ATM PNNI Routing
ATM Routing in Private Networks, Overview

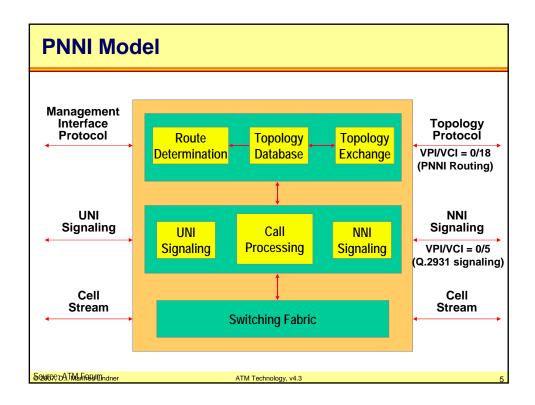
Agenda

- PNNI Overview
- PNNI Routing
- PNNI Hierarchy
- Interim Inter Switch Protocol

© 2007, D.I. Manfred Lindner

ATM Routing

- ATM networks will consist of more than one switch
- Inter-switch protocol needed
 - Topology discovery
 - · Distribution of reachability information
 - Hierarchical routing and addressing
 - QoS support
- Private Network to Network Interface or Private Node to Node Interface (PNNI)
 - is the dynamic solution for private ATM


© 2007, D.I. Manfred Lindner

ATM Technology, v4.3

PNNI Overview

- Contains two major protocols
 - PNNI routing
 - PNNI signaling
- Between ATM switches
- Might also be used between ATM end-systems and switches
 - Dual-homed end system
 - PNNI may be used to select the proper interface

© 2007, D.I. Manfred Lindner

PNNI Overview

Goal of PNNI routing

 To create a <u>signaling path</u> from the source end-node to the intended destination end-node

Routing decision

- Switches exchange information with each other about the topology of the network
- PNNI is based on Link-State technique
- Topology database
 - Every switch maintains a database representing the states of the links and the switches in a PNNI routing network
 - = Roadmap

© 2007, D.I. Manfred Lindner

PNNI Data Transfer

- Routing protocol information
 - Is sent between adjacent switches
 - Dedicated connection, using VPI = 0 and VCI = 18
- Information is sent in packet format
- All packets are using AAL 5 for ATM SAR
- All cells use UBR traffic class by default
 - Though UBR, these cells are never dropped by a switch
 - Using a designated system-queue
 - Some vendors implement VBR to ensure specific treatment of PNNI information

© 2007, D.I. Manfred Lindner

ATM Technology, v4.3

Link State Overview

- Every switch exchanges "Hellos" with direct neighbors to determine local topology
- Every switch advertises its local topology throughout the network
- Switches calculate routes based on network topology
- Topology State Routing
 - Extension to link state routing!
 - Announce status of node (!) as well as status of links
 - Contains dynamic parameters versus static-only parameters of OSPF (link up/down, node up/down, nominal bandwidth of link)

© 2007, D.I. Manfred Lindner

Virtual Circuit Support

- ATM is based on virtual circuits
- Call setup (VC establishment) picks a path through the network
- Resources are reserved for the VC, path is used by all cells in the VC
- Path must be loop free!
 - Switches specify source routes
 - If there is an error during connection setup, crankback to source and try another path

© 2007, D.I. Manfred Lindner

ATM Technology, v4.3

Agenda

- PNNI Overview
- PNNI Routing
- PNNI Hierarchy
- Interim Inter Switch Protocol

© 2007, D.I. Manfred Lindner

ATM Technology, v4.3

PNNI Routing

Topology map

 Enables the switch to calculate possible routes to destination endpoints

Network directory

Enables the switch to locate destination endpoints

Up-to-date network state information

Enables the switch to select the correct (best) route

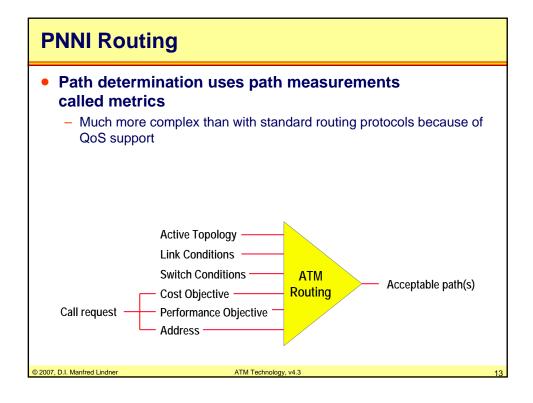
© 2007, D.I. Manfred Lindner

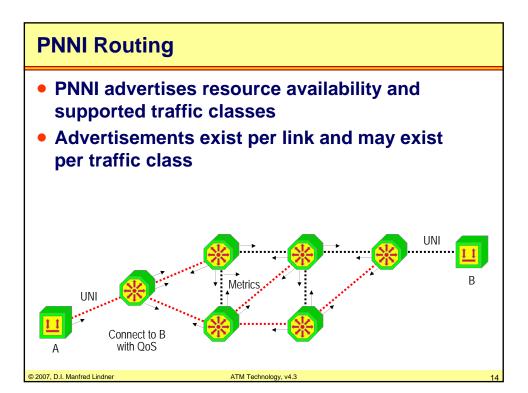
ATM Technology, v4.3

...

PNNI Routing

PNNI uses source routing


- Better suited to deal with QoS and the connection oriented nature of ATM
- Path computed by the source switch
- Creates source route information (header) in front of the information to be transmitted (call setup message)
 - in PNNI, this header is called a <u>designated transit list</u> (DTL)


Weakness of source routing

- Does not provide an option for re-routing during a session
- If a path fails, re-routing has to be triggered by the source
 - ATM edge device or first ATM switch

© 2007, D.I. Manfred Lindner

ATM Technology, v4.3

PNNI Routing

Metrics (add up along a path)

- Cell delay variation
- Maximum cell transfer delay
- Administrative weight

Attributes (local to a link)

- Cell loss ratio
- Maximum cell rate
- Available cell rate
- Cell rate margin
- Variation factor

© 2007, D.I. Manfred Lindner

ATM Technology, v4.3

4-

PNNI Metrics

Peak-to-Peak Cell Delay Variation - CDV

 The quantile of the cell transfer delay minus the fixed delay experienced by all cells crossing the link or node

Maximum Cell Transfer Delay - maxCTD

- The quantile of the elapsed time for transmission of cells across a link or node
- This includes processing and queuing delays plus propagation delay

Administrative Weight - AW

 Indicates the relative preference of a link or node assigned by the private network operator

© 2007, D.I. Manfred Lindner

ATM Technology, v4.3

PNNI Attributes

- Cell Loss Ratio CLR
 - The ratio of the number of lost cells to the total number of cells transmitted across the link or node
- Maximum Cell Rate MCR
 - The maximum capacity usable by connections belonging to the specific service category
 - don't mix it up with Traffic Attribute MCR (Minimum Cell Rate) of ABR service class
- Available Cell Rate ACR
 - Reflects the amount of equivalent bandwidth that is available on the link or node

© 2007, D.I. Manfred Lindner

ATM Technology, v4.3

47

Significant Changes

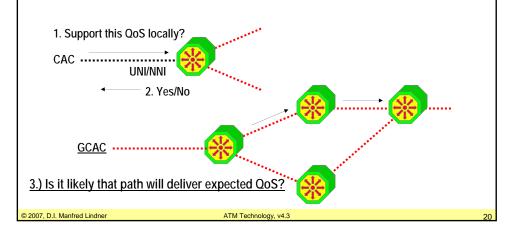
- Switches will not advertise new resource information every time a call is established or removed
 - Too many advertisements would flood the network
- Switches will only produce new advertisements when there has been a "significant" change
- Significance is defined for each parameter
 - In general a specified percentage change
 - Can be modified (changed)
- General refresh limit of advertisements
 - 10-15 minutes

© 2007, D.I. Manfred Lindner

ATM Technology, v4.3

Inaccuracy of Information

- Aggregation influences accuracy of information
- QoS support is handled by the Connection Admission Control
 - Local to each switch
 - Checks whether requested QoS can be supported or not
- With <u>source routing</u>, the first switch defines the path through the network
 - Routing protocol has to ensure that call setup will pass CACs of individual switches
 - CAC is a function performed locally in each switch
 - Source route path determined can only be a best guess


© 2007, D.I. Manfred Lindner

ATM Technology, v4.3

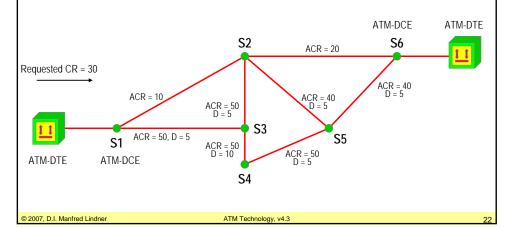
10

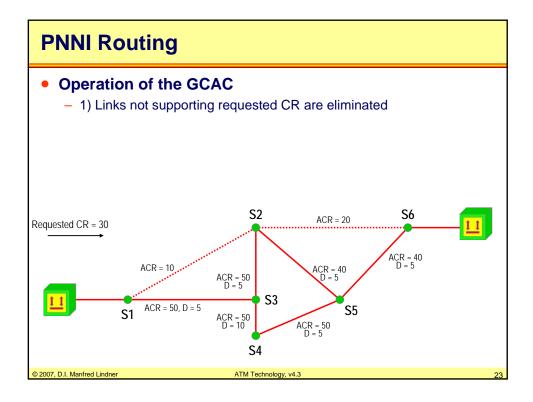
PNNI Routing

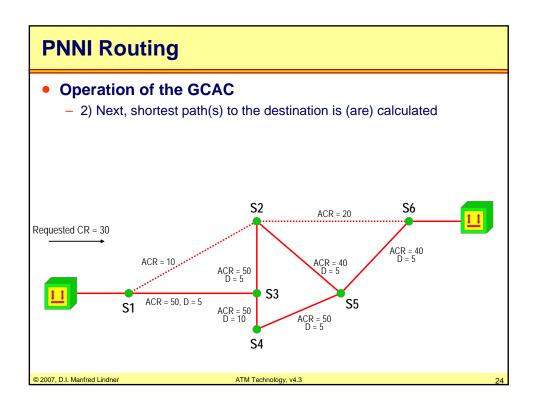
- Generic Connection Admission Control (GCAC)
 - Used by the source switch to select a path through the network
 - Calculates the expected CAC behavior of another node
 - Uses the link state metrics described before

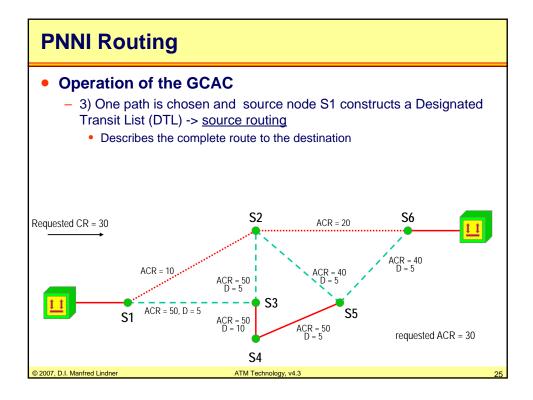
PNNI Signaling

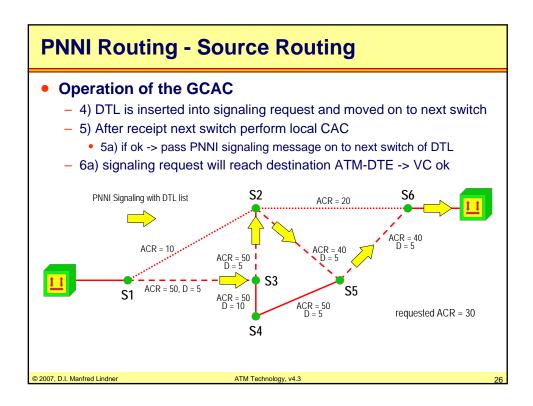
- Based on a subset of UNI 4.0 signaling
- Differs from UNI 4.0 signaling in that it is symmetric
 - Switch to switch signaling
- Extensions to UNI 4.0 signaling
 - Crankback and alternate routing
 - Designated transit lists (source routing information)
- Supports source routing
 - Switches which initiate calls specify the route for the call

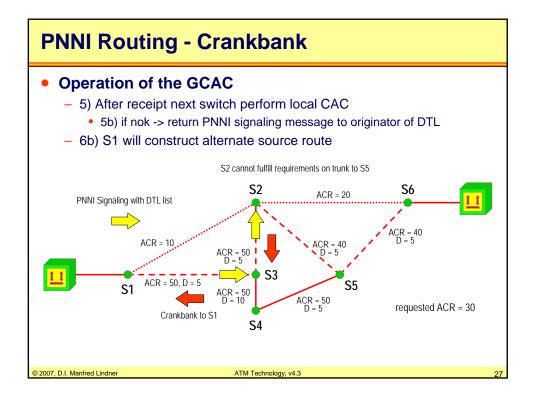

© 2007, D.I. Manfred Lindner


ATM Technology, v4.3


21


PNNI Routing


- Operation of the GCAC
 - CR ... Cell Rate
 - ACR ... Available Cell Rate
 - D ... Distance like OSPF costs



Crankback

- Source node issues signaling request including DTI
- One of the switches in the path may not allow connection because of local CAC
- Connection setup is rolled back to the DTL originator (specifier of the route)
 - Not necessarily the source node (hierarchy)
- Originating node used GCAC to determine another path
 - Uses now more accurate or more actual network state information
 - Number of retries configurable on a switch basis

© 2007, D.I. Manfred Lindner

ATM Technology, v4.3

Agenda

- PNNI Overview
- PNNI Routing
- PNNI Hierarchy
- Interim Inter Switch Protocol

© 2007, D.I. Manfred Lindner

ATM Technology, v4.3

20

PNNI Scalability

- Without hierarchy, every ATM switch would have to maintain a complete view of the total topology
 - Must include every physical link and the reachability information for every switch in the network
- Using a flat architecture with a single domain would create scalability problems
 - The topology database at each switch and the amount of flooded information would become unacceptably large
 - The learning process for this takes CPU and memory
 - Waste of bandwidth due to the advertisement of all link and switch information

© 2007, D.I. Manfred Lindner

ATM Technology, v4.3

PNNI Hierarchy

- Relates to the visibility of the network topology as seen by ATM switches
 - Address summarization and topology abstraction
- Switches have
 - Detailed information about local topology
 - Summarized information about other parts of the network
- Hierarchy support is much larger than with well known routing protocols
 - OSPF supports 2 levels of hierarchy
 - BGP adds another one
 - PNNI supports up to 105 levels
 - In practice a maximum of 10 is assumed

© 2007, D.I. Manfred Lindne

ATM Technology, v4.3

04

PNNI Hierarchy

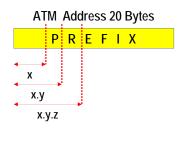
- Advantages of the hierarchical organization
 - Reduction in number of flooded packets
 - Reduction of database size
 - Less processing
 - Allows address summarization
- Disadvantages of the hierarchical concept
 - Hiding of information leads to lower quality path selection
- Tradeoff between optimal paths and scalability

© 2007, D.I. Manfred Lindner

ATM Technology, v4.3

PNNI Peer Group

- Group of nodes form a small domain called a Peer Group
- Share a **Peer Group** Identifier
 - Prefix of the ATM address space
- Exchange reachability information
 - Have an identical view of the group
- Each peer group is represented as a single node in higher level peer groups (<u>Logical Group Node</u> - LGN)
 - A single switch performs this required function
 - So called <u>Peer Group Leader</u> (PGL)
- PGL election based on ATM address or configuration
 - peers with members of the next higher peer group
 - propagates routing information to and from the higher layer


© 2007, D.I. Manfred Lindner

ATM Technology, v4.3

33

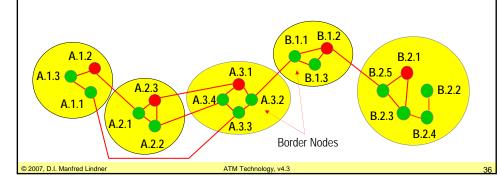
PNNI Addressing

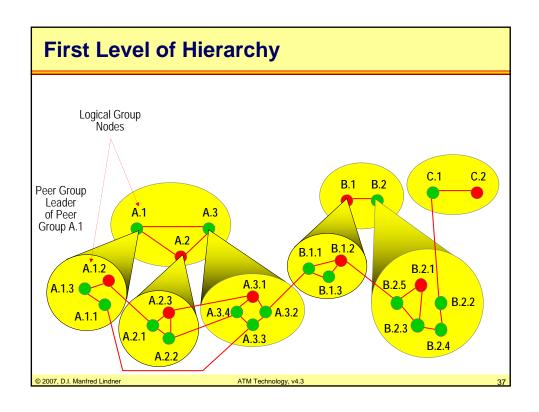
- Addressing plays a critical role in PNNI
 - Drives the construction of the logical hierarchy of switches
 - Dictates how topology and resource information is aggregated, and therefore how the entire network scales
- Every routing protocol needs an addressing scheme
- Each switch is configured with a 20 byte address
 - Hierarchical addressing scheme

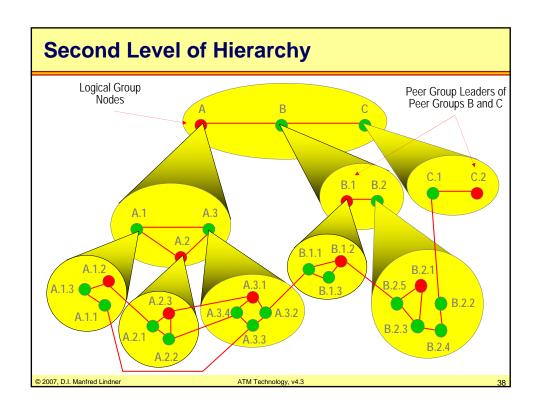
© 2007, D.I. Manfred Lindner

PNNI Addressing

- Uses recursive hierarchical aggregation
 - The routing hierarchy is then defined recursively
- Neighbor switches compare addresses
 - Form peer groups based on their longest prefix in common
 - Each group behaves as a logical node at the next level
- ATM address consists of
 - 13 byte address prefix field
 - 6 byte node ID field
 - 1 byte selector field
- The 13 byte prefix is the most relevant in PNNI
 - It has to be interpreted in a strictly hierarchical fashion


© 2007, D.I. Manfred Lindne


ATM Technology, v4.3


35

Hierarchy based on ATM prefixes

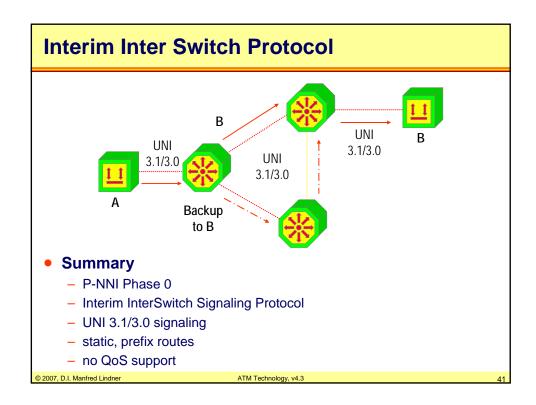
 Flat private ATM network with 23 physical nodes and 18 bi-directional links

Agenda

- PNNI Overview
- PNNI Routing
- PNNI Hierarchy
- Interim Inter Switch Protocol

© 2007, D.I. Manfred Lindner

ATM Technology, v4.


20

Interim Inter Switch Protocol

- Interim trunking protocol to allow switch communication before the deployment of P-NNI
- Sometimes called P-NNI Phase 0
- Pure signaling protocol
 - uses UNI signaling between switches
 - one switch has to be master, the other slave
- Static configuration of reachability information
 - administrator configures ATM prefixes reachable over a specific trunk
- Supports some redundancy
 - allows a primary and a secondary trunk to be defined

© 2007, D.I. Manfred Lindner

ATM Technology, v4.3

