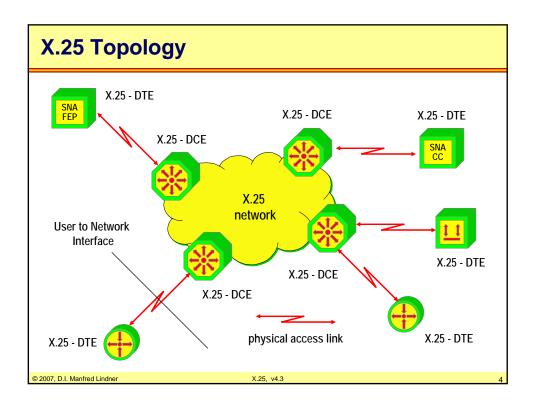


Agenda

- Overview, Principles and Standards
- X.25 Data Link Layer
- X.25 Network Layer
 - Services and Packet Types
 - Call Setup and Release
 - Data Transfer and Flow Control
 - Reset and Restart
- X.25 Packet Format
- X.25 PAD


© 2007, D.I. Manfred Lindner

X.25, v4.3

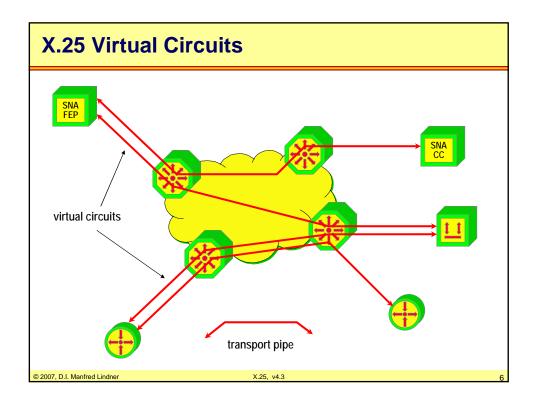
What is X.25?

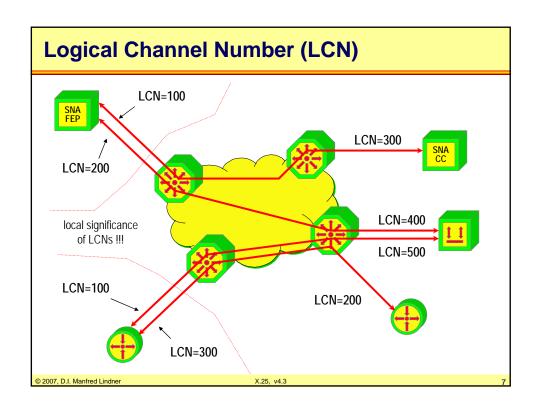
- packet switching technology
 - based on store-and-forward of packets
 - connection oriented
- interface definition between user and network equipment
 - X.25 DTE (e.g. router) <-> X.25 DCE (packet switch)
- wide area network service
 - based on virtual circuit technique
- operation within X.25 network cloud
 - switch to switch communication not standardized
 - vendor specific implementation

© 2007 D.I. Manfred Lindner X 25, v/d 3

X.25 Virtual Circuits/LCN

virtual circuit technique

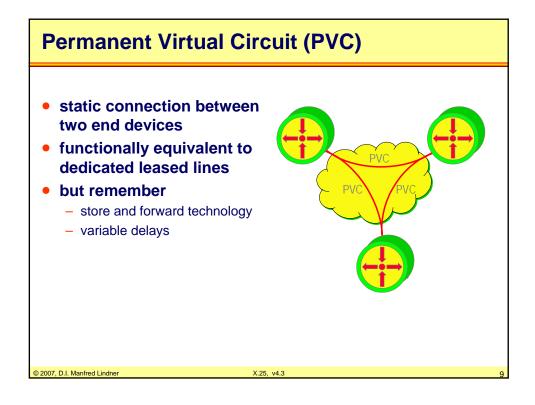

- for statistically multiplexing many logical data conversations over a single physical transmission link
- end systems (X.25-DTE) use virtual circuits for delivering data to the X.25 network and vice versa
- virtual circuits appear to end systems as transparent transport pipes (logical point-to-point connections)

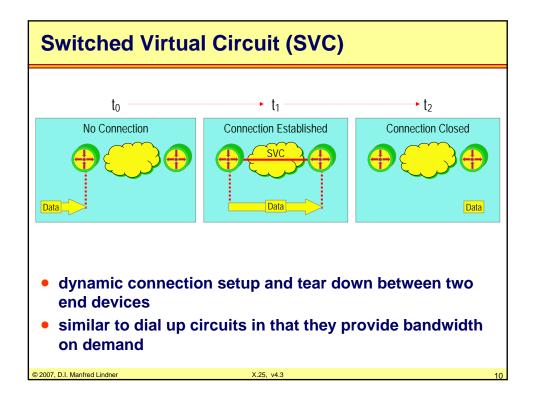

virtual circuits (VCs) are identified using LCN numbers

- logical channel number (LCN)
- LCN are of local significance only

© 2007, D.I. Manfred Lindner

..25, v4.





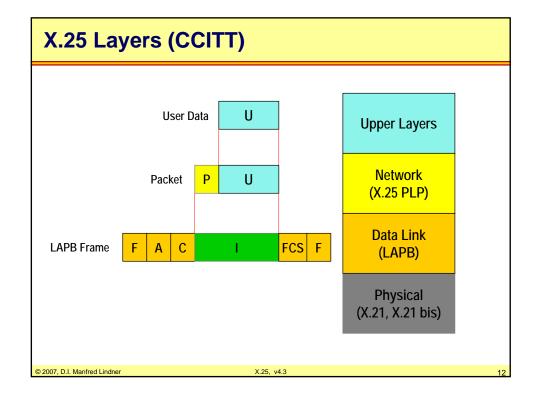
Types of Virtual Circuits

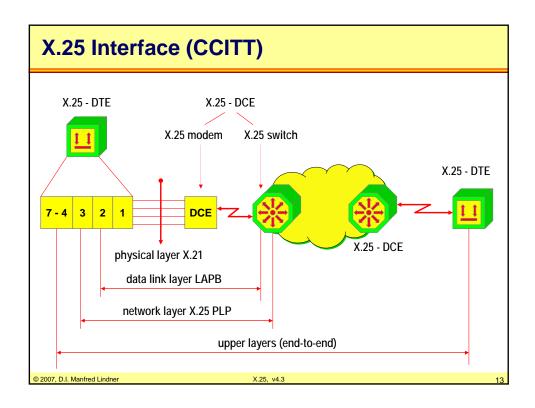
- two kinds of virtual circuits
 - permanent virtual circuits (PVC) established in advance by service provider
 - switched virtual circuits (SVC) established on demand by user through signaling procedure

2007. D.L. Manfred Lindner X.25. v4.3

Roots of X.25

originally defined by CCITT


- as an interface between user equipment and public switched data network
- three layers covered
 - X.21 (physical layer)
 - LAPB (data link layer)
 - X.25 (network layer)
- different versions:
 - · four years cycle
 - 1980 (yellow books), 1984 (red books), 1988 (blue book), ...


X.25 definitions were expanded by ISO

 for provisioning the Connection Mode Network Service (layer 3) in OSI based networks

© 2007, D.I. Manfred Lindner

X.25, v4

X.25 and related Standards

- X.25 specifies layer 1-3 protocol stack between
 - X.25-DTE and X.25-DCE
 - interface specification
 - only a point-to-point protocol
 - no end-to-end protocol (DTE to DTE)
- physical layer (1) standards
 - CCITT X.21, X.21bis (based on V.24)
- data link layer (2) standards
 - ISO 7776 LAPB
 - ISO 8802-2 Logical Link Control (LANs)
 - ITU-T Q.921 LAPD (X.25 over ISDN-D Channel)

2007 D.I. Manfred Lindner X 25 v4 3

X.25 and related Standards

network layer (3) standards

- CCITT X.25 L3 (ISO 8208 Packet Level Protocol PLP)
- CCITT X.121 X.25 Addressing
- ISO 8348 Network Service Definition
 - Connection Mode Network Service OSI use of X.25, Quality of Service QoS
 - Addendum1: NSAP-address
 - Addendum2: Connectionless Mode Network Service
 (-> ISO 8473 CLNP Connectionless Network Layer Protocol)
- ISO 8880-2 Provisioning and Support of the Connection Mode Network Service
 - ISO 8881 X.25 PLP over LANs
 - ISO 9574 X.25 PLP over ISDN

© 2007, D.I. Manfred Lindner

X.25, v4.

4.5

X.25 Facts

• remember:

- X.25 standards defines communication between DTE and DCE only
- operation (e.g. routing) within network not defined
- only sequencing must be guaranteed
- X.25 uses statistical multiplexing

X.25 technology was developed for low quality, low speed lines

- use error recovery and flow control on layer 2 to control transmission of frames over physical line
- use flow control and optionally error recovery on layer 3 to control transmission of packets over a virtual circuit

© 2007, D.I. Manfred Lindner

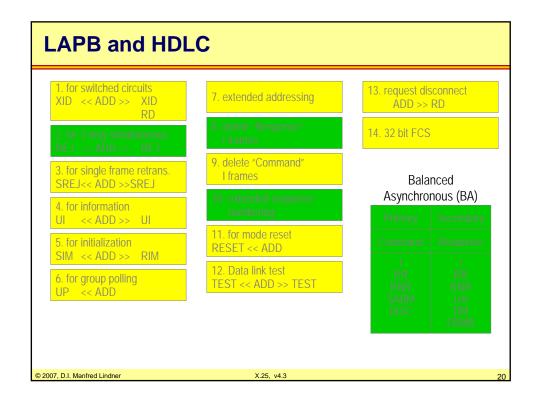
X.25, v4.

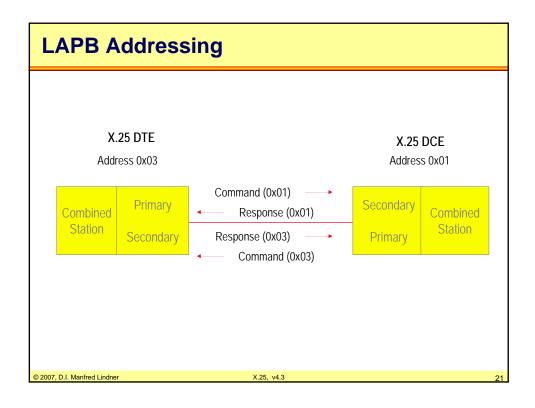
Why X.25?

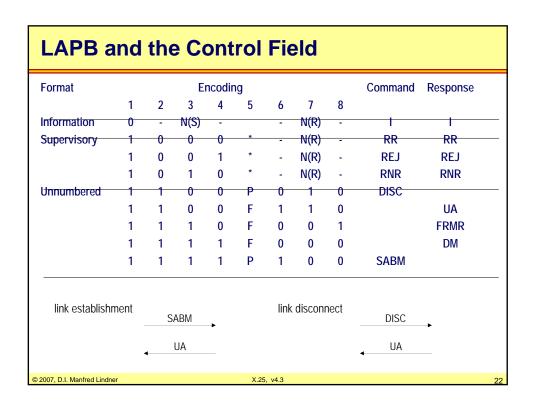
- it is a widely used interface standard
 - off-the-shelf hardware and software readily available
 - mature technology (long experience)
- X.25 network services worldwide available
- because of error recovery
 - X.25 can be used on low quality lines
 - X.25 provides a reliable transport pipe
- because of flow control
 - X.25 network can control and even stop traffic from the user (DTE) in order to prevent congestion in the network
- provides high support of accountability

© 2007, D.I. Manfred Lindner X.25, v4.3

Agenda


- Overview, Principles and Standards
- X.25 Data Link Layer
- X.25 Network Layer
 - Services and Packet Types
 - Call Setup and Release
 - Data Transfer and Flow Control
 - Reset and Restart
- X.25 Packet Format
- X.25 PAD


© 2007, D.I. Manfred Lindner X.25, v4.3


X.25 Data Link Layer

- Link Access Procedure Balanced (LAPB)
 - subset of HDLC
 - connection oriented service
 - ABM plus functional extensions (BA 2,8 or 2,8,10)
 - both stations are combined stations
 - can transmit commands and responses at any time
 - commands and responses can be distinguished using address field
 - · specific addresses used
 - subscriber DTE must be binary 00000011
 - network node DCE must be binary 00000001
 - X.25 packets are carried within information field of LAPB Iframe
 - LAPB and X.25 use independent sequencing

© 2007, D.I. Manfred Lindner X.25, v4.3

Usage of the P/F bit

specific procedures with LAPB

- station receiving SABM/SABME, DISC, Supervisory or I frame with P set must set F in the next response
- P = 1 is used to request a status response only

conventions

command sent with P bit set: response required with F bit set:

SABM/SABME, DISC UA, DM

I (information transfer) RR, REJ, RNR, FRMR

I (disconnect mode) DM

supervisory (RR, RNR, REJ) RR, REJ, RNR, FRMR

© 2007, D.I. Manfred Lindner X.25, v4.3 23

LAPB Example

normal data transfer

note: all I frames are commands (address of other station is used)

A
B, I N(S)=0, N(R)=0, P=0
A, I, N(S)=0, N(R)=1, P=0
A, I, N(S)=1, N(R)=1, P=0
A, I, N(S)=2, N(R)=1, P=0
B, I, N(S)=1, N(R)=3, P=0
B, RR, N(R)=2, F=0
B, I, N(S)=3, N(R)=3, P=0
A, I N(S)=3, N(R)=4, F=0
A, RR, N(R)=4, F=0

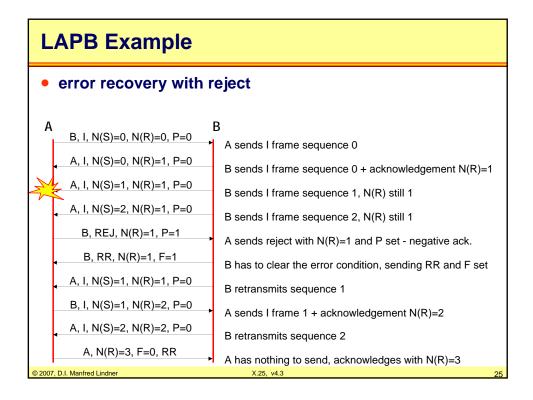
A sends I frame sequence 0

B sends I frame sequence 0 + acknowledgement N(R)=1

B sends I frame sequence 1, N(R) still 1

B sends I frame sequence 2, N(R) still 1

A sends I frame sequence 1 + acknowledgement N(R)=3


B has nothing to send, only acknowledges N(R)=2

A sends I frame sequence 2, N(R) still 3

B sends I frame sequence 3 + acknowledgement N(R)=3

A has nothing to send, only acknowledges N(R)=4

X.25, v4.

Agenda

- Overview, Principles and Standards
- X.25 Data Link Layer
- X.25 Network Layer
 - Services and Packet Types
 - Call Setup and Release
 - Data Transfer and Flow Control
 - Reset and Restart
- X.25 Packet Format
- X.25 PAD

007 D I Manfred Lindner X 25 y4 3

X.25 Network Layer

- X.25 offers virtual circuit services
- virtual circuits are identified by logical channel numbers (LCN)
 - LCN value range: 0 4095 (0 reserved for diagnostics)
 - distinguish virtual circuits on one physical link
 - local between DTE and DCE
- one physical link may contain up to 4095 logical channels
 - permanent virtual circuit PVC
 - predefined channel
 - switched virtual circuit
 - · established using call setup procedures

© 2007, D.I. Manfred Lindner

X.25, v4.3

27

X.25 Network

- virtual circuit services are responsible for
 - establishing and clearing of virtual circuits
 - · call setup and release
 - necessary for SVC only
 - transfer of data packets
 - transfer of precedence data packets
 - interrupt data
 - flow control
 - reset of virtual circuit(s)
- necessary protocol procedures are implemented using different types of X.25 packets

© 2007, D.I. Manfred Lindner

X.25, v4.3

X.25 Packet Types						
Packet	Packet Type		Service			
From DCE to DTE	From DTE to DCE	SVC	PVC			
Call Setup a	nd Clearing					
Incoming Call	Call Request	Χ				
Call Connected	Call Accepted	Χ				
Clear Indication	Clear Request	Χ				
DCE Clear Confirmation	DTE Clear Confirmation	Х				
Data and	Interrupt					
DCE Data	DTE Data	Χ	Χ			
DCE Interrupt	DTE Interrupt	Χ	Χ			
DCE Interrupt ConfirmationE	TE Interrupt Confirmation	Х	Χ			
Flow C	ontrol					
DCE RR	DTE RR	Χ	Χ			
DCE RNR	DTE RNR	Χ	Χ			
	DTE REJ	Χ	Χ			
007, D.I. Manfred Lindner	X.25, v4.3					

X.25 Packet Types (continued)							
Packet Type		Service					
From DCE to DTE	From DTE to DCE	SVC	PVC				
	Reset						
Reset Indication	Reset Request	Χ	Χ				
DCE Reset ConfirmationDTE Reset Confirmation		Χ	Χ				
F	Restart						
Restart Indication	Restart Request	Χ	Χ				
DCE Restart Confirmation	X	Χ					
Di	agnostic						
Diagnostic		Χ	Χ				
Re	gistration						
Registration ConfirmationRegistration Request		Х	Χ				
2007, D.I. Manfred Lindner	X.25, v4.3			30			

Agenda

- Overview, Principles and Standards
- X.25 Data Link Layer
- X.25 Network Layer
 - Services and Packet Types
 - Call Setup and Release
 - Data Transfer and Flow Control
 - Reset and Restart
- X.25 Packet Format
- X.25 PAD

© 2007, D.I. Manfred Lindner

Call Release

2007, D.I. Manfred Lindne

25, v4.3

Call Setup and Call Release

local user	local switch	remote switch	remote user		
Call Request		Call Connected	Call Accepted		
Data Transfer	Clear Request	Clear Request	Clear Request	Call Accepted	
Call Setup	Call Accepted	Call Accepted	Call Accepted	Call Accepted	Clear Request

Clear Indication

Clear Confirm

T23

Clear Confirm

T13

Call Setup, LCN handling 1

local X.25-DTE

- selects a LCN number from the pool of free LCN numbers to identify both the call request and the virtual circuit
- sends Call Request packet to the local switch

Call Request contains

- selected LCN number
- address of calling/called station (remote X.25-DTE)
 - usually X.121 addresses are used
- facilities for negotiation of network parameters
 - · between user and network or user and remote user

© 2007, D.I. Manfred Lindner X.25, v4.3

X.25 Facilities

- some facilities must be provided by all X.25 networks
 - essential facilities

essential facilities are

- maximum packet size
- window size
- modulo 8/128
- throughput class
 - 75, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 48000 bit/s
- transit delay
- essential facilities have default values

© 2007, D.I. Manfred Lindner X.25, v4.3 34

X.25 Facilities

- other facilities may or may not be provided by a X.25 service
 - optional facilities
- all facilities, if provided, have default values but can either
 - be negotiated between user and service provider in advance or by on-line registration
 - or during call setup for individual switched circuits

© 2007, D.I. Manfred Lindner

K.25, v4.3

0.5

X.25 Facilities

- optional facilities
 - incoming/outgoing calls barred
 - · prevents incoming calls to be presented to DTE
 - · prevents outgoing calls to be accepted by DCE
 - closed user groups
 - allows privacy in a public network service
 - reverse charging, reverse charging acceptance
 - hunt groups
 - distributes incoming calls across a designated group of DTE/DCE interfaces
 - call redirection, call redirect notification

© 2007, D.I. Manfred Lindner

X.25, v4.3

X.25 Facilities

- optional facilities (cont.)
 - fast select, fast select acceptance
 - Call Request/ Incoming Call packet carries user data (up to 128 octets) to remote DTE
 - Call Accepted/Call Connected packet carries user data from remote DTE to local DTE
 - · immediate clear option
 - · used for short transactions
 - transit delay selection and indication
 - online facility registration
 - status of supported facilities can be checked and changed by DTE using Registration Request/Confirmation packets
 - packet retransmission
 - REJ packet support

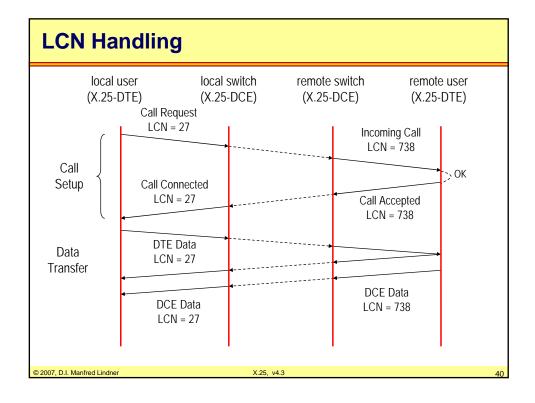
© 2007, D.I. Manfred Lindner

X.25, v4.

37

Call Setup, LCN handling 2

- Call Request packet is delivered by network to remote switch
 - using vendor proprietary transport method
- remote switch
 - again selects a LCN number from the pool of free LCN numbers to identify a call request
 - normally LCN number will be different
 - sends Incoming Call packet to remote X.25-DTE
- remote X.25-DTE
 - accepts incoming call
 - sends Call Accepted packet to switch


© 2007, D.I. Manfred Lindner

X.25, v4.

Call Setup, LCN handling 3

- Call Accepted packet is delivered by network to local switch
- local switch
 - sends Call Connected packet with local LCN to local X.25-DTE
- now local and remote X.25-DTE
 - are ready to use virtual circuit for data transfer
- local LCN numbers on both sides are used for data packets
 - mapping is done by X.25 network

© 2007, D.I. Manfred Lindner X.25, v4.3

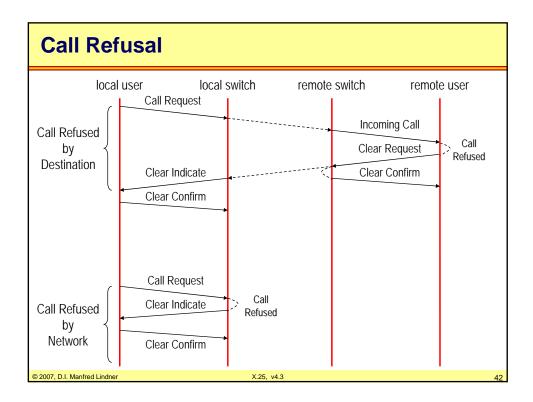
Call Refusal and Release

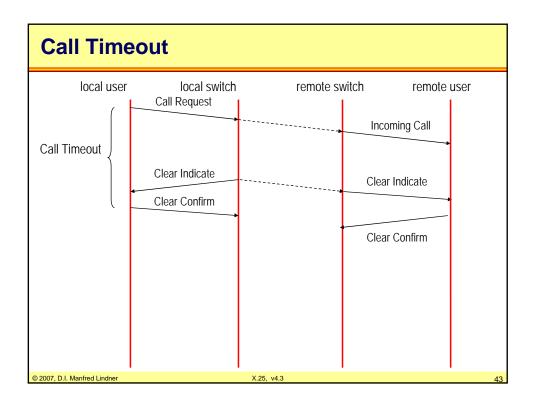
calls could be denied

- by remote X.25-DTE (Clear Request packet is sent)
- by network itself (Clear Indication packet is sent)

Clear Indication packet

- contains always reason for clearing
 - e.g. clearing done by remote station or network, non available facilities, network error, access closed, etc.

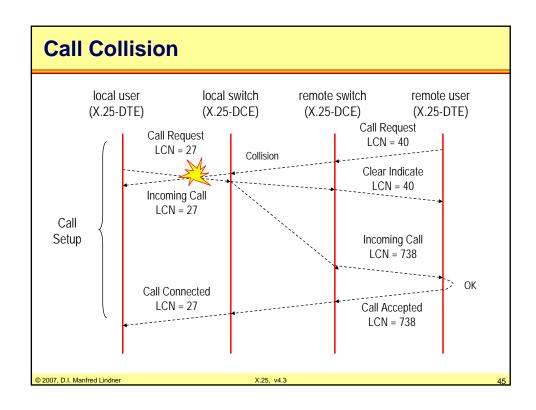

both sides can tear down a virtual circuit


- using Clear Request packets
- other side is informed by Clear Indication packet

Call Release finished

when Clear Confirmation packets are received

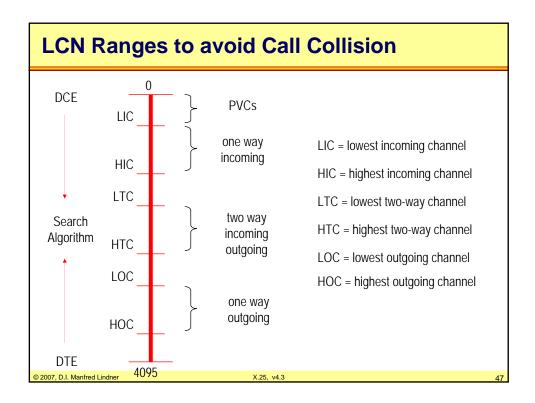
© 2007, D.I. Manfred Lindner X.25, v4.3 4



Call Collision

- Call Request packet contains
 - LCN number selected by originating X.25-DTE
- Incoming Call packet contains
 - LCN number selected by destination X.25-DCE
- if call setup is interleaved with incoming call
 - collision of LCN numbers is possible
- collision solved
 - call of originating X.25-DTE will be continued
 - incoming call will be refused by Clear Indication on the other side

© 2007, D.I. Manfred Lindner


5, v4.3

LCN Ranges to avoid Call Collision

- in order to minimize collision
 - incoming calls use low LCN number
 - outgoing calls use high LCN Number
- LCN values can be divided into four ranges
 - PVCs
 - one way incoming (LIC HOC)
 - one way outgoing (LOC HOC)
 - two way (LTC HTC)
- LCN = 0 reserved
 - diagnostics
 - restart

© 2007, D.I. Manfred Lindner X.25, v4.3 46

Agenda

- Overview, Principles and Standards
- X.25 Data Link Layer
- X.25 Network Layer
 - Services and Packet Types
 - Call Setup and Release
 - Data Transfer and Flow Control
 - Reset and Restart
- X.25 Packet Format
- X.25 PAD

2007, D.I. Manfred Lindner

.25, v4.3

Data Transfer

Data Packets

- ContinousRQ method with sequencing and piggyback acknowledgement
- very similar to HDLC
 - P(S) and P(R) instead of N(S) and N(R)
- range of sequence numbers
 - 0-7 or 0-127 (extended)
- sequence numbers and windowing are used mainly for flow control reasons and not for error recovery
- remember:
 - X.25 packets are transmitted in LAPB I-frames
 - a loss of an I-frame and hence loss of X.25 packet will be already covered by error recovery method of LAPB

© 2007, D.I. Manfred Lindne

X.25, v4

40

Flow Control

X.25 flow control

- is based on windowing and RR, RNR
 - delay of of acknowledgement (piggybacked or with RR) is used to close the send window at the transmitter side
 - RNR is used to stop the transmitter when send window is open
 - RR, RNR do not cause retransmission of packets
- is done for individual virtual circuits
 - note: LAPB can handle flow control on physical link only

optional error recovery

- optional GoBackN with DTE REJ Control Packet
 - usage of REJ can be negotiated during facility exchange
 - makes sense in case end-to-end acknowledgement is used (D-bit
 = 1; will be covered later)

© 2007, D.I. Manfred Lindner

X.25, v4.

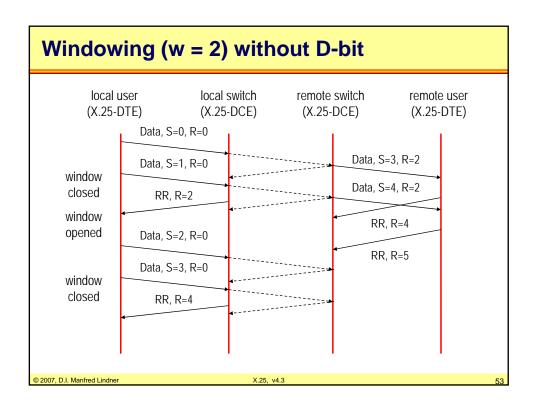
Window Size

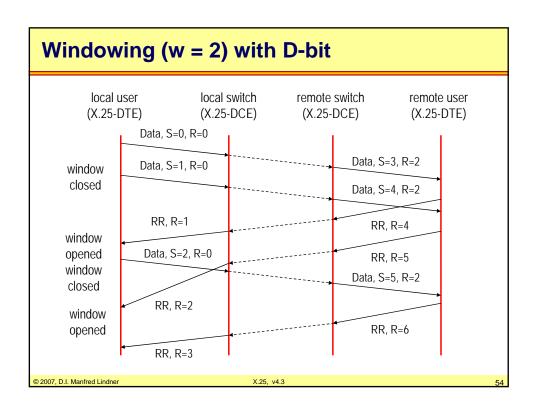
- window size defines maximum number of unacknowledged packets
- window sizes and maximum packet sizes
 - either are agreed in advance between user and network provider or could be negotiated during call setup for individual SVCs
 - maximum window size depends on modulo used for sequencing
 - modulo 8 3 bit sequence number
 - maximum send window size = 7
 - modulo 128 7 bit sequence number
 - maximum send window size = 127
 - standard window size of 2

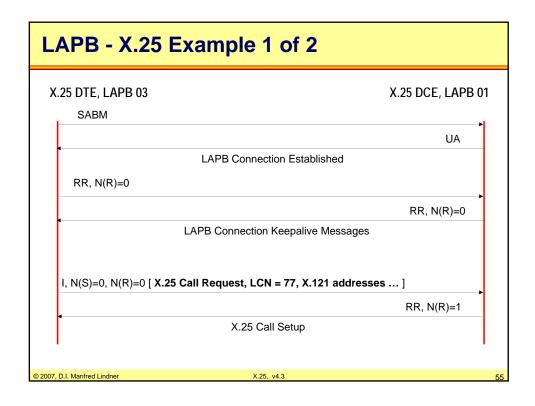
© 2007, D.I. Manfred Lindner

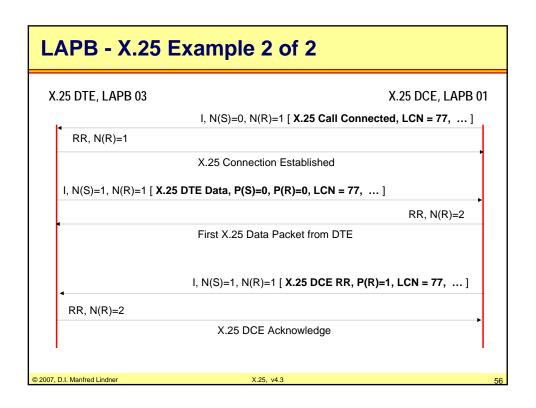
X.25, v4.

51


Data Transfer with D (Delivery) - Bit


- Data packet without D-bit indicator
 - D = 0
 - acknowledgement number P(R) has only local meaning
 - handling of acknowledgement by switch
 - vendor specific
 - flow control and acknowledgement between switches
 - vendor specific
- Data packet with D-bit indicator
 - -D = 1
 - can force acknowledgement number P(R) to be end-toend
 - must be negotiated during call setup


© 2007, D.I. Manfred Lindner


X.25, v4.

5'

Data Transfer with Q (Qualifier) - Bit

- Q bit can be used by higher layers to distinguish two types of data
 - for example
 - Q = 0 ... user data
 - Q = 1 ... control data
 - usage not defined in X.25
- some Q bit usage examples
 - X.29 control information
 - for PAD equipment
 - QLLC header indication
 - for SNA over X.25

© 2007, D.I. Manfred Lindner

X.25, v4.

F7

Data Transfer with M (More) - Bit

- default maximum data field size in X.25
 - 128 byte
 - other sizes could be negotiated (64, 256, 512, 1024, 2048, 4096)
 - sizes could be different on local and remote side
- if remote DTE requests smaller packets then local DTE
 - remote or local switch can segment packets using M-bit
 - M = 1 first or middle packet (packet completely filled with data)
 - M = 0 single or last packet
- if remote DTE allows larger packets then local DTE
 - remote or local switch can combine packets

2007, D.I. Manfred Lindner

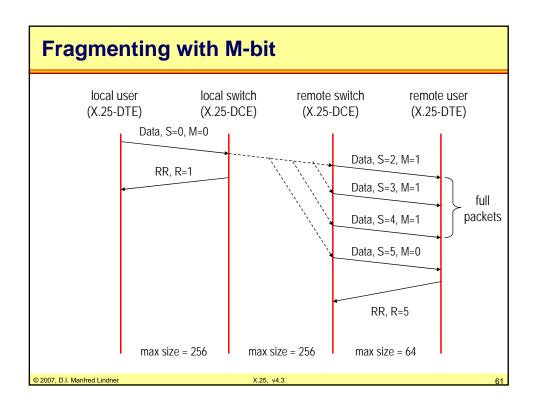
X.25, v4.3

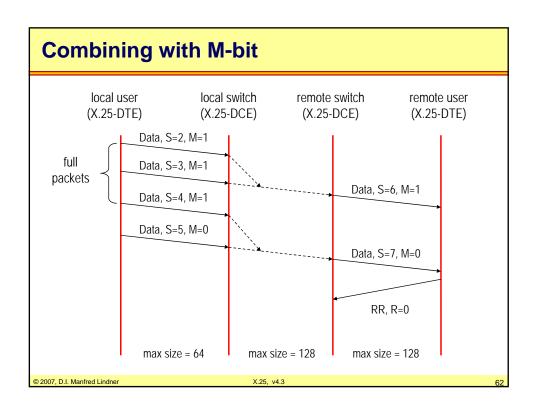
Categories of Data Packets

- combined use of M and D bit allows to define two categories of packets (A and B)
 - A packets are packets within a sequence of packets
 - M bit is set to 1
 - D bit is set to 0
 - B packets are standalone packets or packets at the end of a sequence
 - M bit is set to 0
 - can have D=1 to request end-to-end acknowledgement
- a complete packet sequence consists of zero or more A packets followed by an B packet

© 2007, D.I. Manfred Lindner

X.25, v4.

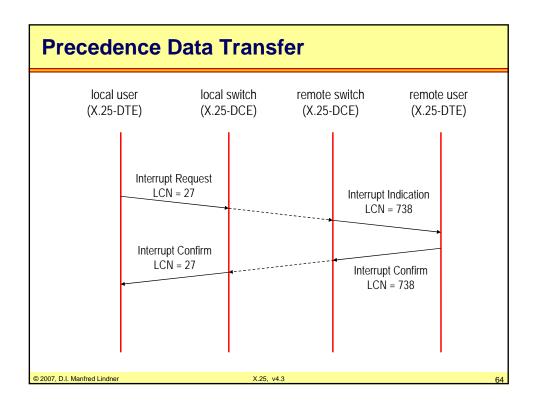

59


Combining and Segmenting

- the network may combine a sequence of one or more A packets followed by a B packet to make one or more larger packets
 - complete packet sequence information still remains at the receiver side
- the network may also segment (fragment) a B packet into a sequence of smaller A and B packets
 - receiver side is informed about fragmentation by recognizing a complete packet sequence

© 2007, D.I. Manfred Lindner

X.25, v4.3


Precedence Data

Interrupt Packets

- can be used to send precedence data without taking care of normal sequence
- IdleRQ method
 - Interrupt packet must be acknowledged by Interrupt Confirmation packet before next Interrupt packet can be sent
 - Stop and Wait
- only 32 octets of data can be sent using Interrupt packet

© 2007, D.I. Manfred Lindner

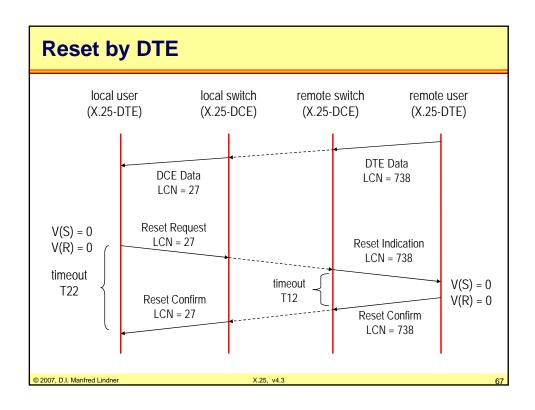
.25. v4.:

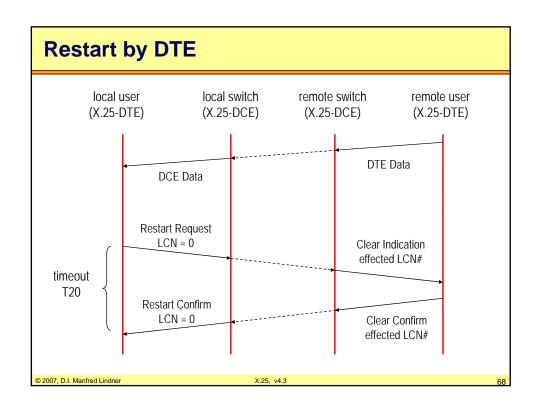
Agenda

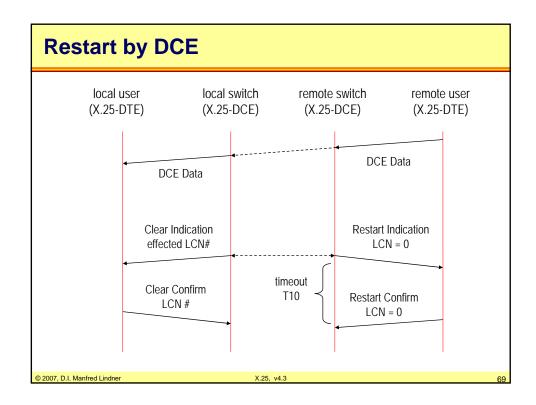
- Overview, Principles and Standards
- X.25 Data Link Layer
- X.25 Network Layer
 - Services and Packet Types
 - Call Setup and Release
 - Data Transfer and Flow Control
 - Reset and Restart
- X.25 Packet Format
- X.25 PAD

© 2007, D.I. Manfred Lindner

<.25, v4.3


OF.


Reset / Restart


- main error recovery mechanisms associated with packet layer
- reset procedure reinitializes a virtual circuit in case of protocol errors
 - done by DTE (Reset Request) or DCE (Reset Indication)
 - data packets already transmitted are discarded
 - sequence number registers are set to zero
 - but virtual circuit is still available
- restart procedure clears all virtual circuits
 - done by DTE (Restart Request) or DCE (Restart Indication)
 - virtual circuits are not available any longer

© 2007, D.I. Manfred Lindner

X.25, v4

DTE Timeouts

- DTE timers
 - T20 ... 180 seconds
 - started when DTE issues a Restart Request
 - T21 ... 200 seconds
 - started when DTE issues a Call Request
 - T22 ... 180 seconds
 - started when DTE issues a Reset Request
 - T23 ... 180 seconds
 - started when DTE issues a Clear Request
 - T28 ... 300 seconds
 - started when DTE issues a Registration Request

© 2007, D.I. Manfred Lindner

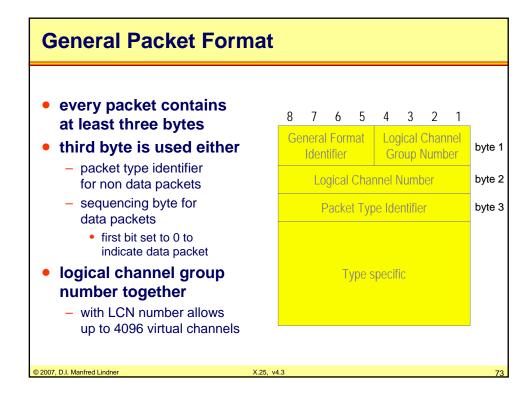
25, v4.3

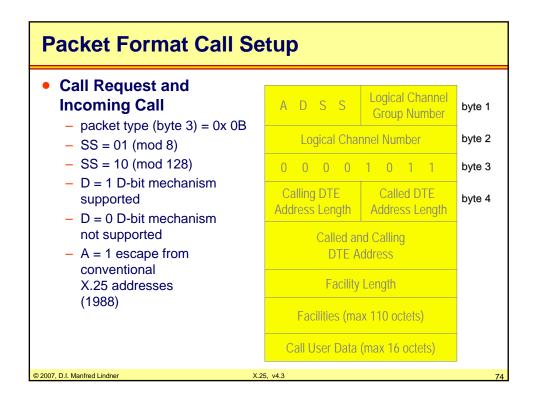
DCE Timeouts

- DCE timers
 - T10 60 seconds
 - started when DCE issues a Restart Indication
 - T11 180 seconds
 - started when DCE issues an Incoming Call
 - T12 60 seconds
 - started when DCE issues a Reset Indication
 - T13 60 seconds
 - started when DCE issues a Clear Indication

© 2007, D.I. Manfred Lindner

C.25. v4.3

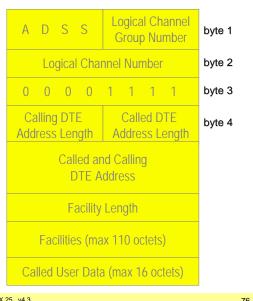

74

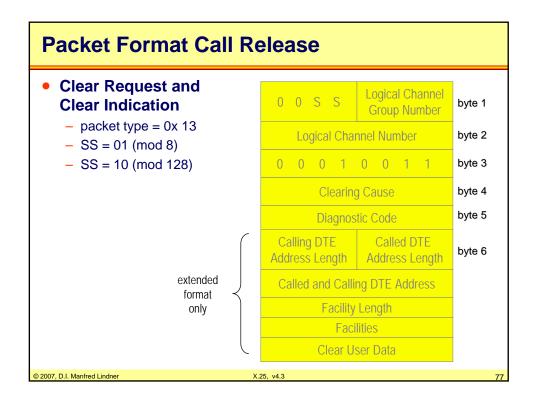

Agenda

- Overview, Principles and Standards
- X.25 Data Link Layer
- X.25 Network Layer
 - Services and Packet Types
 - Call Setup and Release
 - Data Transfer and Flow Control
 - Reset and Restart
- X.25 Packet Format
- X.25 PAD

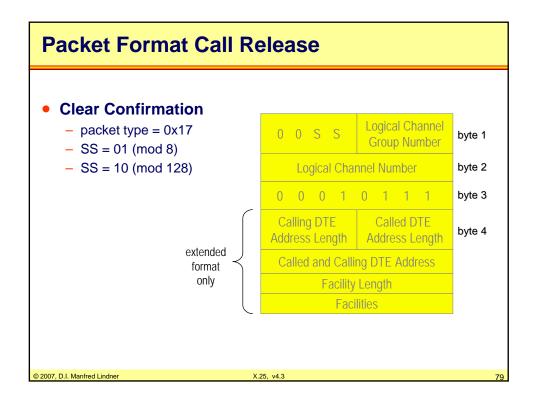
© 2007, D.I. Manfred Lindner

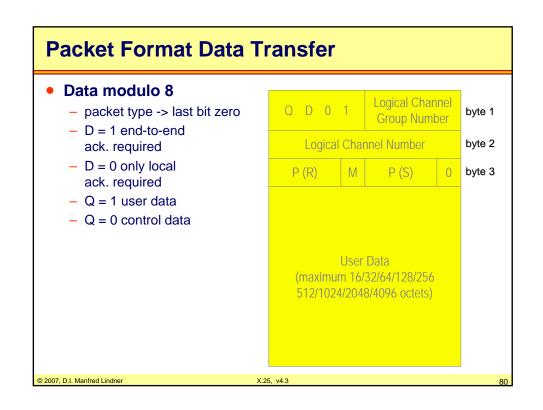
X.25, v4.3

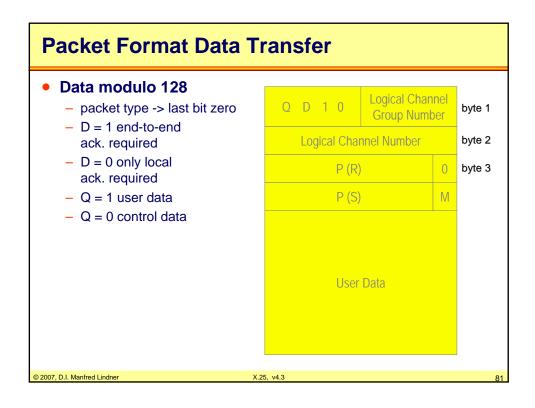

Call Setup

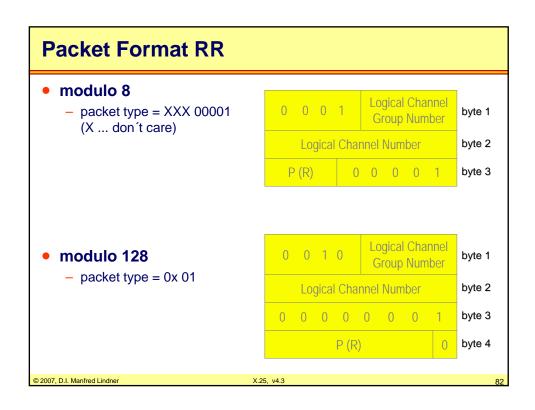

additional fields

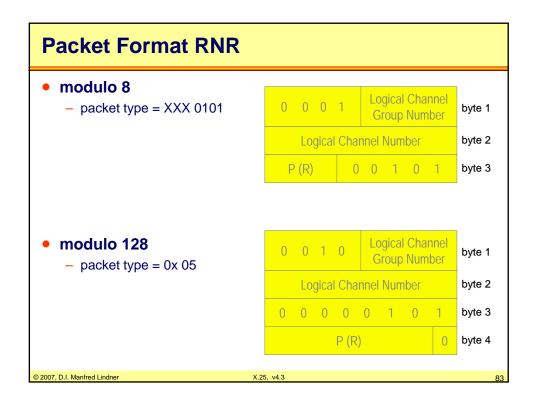
- DTE address and address length
 - for call establishment packets, usually X.121 addresses are used
- facilities and facilities length
 - used to negotiate or declare several optional functions of X.25
- call user data may contain data associated with facility
- some examples
 - flow control parameter negotiation
 - closed user group
 - reverse charging, reverse charging acceptance
 - network user identification
 - call redirection

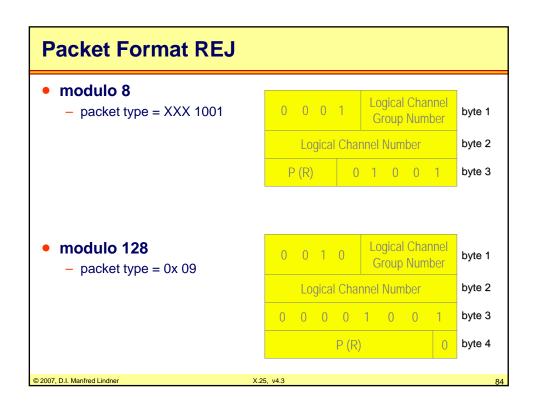

Packet Format Call Setup Call Accepted and

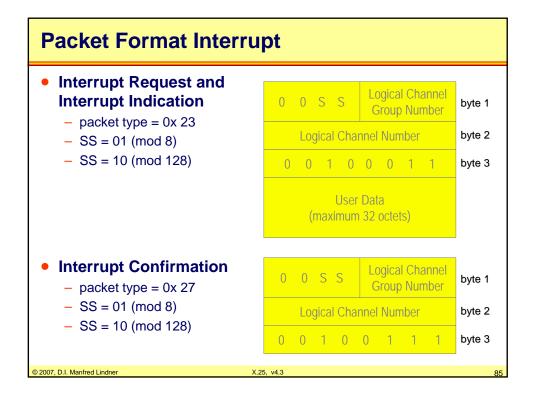

- **Call Connected** – packet type (byte 3) = 0x 0F
 - SS = 01 (mod 8)
 - SS = 10 (mod 128)

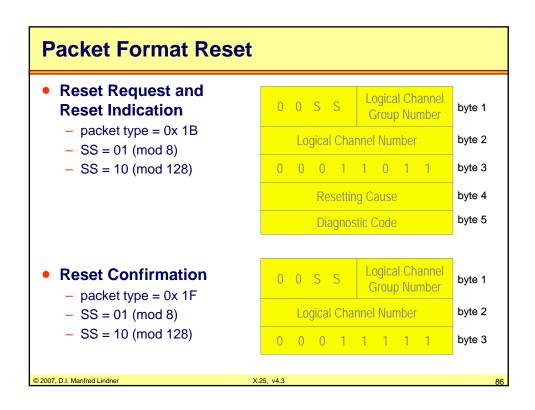


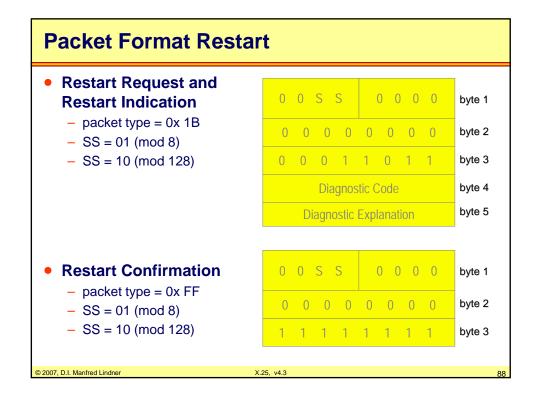


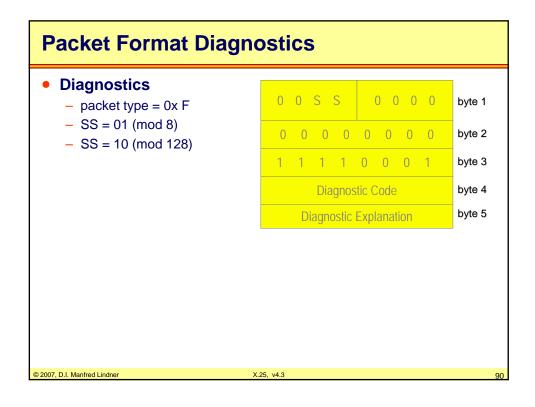

Clearing Cause (Call Release)		
• 0x00	normal disconnect request from DTE	
• 0x01	remote DTE busy	
• 0x09	remote DTE failure	
• 0x11	remote DTE protocol failure	
• 0x19	no reverse charging accepted	
• 0x29	no fast select accepted	
• 0x03	invalid facility request	
0x0B	access denied	
• 0x13	local failure	
• 0x05	network congested	
• 0x0D	destination unreachable	
• 0x15	network failure	
© 2007, D.I. Manfred Lindner	X.25, v4.3 78	











Clearing Cause (Reset)		
 0x00 0x01 0x03 0x05 0x07 0x09 0x0F 0x11 	reset request from DTE remote DTE failure (PVC only) remote DTE protocol failure local failure network congested remote DTE available (PVC only) network available (PVC only) remote DTE incompatible	
© 2007, D.I. Manfred Lindner	X.25, v4.3	87

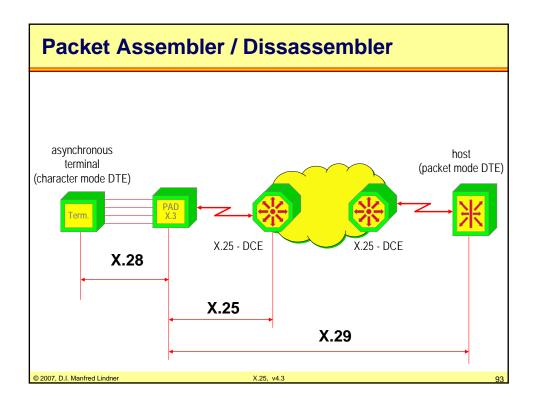
Clearing Cause (Restart) • 0x00 restart request from DTE • 0x01 local failure • 0x03 network congested • 0x05 network available

Agenda

- Overview, Principles and Standards
- X.25 Data Link Layer
- X.25 Network Layer
 - Services and Packet Types
 - Call Setup and Release
 - Data Transfer and Flow Control
 - Reset and Restart
- X.25 Packet Format
- X.25 PAD

© 2007, D.I. Manfred Lindner

<.25, v4.3


04

X.25 PAD

- provides protocol conversion and packet assembly/disassembly functionality for dumb asynchronous terminals
- defined by companion standards X.3, X.28, X.29

© 2007, D.I. Manfred Lindner

X.25, v4.3

X.25 PAD

- X.3
 - specifies functionality of PAD
 - provides parameters to service different terminal types
 - escape from data transfer
 - · data forwarding signal
 - terminal speed, flow control, linefeed handling, echo
 - forward only full packets
 - forward a packet upon carriage return
 - send service signals to user
 - send interrupt packet upon receipt of a BREAK
 - etc
 - determines how the PAD communicates with the user DTE

© 2007, D.I. Manfred Lindner

(.25, v4.

X.25 PAD

• X.28

- defines the procedures to control the data flow between non-packet DTEs and the PAD
- non-packet DTE user sends X.28 command to the PAD
- PAD returns a response value
- examples
 - setup a call
 - initialize a service
 - exchange data
 - exchange control information
 - configuring PAD parameter
 - read PAD parameter

© 2007, D.I. Manfred Lindner

<.25, v4.3

0.5

X.25 PAD

• X.29

- defines how a PAD and a remote packet station may exchange control information
- remote station can be a PAD or a remote DTE
- uses packet header Q bit
 - Q=1, packet contains PAD control information
- allows for example to change the configuration of a remote PAD

© 2007, D.I. Manfred Lindner

X.25, v4.3

Summary

- connection oriented network, using virtual circuits
- three layers defined
 - physical layer
 - data link layer
 - network layer
- uses HDLC subset at data link layer (LAPB)
- supports PVCs and SVCs
 - call setup sequence required for SVCs
- supports windowing and flow control
- supports several options called facilities
- PAD functions for non-packet DTEs defined