
Introduction

- line protocol techniques (data link procedures)
 - were developed for communication between two devices on one physical point-to-point link
 - bandwidth of physical link is used exclusively by the two stations
- in case multiple communication channels are necessary between two locations
 - multiple physical point-to-point are needed
 - expensive solution
- in order to use one physical link for multiple channels
 - multiplexing techniques were developed

© 2007, D.I. Manfred Lindner

TDM Techniques, v4.4

Time Division Multiplexing (TDM)

- time division multiplexer
 - allocates each input channel a period of time or timeslot
 - controls bandwidth of trunk line among input channels
- individual time slots
 - are assembled into frames to form a single high-speed digital datastream
- available transmission capacity of the trunk
 - is time shared between various channels
- at the destination demultiplexer reconstructs
 - individual channel data streams

© 2007, D.I. Manfred Lindner

TDM Techniques, v4.4

Types of TDM

- depending on timing behavior two methods
 - synchronous TDM
 - timeslots have constant length (capacity) and can be used in a synchronous, periodical manner
 - asynchronous (statistical) TDM
 - timeslots have variable length and are used on demand (depending on the statistics of channel communication)

© 2007, D.I. Manfred Lindner

TDM Techniques, v4.4

Synchronous TDM Standards

- TDM framing on the trunk line
 - can be vendor dependent
 - proprietary TDM products
 - can be standard based
- two main architectures for standardizing synchronous TDM for trunk lines
 - PDH Plesiochronous Digital Hierarchy
 - e.g. E1, E3, E4, T1, T3
 - SDH Synchronous Digital Hierarchy
 - e.g. STM-1, STM-4, STM-16

© 2007, D.I. Manfred Lindner

TDM Techniques, v4.4

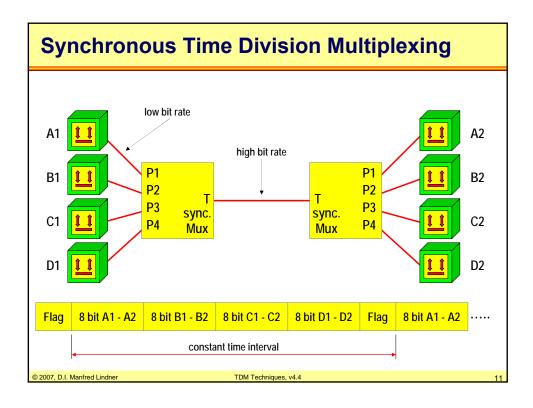
Agenda

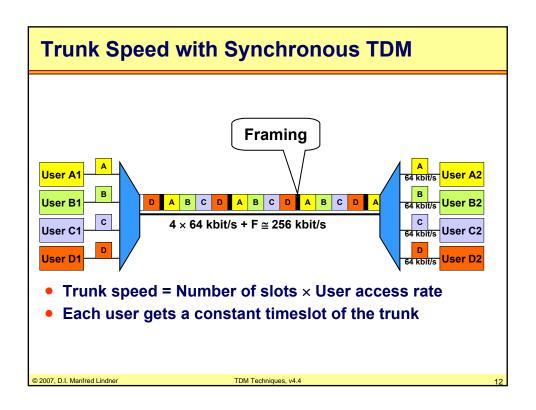
- Introduction
- Synchronous (Deterministic) TDM
- Asynchronous (Statistical) TDM
- Voice Transmission
- PDH
- SDH

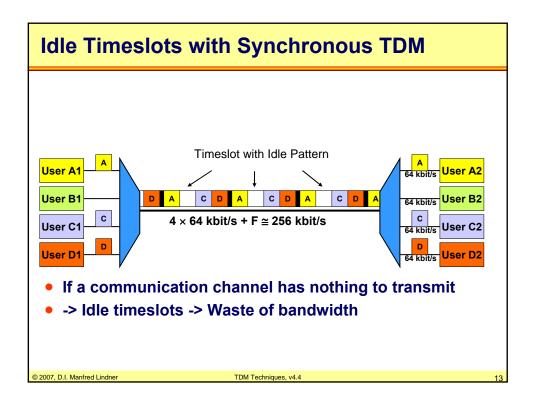
© 2007, D.I. Manfred Lindner

TDM Techniques, v4.4

Synchronous Time Division Multiplexing


- synchronous TDM
 - periodically generates a frame consisting of a constant number of timeslots each timeslot of constant length
 - timeslots can be identified by position in the frame
 - timeslot 0, timeslot 1,


every input channel is assigned


- a reserved timeslot
- e.g. timeslot numbers refer to port numbers of a multiplexer
 - traffic of port P1 in timeslot 1 for A1- A2 channel
 - traffic of port P2 in timeslot 2 for B1- B2 channel
 - •

© 2007, D.I. Manfred Lindner

TDM Techniques, v4.

Advantages

- compared to pure point-to-point physical links
 - synchronous multiplexing adds only minimal delays
 - time necessary to packetize and depacketize
 - · transmission/propagation delay on trunk
- any line protocol could be used between devices
 - method is protocol-transparent
- to endsystems
 - channel looks like a synchronous physical point-to-point line

© 2007, D.I. Manfred Lindner

TDM Techniques, v4.4

Disadvantages

- bitrate on trunk line T
 - sum of all port bitrates (P1-P4) plus synchronization (flag)
 - high bitrate is required
 - hence expensive
- if no data is to be sent on a channel
 - special idle pattern will be inserted by the multiplexer in that particular timeslot
 - waste of bandwidth of trunk line
- asynchronous (statistic) time division multiplex avoids both disadvantages
 - making use of communication statistics between devices

© 2007, D.I. Manfred Lindner

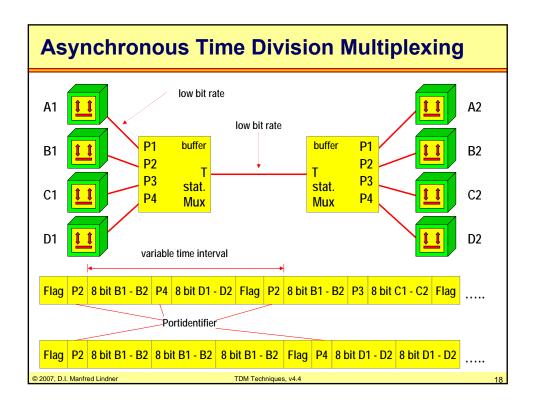
TDM Techniques, v4.4

4-

Agenda

- Introduction
- Synchronous (Deterministic) TDM
- Asynchronous (Statistical) TDM
- Voice Transmission
- PDH
- SDH

© 2007, D.I. Manfred Lindner


TDM Techniques, v4.4

Asynchronous Time Division Multiplexing

- usually devices communicate in a statistical manner
 - not all devices have data to transmit at the same time
- therefore it is sufficient
 - to calculate necessary bitrate of the multiplexer trunk line according to the average bitrates caused by device communication
- if devices transmit simultaneously
 - only one channel can occupy trunk line
 - data must be buffered inside multiplexer until trunk is available again
 - statistics must guarantee that trunk will not be monopolized by a single channel

2007, D.I. Manfred Lindner

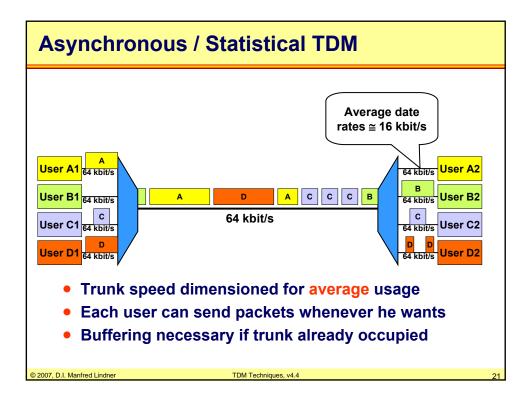
DM Techniques, v4.4

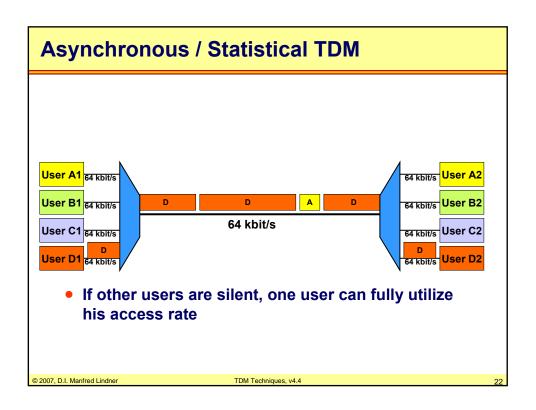
ATDM Operation

- multiplexer only generates a transmission frame
 - if data octets are present at input ports
- source of data
 - must be explicitly identified in transmission frames
 - addressing
- reason for addressing
 - there exists no constant relationship between timeslot and portnumber as with synchronous TDM
- port identifier
 - is used as address of source and sent across the trunk

© 2007, D.I. Manfred Lindner

FDM Techniques, v4.4


40


ATDM Operation / Facts

- transmission frame can be assembled using
 - either a single channel octet by frame
 - suitable for character oriented terminal sessions
 - or multiple channel octets per frame
 - suitable for block oriented computer sessions
- in case of congestion
 - buffering causes additional delays compared to synchronous TDM
- delays are variable because of statistical behavior
 - hence asynchronous

© 2007, D.I. Manfred Lindner

TDM Techniques, v4.4

ATDM Facts

- ATDM can be used protocol transparent
 - however in case of buffer overflow transmission errors will be seen by devices
 - FCS errors

to avoid FCS errors

- a kind of flow control between multiplexer and device should be used
- examples for flow control
 - HW flow control based on handshake signals (e.g. RTS, CTS)
 - SW flow control (e.g. XON/XOFF or connection oriented line protocol with START/STOP flow control e.g. HDLC RNR)

© 2007, D.I. Manfred Lindner

TDM Techniques, v4.4

00

Agenda

- Introduction
- Synchronous (Deterministic) TDM
- Asynchronous (Statistical) TDM
- Voice Transmission
- PDH
- SDH

© 2007, D.I. Manfred Lindner

TDM Techniques, v4.4

2/

Voice Transmission

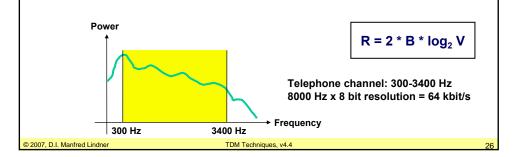
digital voice transmission

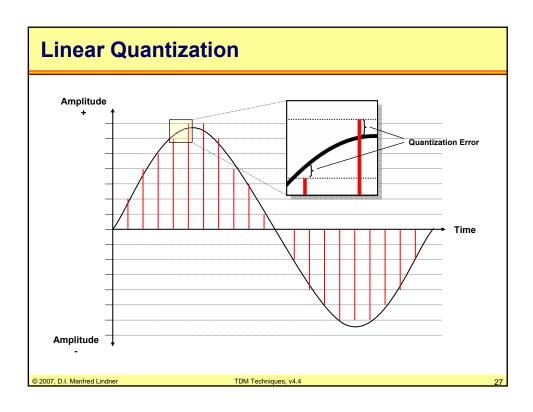
- based on Nyquist's Theorem
- analogous voice can be digitized using pulse-codemodulation (PCM) technique requiring a 64kbit/s digital channel
 - voice is sampled every 125usec (8000 times per second)
 - · every sample is encoded in 8 bits
- used nowadays in the backbone of our telephone network
- today analogous transmission only between home and local office -> so called local loop

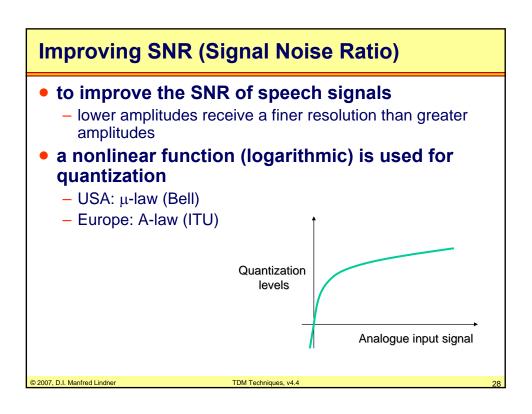
synchronous TDM

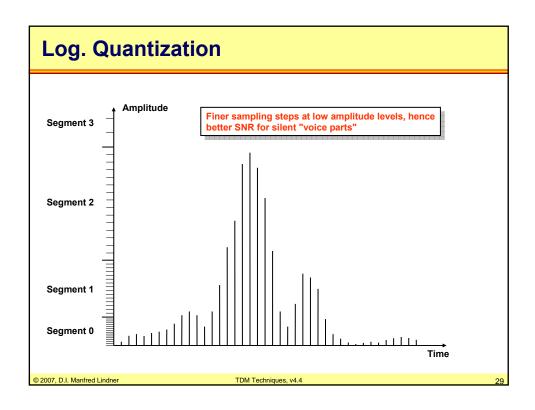
originated from digital voice transmission

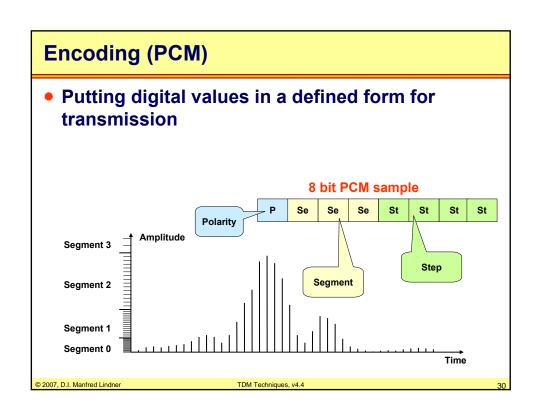
© 2007, D.I. Manfred Lindner


TDM Techniques, v4.4


25


Sampling of Voice


Nyquist's Theorem


- any analogue signal with limited bandwidth f_B can be sampled and reconstructed properly when the sampling frequency is 2·f_B
- transmission of sampling pulses allows reconstruction of original analogous signal
- sampling pulses are quantized resulting in binary code word which is actually transmitted

Voice Compression

Waveform Coders

- Non-linear approximation of analog waveform
- PCM (no compression), ADPCM

Vocoders

- speech is analyzed and compared to a codebook
- only codebook values are transmitted and speed synthesizer at the receiver

Hybrid coders

- Combination of waveform coders and vocoders
- 4.8 kbps to 16 kbps
- Used for mobile phones
- CELP, GSM

© 2007, D.I. Manfred Lindner

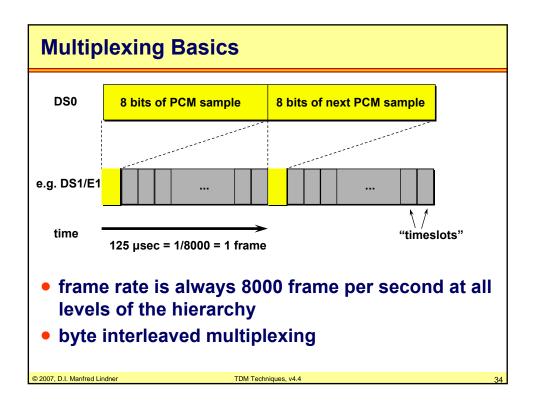
TDM Techniques, v4.4

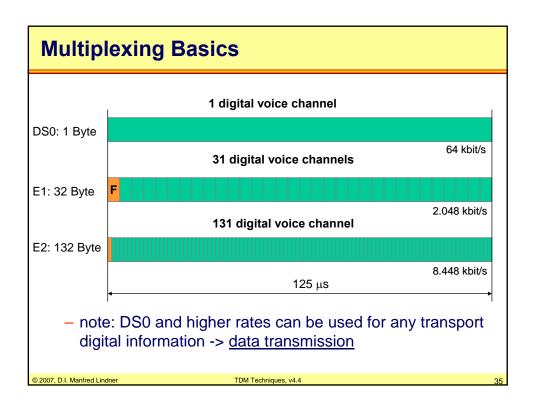
04

Standardized Codecs

- PCM
 - G.711 (64 kbps)
- Adaptive Differential Pulse Code Modulation (ADPCM)
 - only the difference from one sample pulse to the next will be transmitted
 - fewer bits used for encoding the difference value
 - G.726 (16, 24, 32, 40 kbps)
- Low Delay Code Excited Linear Predictor (LD-CELP)
 - G.728 (16 kbps)
- Conjugate Structure Algebraic Code Excited Linear Predictor (CS-ACELP)
 - G.729 (8 kbps)

© 2007, D.I. Manfred Lindner


TDM Techniques, v4.4


Digital voice channel

- DS0 = Digital Signal, Level 0
 - 1 timeslot in multiplexing frames
- Base for hierarchical digital communication systems
- Equals one PCM coded voice channel
 - 64 kbit/s
- Each samples (byte) must arrive within 125 μs
 - To receive 8000 samples (bytes) per second
 - Higher order frames must ensure the same byte-rate per user(!)

© 2007, D.I. Manfred Lindner

TDM Techniques, v4.

Agenda

- Introduction
- Synchronous (Deterministic) TDM
- Asynchronous (Statistical) TDM
- Voice Transmission
- PDH
- SDH

© 2007, D.I. Manfred Lindner

DM Techniques, v4.4

Multiplexing Hierarchies

why hierarchy and standardization?

- only a hierarchical digital multiplexing infrastructure which is standardized
 - can connect millions of (low speed) customers across the city/country/world

two main architectures

- PDH plesiochronous digital hierarchy
 - plesio means nearly synchronous, clock differences are compensated by bit stuffing techniques / overhead bits
 - PDH is still used for low-speed lines
- SDH synchronous digital hierarchy
 - · overcomes deficits of PDH
 - in North America SONET is used
 - telecommunication backbones move very quickly to SONET/SDH

© 2007, D.I. Manfred Lindner

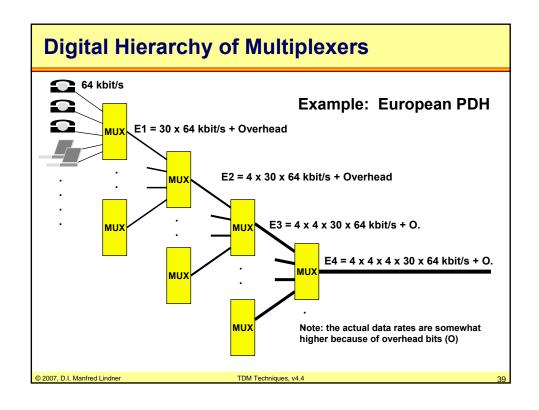
TDM Techniques, v4.4

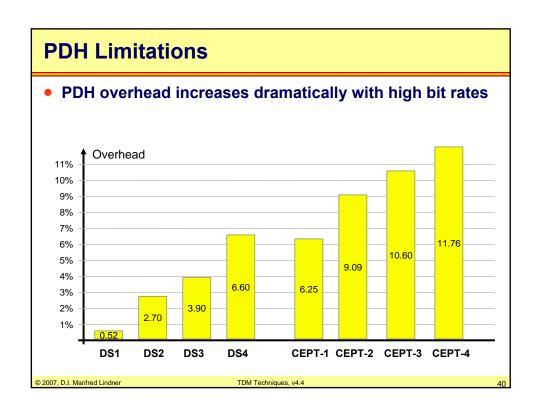
07

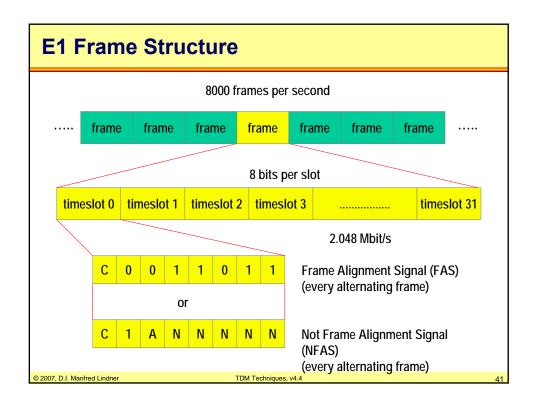
PDH Hierarchy

North America / ANSI

Signal	Carrier	Channels	Mbit/s
DS0		1	0.064
DS1	T1	24	1.544
DS1C	T1C	48	3.152
DS2	T2	96	6.312
DS3	Т3	672	44.736
DS4	T4	4032	274.176

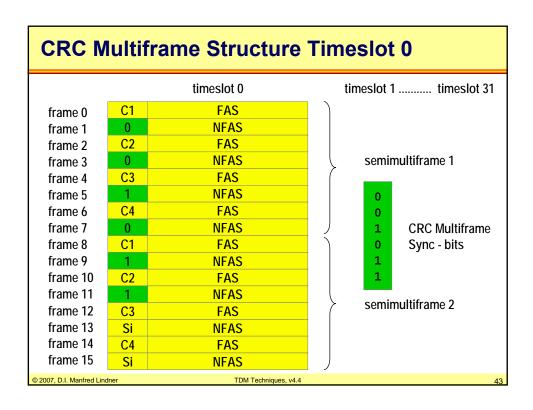

Europe / ITU


Signal	Carrier	Channels	Mbit/s
DS0	"E0"	1	0.064
CEPT-1	E1	32	2.048
CEPT-2	E2	128	8.448
CEPT-3	E3	512	34.368
CEPT-4	E4	2048	139.264
CEPT-5	E5	8192	565.148


- Incompatible MUX rates
- Different signalling schemes
- Different overhead
- μ-law versus A-law

© 2007, D.I. Manfred Lindner

TDM Techniques, v4.4



E1 Frame Structure

- every second frame
 - timeslot 0 contains FAS used for frame synchronization
- C (CRC) bit
 - is part of an optional 4-bit CRC sequence
 - provides frame checking and multiframe synchronization
- A (Alarm Indication) bit
 - so called Yellow (remote) alarm
 - used to signal loss of signal (LOS) or out of frame (OOF) condition to the far end
- N (National) bits
 - reserved for future use

© 2007, D.I. Manfred Lindner TDM Techniques, v4.4 42

Agenda

- Introduction
- Synchronous (Deterministic) TDM
- Asynchronous (Statistical) TDM
- Voice Transmission
- PDH
- SDH

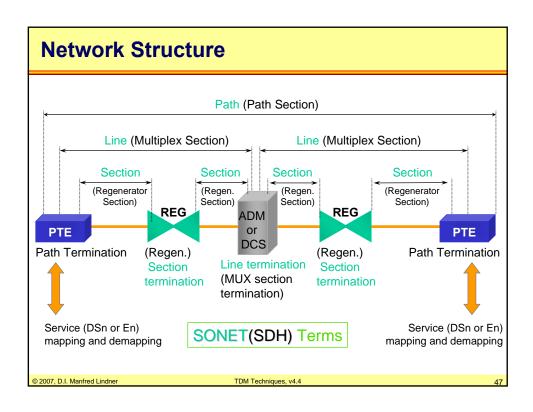
2007, D.I. Manfred Lindner TDM Techniques, v4.4

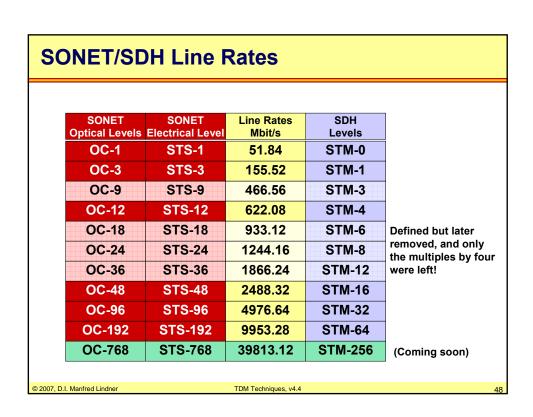
Reasons for SONET/SDH Development

- Incompatible PDH standards !!!
- PDH does not scale to very high bit rates
 - Increasing overhead
 - Various multiplexing procedures
 - Switching of channels requires demultiplexing first
- Demand for a true synchronous network
 - No pulse stuffing between higher MUX levels
 - Phase shifts are compensated by floating payload and pointer technique
- Demand for add-drop MUXes and ring topologies

© 2007, D.I. Manfred Lindner

TDM Techniques, v4.4


45


SDH History

- After divestiture of AT&T
 - Many companies -> many proprietary solutions for PDH successor technology
- In 1984 ECSA (Exchange Carriers Standards Association) started on SONET
 - · Goal: one common standard
 - Tuned to carry US PDH payloads
- In 1986 CCITT became interested in SONET
 - Created SDH as a superset
 - Tuned to carry European PDH payloads including E4 (140 Mbit/s)
- SDH is a world standard
 - SONET is subset of SDH
- Originally designed for fiber optics

© 2007, D.I. Manfred Lindner

TDM Techniques, v4.4

