

Router 10 Summary LSAs -> Backbone

- router 10 has topology map of area 2
- Area Border Router 10 forwards network information of area 2 as Summary LSA to the Backbone Area
- thus, notifying also R3 and R4

network	costs, notified by router 10	
N6 N7 N8	1 5 3	

2007, D.I. Manfred Lindner OSPF Advanced, v4.4

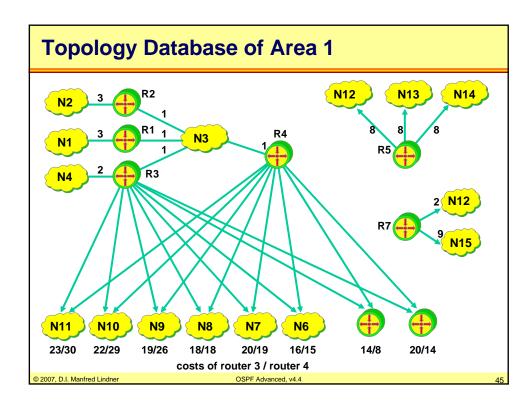
Router 11 Summary LSAs -> Backbone

- router 11 has topology map of area 3
- Area Border Router 11 forwards network information of area 3 as Summary LSA to the Backbone Area
- thus, notifying also R3 and R4

network	costs, notified by router 11	
N9 N10 N11	1 3 4	

© 2007, D.I. Manfred Lindner OSPF Advanced, v4.4

Router 3/4 SPF Calculation for Backbone


 router 3 and 4 have topology map of Backbone Area -> router 3 and 4 can calculate SPF to any Area Border Router

Area Border Router	costs of R3	costs of R4	
to R3	*	21	
to R4	22	*	
to R7	20	14	
to R10	15	22	
to R11	18	25	
to R5	14	8	
to R7	20	14	
© 2007, D.I. Manfred Lindner	OSPF Advanced, v4.4		43

Router 3/4 S-LSAs -> Area 1

- router 3 and 4 can calculate best costs to any destinations outside of area 1
 - by analyzing Summary LSAs of other Area Border Routers
 - and SPF calculations to the backbone routers
- and notify their own area with Summary-LSA

destinatio	costs, notified by router 3	costs, notified by router 4
N6 N7 N8 N9 N10 N11 R5 R7	16 (R10) 20 (R10) 18 (R10) 19 (R11) 21 (R11) 22 (R11) 14 20	15 (R7) 19 (R7) 18 (R7) 26 (R11) 28 (R11) 29 (R11) 8
© 2007, D.I. Manfred Lindner	OSPF Advanced, v4.4	44

Routing Tables R1, R2

- these cost-information to any network (provided by Summary LSA of router 3 and 4) outside of area 1
 - are added to the internal shortest paths to the Area Border Routers R3 and R4 by the internal routers R1 and R2
 - determination of best paths to any subnet finally
 - best path is noted in routing table
 - best path from R1, R2 to

N6 over R4 with costs of 16

N7 over R4 with costs of 20

N8 over R3/R4 with costs of 19 (load balancing)

N9 over R3 with costs of 20 etc.

© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4

Agenda

OSPF Advanced Topics

- Area Principles
- Summary LSA Operation Example 1
- Summary LSA Operation Example 2
- Computation Example
- Stub Areas
- Route Summarization
- Virtual Link

OSPF Header Details

- Message Formats
- LSA Formats

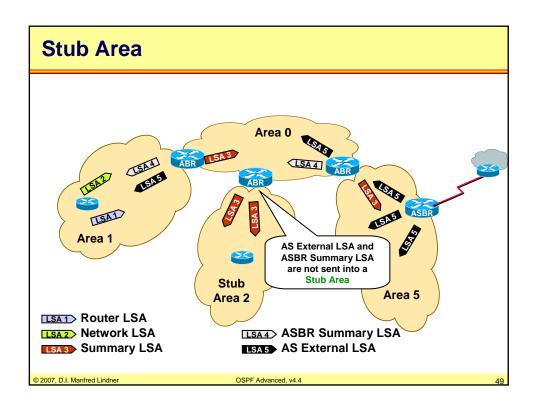
© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4

47

OSPF Stub Areas

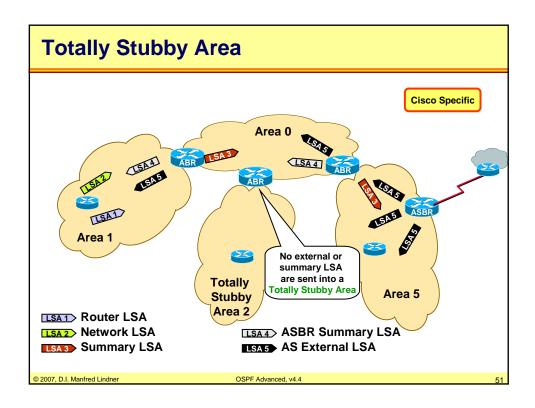
- normally, every internal router gets information about all networks
 - internal and external NET-IDs


OSPF allows definition of <u>Stub Areas</u>

- to minimize memory requirements of internal routers of non-backbone areas for external networks
- only the Area Border Router of a particular area knows all external destinations
- internal routers only get a default route entry (to this Area Border Router)
- any traffic that do not stay inside the OSPF domain (external networks) is forwarded to the Area Border Router

© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4


/Ω

OSPF Totally Stubby Areas

- Cisco allows definition of <u>Totally Stubby Areas</u>
 - internal routers follow default route also for networks of other areas (no Summary-LSA)
 - that means for internal networks of other areas
- In such an area
 - ASBRs are forbidden

© 2007, D.I. Manfred Lindner

Agenda

- OSPF Advanced Topics
 - Area Principles
 - Summary LSA Operation Example 1
 - Summary LSA Operation Example 2
 - Computation Example
 - Stub Areas
 - Route Summarization
 - Virtual Link
- OSPF Header Details
 - Message Formats
 - LSA Formats

© 2007, D.I. Manfred Lindner

Summary LSA and Route Summarization

- Summary LSA is generated by Area Border Router to inform
 - routers inside its area about costs of networks from outside (message direction: Backbone Area -> Area)
 - --> import of net-IDs
 - routers outside its area about costs of its internal networks (message direction: Area -> Backbone Area)
 - --> export of net-IDs
- additionally Summary Link LSA can be used for Route Summarization
 - several net-IDs can be summarized to a single net-ID using an appropriate subnet-mask

© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4

--

Route Summarization

1

- Route Summarization can be configured manually for Area Border Routers
 - to minimize number of routing table entries
 - to provide decoupling of OSPF areas
- basically, an OSPF domain allows combining any IP-address with any arbitrary subnet masks
 - Classless Routing
- no automatic Route Summarization at the IP address class boundary (A,B or C) like RIPv1
 - note: RIPv1 implements Classful Routing

© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4

5/

			4										40			
$\mathbf{\nu}$	\sim		+c	S	П	ın	n	\mathbf{m}	2	r	7	2	٠		۱n	۱
-		u	LC	- 0			ш		а		_	а	L	ı	,,,	ı

2

- summarization can occur at any place of the IPaddress
- for instance, many class C addresses can be summarized to one single address (with a prefix)
 - e.g. class C addresses 201.1.0.0 to 201.1.255.0 (subnet-mask 255.255.255.0) can be summarized by a single entry 201.1.0.0 with subnet-mask 255.255.0.0
 - note1: when summarizing several networks, only the lowest costs of all these networks are reported (RFC 1583)
 - note2: when summarizing several networks, only the highest costs of all these networks are reported (RFC 2328)

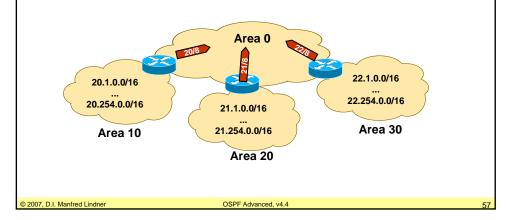
© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4

--

Route Summarization

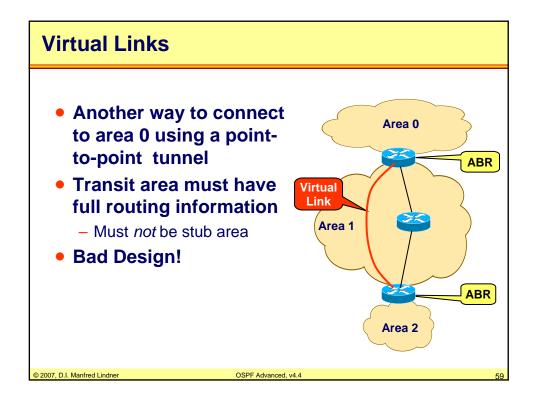
3

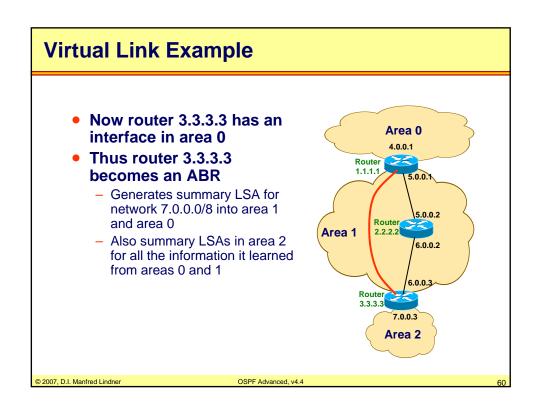

- OSPF Route Summarization demands
 - a clever assignment of IP-addresses and areas to enable Route Summarization
- hence OSPF not only forces a star shaped area topology but also demands for a sound IPaddress design
- note:
 - it is still possible to use arbitrary subnet masks and arbitrary addresses anywhere in the network because of classless routing
 - in conflict cases "Longest Match Routing Rule" is applied
 - but this means a bad network design

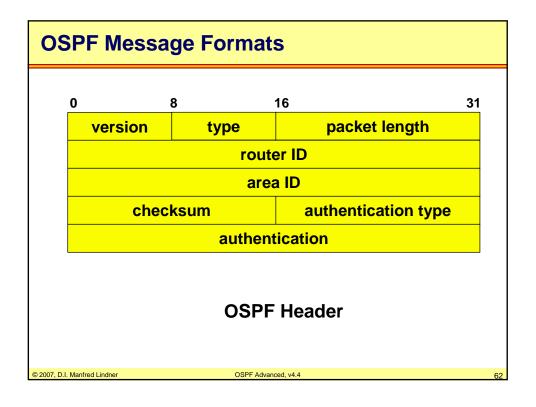
© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4

Example Summarization


- Efficient OSPF address design requires hierarchical addressing
- Address plan should support summarization at ABRs




Agenda

- OSPF Advanced Topics
 - Area Principles
 - Summary LSA Operation Example 1
 - Summary LSA Operation Example 2
 - Computation Example
 - Stub Areas
 - Route Summarization
 - Virtual Link
- OSPF Header Details
 - Message Formats
 - LSA Formats

© 2007, D.I. Manfred Lindner

OSPF Header

- VERSION
- TYPE of the OPSF message
 - 1 Hello Message
 - 2 Database Description
 - 3 Link Status Request
 - 4 Link Status Update
 - 5 Link Status Ackowledgement
- ROUTER ID, AREA ID
 - IP address (largest IP-address or dummy-IP-address) of the router sending this message, and area number
- AUTHENTICATION TYPE
 - 0 ... no authentication; 1 simple password authentication; 2 ... cryptographic authentication

© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4

OSPF Hello Message 0 8 16 24 31 **OSPF** header type 1 network mask hello interval options rtr. priority dead int designated router backup designated router neighbor 1 IP address neighbor n IP address 2007, D.I. Manfred Lindner OSPF Advanced, v4.4

OSPF Hello Message

NETWORK MASK

 network-mask of the network over which this message has been send

HELLO INTERVAL

- amount of time between two Hello messages

RTR PRIORITY

priority of the sending router; important for determination
 Designated Router and Backup Router

DEAD INT

 timeout-value to consider a not-replying neighbor-router as being out of order

© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4

0.5

OSPF Hello Message

OPTIONS

- T Bit ... router supports Type of Service Routing
 ToS of IP contains 4 bit (delay, throughput, reliability, cost)
 -> provides 16 different metrics
- E Bit ... router sends or receives external information (External Link Advertisements)
 - E Bit is mechanism for "Tagged External" (marking external routes in the whole area)
- M Bit ... indicates multicast OSPF (MOSPF)

DESIGNATED + BACKUP ROUTER

 IP-addresses of designated and backup routers (assumed by the sending router for this network segment)

© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4

Usage of OSPF Hello Message

- NEIGHBOUR x IP ADDRESS
 - IP- addresses of neighbour routers that sending Hello messages recently
- set-up and test reachability of neighbours
- determination of Designated Routers
- failure detection (router or link)
 - values for DEAD INT and HELLO INTERVAL directly influences the duration time a router needs to detect failures and furthermore to select a new path (rerouting)

© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4

OSPF Database Description Message 0 8 16 24 31 **OSPF** header type 2 Interface MTU zero I M S options database sequence number link state age options LS type Header link state ID advertising router **LSA** link state sequence number link state checksum length next LSA header

OSPF Database Description Message

- is used to initialize the topology-database after establishing communication
 - master / slave principle
- OPTIONS is similar as in OSPF header
- FLAGS
 - I ... first packet of the database description
 - M ... further database description packets will follow
 - S specifies master or slave

DATABASE SEQUENCENUMBER

indicates successive database description packets

© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4

60

OSPF Database Description Message

LINK STATE AGE

- describes age of information
- initially set to zero; increased by one by every forwarding router
- also increased as database entry until aging-timeout (60 min) expires -> LS is removed

LINK STATE (LS) TYPE and LINK STATE ID

- type identifies LS type (one out of 5 different LS types)
- type also identifies type of Link State ID and data range of the LSA
- Description Message contains LSA-header only !!!

© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4

OSPF Database Description Message

LS types and associated Link State ID:

Link State Type: Link State ID:

1 Router LSA -> ID of source router

2 Network LSA -> IP address of DR

3 Summary LSA -> IP address of destination network

4 Summary LSA -> Router ID of AS

(ASBR) Boundary Router

5 AS External LSA -> IP address of destination network

© 2007, D.I. Manfred Lindner

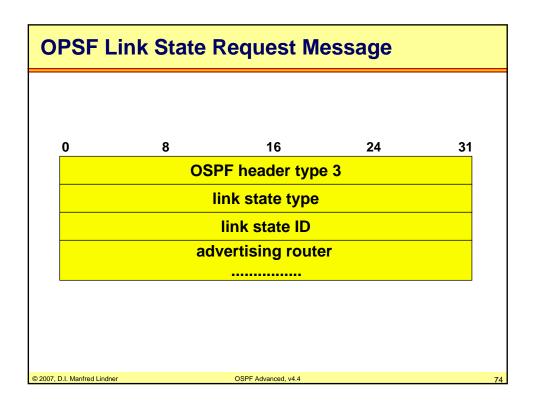
OSPF Advanced, v4.4

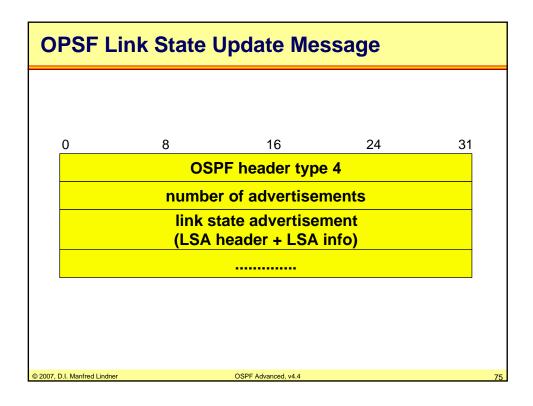
74

OSPF Database Description Message

usage of LSA types:

- type 1 is used by any router inside an area; describes
 Router Link State of a router inside this area (Router-LSA)
- type 2 is used by Designated Routers inside an area; describes which routers are connected to the same network segment (Network LSA)
- type 3 are used by Area Border Routers to announce networks outside of the area (Summary LSA), type 4 notifies Autonomous System Boundary Routers (ASBR)
- type 5 is used by ASBR to announce external networks (outside OSPF domain, Net-IDs of other AS)

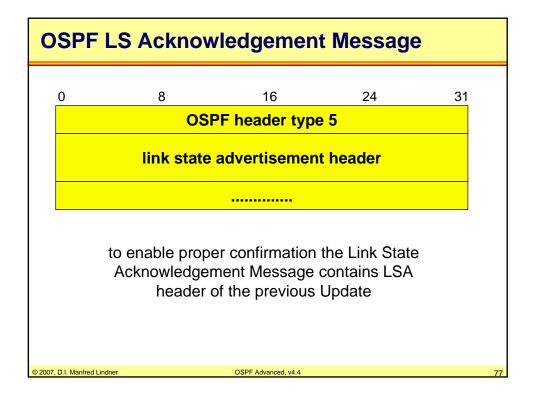

© 2007, D.I. Manfred Lindner


OSPF Advanced, v4.4

OSPF Database Description Message

- ADVERTISING ROUTER
 - ID of router which generates this state information
- LINK STATE SEQUENCENUMBER
 - to differentiate successive link state information of a LSA
- LENGTH
 - length of LSA including LSA-header (depends on type field)
 - further entries only in case of Update Messages (not database description messages)
- LINK STATE CHECKSUM

© 2007, D.I. Manfred Lindner OSPF Advanced, v4.4 7



OSPF LS Request/Update Message

- a request message triggers one or more Link
 State Updates from the neighbour's database
- neighbour router replies with Link State Update
 - contains LSA-header and associated information
 Link State Advertisement, LSA
- Link State Update Message is also used to refresh the state information every 30 minutes
- every Update Message is confirmed with an Acknowledgement Message

© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4

Agenda

- OSPF Advanced Topics
 - Area Principles
 - Summary LSA Operation Example 1
 - Summary LSA Operation Example 2
 - Computation Example
 - Stub Areas
 - Route Summarization
 - Virtual Link
- OSPF Header Details
 - Message Formats
 - LSA Formats

© 2007, D.I. Manfred Lindner

Router Link LSA								
0		8		16	24	31		
			OSPF he	ader ty	/pe 4			
			#advert	iseme	nts			
	LS	SA he	ader with L	S type	1 (router link)			
	0	Е	B 0		# links			
			lin	k ID				
			link	data				
	type		# ToS		ToS 0 metric			
ToS 0 metric								
next link ID								
7, D.I.	Manfred Lindner		OSPF	Advanced, v4.4				

Router Link LSA

- E-bit
 - state message of AS Boundary Router
- B-bit
 - state message of Area Border Router
- # links
 - number of described connections
- type, link ID, link data
 - see table on next page
- ToS 0 metric
 - costs of connection if using service class ToS 0
- ToS and metric
 - further service class plus cost values

© 2007, D.I. Manfred Lindner

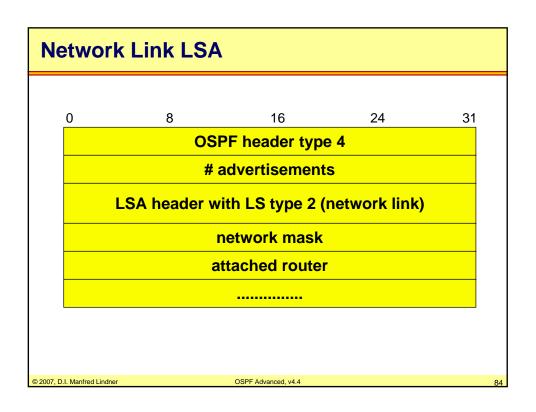
Router Link LSA											
type	connection type	link ID	link data								
1	point-to- point connection to other routers	ID of neighbor router	IP address of router								
2	connection to transit network	IP address of DR	IP address of router								
3	connection to stub network	IP address of network	subnet mask								
4	virtual link	ID of neighbor router	IP address of router								
© 2007, D.I. Manfred Line	dner OSPI	F Advanced, v4.4		81							

Meaning of Router Link LSA

type 1

- describes a neighborhood relation
- only description of a physical point-to-point line in case of IP-unnumbered lines

type 2


 to announce network address of a Designated Router of a transit network

type 3

- to announce network address and subnet mask of a stub network
- using a point-to-point line with IP numbering, these IPaddresses are also announced as stub network

© 2007, D.I. Manfred Lindner OSPF Advanced, v4.4

Mapping IP ToS Bits to OSPF ToS Service Classes									
OSPF ToS	D(elay)	IP ToS bits T(hroughput)	R(eliability)						
0 4 8 12 16 20 24 28	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0						
© 2007, D.I. Manfred Lindner	OSPF Adva	nced, v4.4	83						

Network Link LSA

- generated by Designated Router of a network segment with multiple access (transit network)
 - network mask and connected routers are reported
 - net-ID of the transit network can be calculated from the address of the Designated Router (which can be found in the OSPF header) and the subnet mask

© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4

O 8 16 24 31

OSPF header type 4

advertisements

LSA header with LS type 3/4 (summary link)

network mask

ToS metric

Summary Link LSA

- generated by Area Border Router to notify costs
 - to networks outside of its area (message direction:
 Backbone Area -> Area) (type 3)
 - to networks inside of its area (message direction: Area -> Backbone Area) (type 3)
 - to ASBR or to notify the router-ID of the ASBR (type 4, network -ID in header)
- Summary Link LSA can be additionally used for Route Summarization

© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.

AS External Link LSA 1

- to announce external networks outside of the Autonomous System (OSPF Domain)
 - generated by ASBR and distributed across the whole OSPF domain
 - note: net-ID of external network is found in the OSPF header

© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4

89

AS External Link LSA 2

- E bit:
 - to differentiate type 1 (E1) and type 2 (E2) metrics
- how are these metrics interpreted?
 - E1 type means: costs can be compared with internal metric; if there exist two ASBR with different costs to the external network, this external costs can be added to the internal to determine the best of both paths
 - E2 type means: costs can not be compared with internal metric; only external costs specify the best path

© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4

an

AS External Link LSA 3

FORWARDING ADDRESS

- to specify a router (not ASBR) who should receive packets for external targets (0.0.0.0 means ASBR)
- using Forwarding Address a redirect-hint to another router (than the ASBR) can be specified
 - then this router is used as datagram forwarder for the given network

© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.

91

AS External Link LSA 4

EXTERNAL ROUTE TAG

- supports communication between ASBRs by route tagging external networks (net-ID of other ASs)
- external net-IDs can be labelled (route tagging)
 via External Route Tag
 - External Route Tag plays an important role for routing policy (BGP and Internet Service Provider concerns)

© 2007, D.I. Manfred Lindner

OSPF Advanced, v4.4